LECTURE 12 MATH 256B

LECTURE: PROFESSOR MARK HAIMAN

NOTES: JACKSON VAN DYKE

Recall we wanted to set up some situation on $\operatorname{Proj} R$ which is analogous to what we had for $\operatorname{Spec} R$. We had a globalization functor from R-modules to sheaves on $\operatorname{Spec} R$, and a global sections functor from sheaves on $\operatorname{Spec} R$ to R-modules. But even on classical projective space we can't expect the analogous situation to be a one-to-one correspondence since different modules can give the same sheaf. It is however reasonable to believe that under the appropriate assumptions, we could start with a quasi-coherent sheaf, and that there is a way to get a module which will give us the sheaf back.

So let $X=\operatorname{Proj} R$ where R is such that $V\left(R_{1}\right)=\emptyset$. In other words $R_{+} \subset \sqrt{R_{1}}$. If we define $\mathcal{O}_{X}(d)=R[d]^{\sim}$, then under this assumption these are invertible. We also have

$$
\tilde{M} \otimes \mathcal{O}_{X}(d)=M[d]^{\sim}
$$

and more generally

$$
\mathcal{O}_{X}(d) \otimes \mathcal{O}_{X}(e)=\mathcal{O}_{X}(d+e)
$$

So now let \mathcal{M} be an \mathcal{O}_{X}-module. Then define $\mathcal{M}(d)=\mathcal{O}_{X}(d) \otimes \mathcal{M}$ and

$$
\Gamma_{*}(\mathcal{M}):=\bigoplus_{d} \Gamma(X, \mathcal{M}(d))
$$

Note that we could generally define

$$
\Gamma(\mathcal{M}, \mathcal{L})=\bigoplus_{d \in \mathbb{Z}} \Gamma\left(X, \mathcal{M} \otimes \mathcal{L}^{\otimes d}\right)
$$

for any line bundle ${ }^{1} \mathcal{L}$. Then we claim that $\Gamma_{*}(\mathcal{M})$ is a graded R-module. We know we have $R_{e}=R[e]_{0} \rightarrow \Gamma(\mathcal{O}(e))$, so we have a map

$$
R_{e} \rightarrow \Gamma(\mathcal{O}(e)) \otimes \Gamma(\mathcal{M}(d)) \rightarrow \Gamma(\mathcal{O}(e) \otimes \mathcal{M}(d))=\Gamma(\mathcal{M}(d+e))
$$

so it is a graded R-module.
We also have that if we start with some other graded R-module M, and take the degree d piece $M_{d}=M[d]_{0}$ then we have a morphism

$$
M_{d} \rightarrow \Gamma(\tilde{M}(d))=\Gamma_{*}(\tilde{M})_{d}
$$

Proposition 1. $\Gamma_{*}: \mathcal{O}_{X}-\operatorname{Mod} \rightarrow R-\operatorname{Mod}_{\text {grd }}$ is right adjoint to $(\cdot)^{\sim}$.
Proof. This means that morphisms $\tilde{M} \rightarrow \mathcal{N}$ are in canonical one-to-one correspondence to morphisms $M \rightarrow \Gamma_{*}(\mathcal{N})$, i.e.

$$
\operatorname{Hom}_{\mathcal{O}_{X}-\operatorname{Mod}}(\tilde{M}, \mathcal{N})=\operatorname{Hom}_{R-\operatorname{Mod}_{g r d}}\left(M, \Gamma_{*}(\mathcal{N})\right)
$$

Date: February 20, 2019.
${ }^{1}$ For example, an ample line bundle.

Suppose we are given $\tilde{M} \rightarrow \mathcal{N}$. Then we apply Γ_{*}, and use the fact that we have a canonical homomorphism:

$$
M \rightarrow \Gamma_{*}(\tilde{M}) \rightarrow \Gamma_{*}(\mathcal{N})
$$

so we have a map $M \rightarrow \Gamma_{*}(\mathcal{N})$.
Now suppose we are given $\beta: M \rightarrow \Gamma_{*}(\mathcal{N})$. To define a sheaf homomorphism, we just need to show what it does on a base of the open sets: the $X_{f} \mathrm{~s}$. On X_{f} we have $\left.\tilde{M}\right|_{X_{f}}=\left(M_{f}\right)_{0}^{\sim}$ so we want:

$$
\tilde{M}\left(X_{f}\right)=\left(M_{f}\right)_{0} \rightarrow \mathcal{N}\left(X_{f}\right)
$$

We have $\beta(a) \in \Gamma(\mathcal{N}(n d))=\Gamma(\mathcal{N} \otimes \mathcal{O}(n d))$, and $f \in \Gamma(\mathcal{O}(d))$ is a generating section on X_{f}, so it is invertible. We want to think of this as landing in

$$
f^{-n} \rightarrow \Gamma\left(X_{f}, \mathcal{O}(-n d)\right)
$$

Now we can tensor these to get a section

$$
\beta(a) f^{-n} \in \Gamma\left(X_{f}, \mathcal{N}\right)
$$

as desired.
We really want to know that qco sheaves on a Proj correspond to modules. The issue is that this isn't true unless we make an additional assumption that $X=\operatorname{Proj} R$ is quasicompact. ${ }^{2}$ In particular, we can cover it by finitely many $X_{f} \mathrm{~s}$.

Theorem 1. Under the above assumptions, if \mathcal{M} is a qco \mathcal{O}_{X}-module, then this implies that $M=\Gamma_{*}(\mathcal{M})^{\sim}$.

Proof. We are in the following situation:

Recall we should think of U as a principle \mathbb{G}_{m} bundle, and we should think of X as the quotient space:

$$
\begin{aligned}
& Y_{f}=\mathbb{G}_{m} \times X_{f}=\operatorname{Spec} S\left[x^{ \pm 1}\right] \\
& \downarrow \\
& X_{f}=\operatorname{Spec} S
\end{aligned}
$$

where $S\left[x^{ \pm 1}\right] \cong R_{f}$ under $x \mapsto f$. Then the idea is that we want

$$
\Gamma_{*}(\mathcal{M})=\Gamma_{Y}\left(j_{*} \pi^{*} \mathcal{M}\right)
$$

We know that

$$
\pi_{*} \mathcal{O}_{Y}=\bigoplus_{d \in \mathbb{Z}} \mathcal{O}_{X}(d)
$$

[^0]Now we can calculate:

$$
\begin{aligned}
\Gamma_{*}(\mathcal{M})=\bigoplus_{d \in \mathbb{Z}} \Gamma(X, \mathcal{M} \otimes \mathcal{O}(d)) & =\Gamma\left(X, \bigoplus_{d \in \mathbb{Z}} \mathcal{M} \otimes \mathcal{O}(d)\right) \\
& =\Gamma\left(X, \mathcal{M} \otimes \pi_{*} \mathcal{O}_{Y}\right) \\
& =\Gamma\left(X, \pi_{*} \pi^{*} \mathcal{M}\right) \\
& =\Gamma_{U}\left(\pi^{*} \mathcal{M}\right) \\
& =\Gamma_{Y}\left(j_{*} \pi^{*} \mathcal{M}\right)
\end{aligned}
$$

The issue is that there is a problem with this calculation, because global sections do not necessarily commute with direct sums. They do however commute with products, so we generally have a containment:

However, Γ does preserve direct sums for qco sheaves on affine schemes. But now we could have a global section for which on each piece of the open cover only finitely many are nonzero but globally infinitely many are nonzero. This is not a problem however if the affine open cover is finite. I.e. if the M_{α} are qco, and X is quasicompact, then Γ does commute with direct sums. Therefore the above calculation was correct, and now we just have to use the fact that j is a quasicompact morphism which preserves qco sheaves to finish up.

To be continued...

[^0]: ${ }^{2}$ Note we still maintain that $V\left(R_{1}\right)=\emptyset$.

