LECTURE 14
 MATH 256B

LECTURE: PROFESSOR MARK HAIMAN

NOTES: JACKSON VAN DYKE

1. Representing Proj R as a functor

Previously we talked about the idea that as long as $V\left(R_{1}\right)=\emptyset$, then the map $U=\operatorname{Spec} R \backslash V\left(R_{+}\right) \rightarrow X=\operatorname{Proj} R$ looks like a principle \mathbb{G}_{m} bundle. In particular, \mathbb{G}_{m} invariant morphisms $U \rightarrow Y$ are the same as morphisms $X \rightarrow Y$:

This entirely characterizes the Proj, but it somehow only tells us the functor it co-represents, so it doesn't really help us understand morphisms $T \rightarrow X$.

Also recall that under the assumption $V\left(R_{1}\right)=\emptyset$, the $\mathcal{O}_{X}(d)$ are invertible, and they comprise a subgroup of the Picard group under the operation

$$
\mathcal{O}_{X}(d) \otimes \mathcal{O}_{X}(e)=\mathcal{O}_{x}(d+e)
$$

which is generated by $\mathcal{O}_{X}(1)$.
Given a morphism $\varphi: T \rightarrow X$ we get:
(i) The invertible sheaf $\mathcal{L}=\varphi^{*} \mathcal{O}(1)$ on $T .{ }^{1}$ Note also that

$$
\mathcal{L}^{\otimes d}=\varphi^{*} \mathcal{O}(d)
$$

(ii) $f \in R_{d}$ gives a global section in $\Gamma\left(X, \mathcal{O}_{X}(d)\right)$ and then we get a global section in $\Gamma\left(T, \mathcal{L}^{\otimes d}\right)$. So if we define

$$
\Gamma_{+}(T, \mathcal{L})=\bigoplus_{d \geq 0} \Gamma\left(T, \mathcal{L}^{\otimes d}\right)
$$

we get a graded ring homomorphism

$$
\alpha: R \rightarrow \Gamma_{+}(T, \mathcal{L}) .
$$

(iii) These data are such that \mathcal{L} is generated by its (global) sections which are in $\alpha\left(R_{1}\right)$. This means the following. These global sections can be thought of as homomorphisms $\mathcal{O} \rightarrow \mathcal{L}$ which send $1 \mapsto s$. On an open subset this means $\left.\left.\mathcal{O}\right|_{U} \xrightarrow{\simeq} \mathcal{L}\right|_{U}$ given by $1 \mapsto s$.
Theorem 1. All data $^{2}(i)$ and (ii) satisfying (iii) come from a unique morphism $\varphi: T \rightarrow X$.

[^0]Remark 1. We can sort of rigidify this in the following sense. Part of this data is the map $R_{0} \rightarrow \Gamma\left(T, \mathcal{L}^{\otimes 0}\right)=\Gamma(T, \mathcal{O})$, so we can tensor $R \otimes_{R_{0}} \mathcal{O}(T)$ which maps to

$$
R \otimes_{R_{0}} \mathcal{O}(T) \rightarrow \bigoplus_{d \geq 0} \mathcal{L}^{\otimes d}
$$

In these terms the condition (iii) says that this map is surjective in degree 1 , so giving this up to isomorphism is giving the kernel of this. If we didn't want to think of this as data up to isomorphism we could think of this as a theorem about ideals in this graded algebra such that the quotient is isomorphic to this direct sum of tensor powers of the degree 1 part (which is an invertible sheaf).

2. Examples

2.1. Projective space. Let $k=\bar{k}$ and consider \mathbb{P}_{k}^{n}. This is of course a scheme over k, so anything that maps to it is a scheme over k. We want to see how the abstract discussion above becomes concrete in this example. Consider $T \rightarrow \mathbb{P}_{k}^{n}=$ Proj $k\left[x_{0}, \cdots, x_{n}\right]$. Consider \mathcal{L} an invertible sheaf on T.

Now let's make sense of what it means for a section to generate \mathcal{L} on an open set. So let $s \in \Gamma(T, \mathcal{L})$. Just as if s was an honest function, there is a closed subscheme $V(s)$, then we can consider the complement $W \subseteq T$. Locally there will be various opens U on which $\left.\left.\mathcal{L}\right|_{U} \simeq \mathcal{O}\right|_{U}$ where $s \mapsto f$. But the f depends on the choice of isomorphism. I.e. we could make a different choice to get some f^{\prime}. These differ by an isomorphism $\left.\left.\mathcal{O}\right|_{U} \simeq \mathcal{O}\right|_{U}$ given by some $1 \mapsto h$, which has inverse map given by $h^{\prime} \leftarrow 1$, but we must have $h^{\prime}=h^{-1}$ which means $h \in \mathcal{O}^{\times}(U)$. In particular, since $f^{\prime}=h f$, we have $V(f)=V\left(f^{\prime}\right)$. So we have a well-defined closed subscheme.

More abstractly (but maybe cleaner) we can think of s as a map $s: \mathcal{O} \rightarrow \mathcal{L}$ which sends $1 \mapsto s$. Then we can tensor this with its dual $\mathcal{L}^{\vee} \otimes-$ which yields

$$
\mathcal{L}^{\vee} \xrightarrow{s^{\prime}} \mathcal{O}
$$

The image $I \subseteq \mathcal{O}$ is a locally principal qco ideal sheaf. So now we can talk about $V(I)$, which is just $V(s)$. So we end up with the same picture.

There is even a third way to look at this. We can look at this map, and continue it to its cokernel \mathcal{A} :

$$
\mathcal{O} \rightarrow \mathcal{L} \rightarrow \mathcal{A} \rightarrow 0
$$

and we can tensor it again with \mathcal{L}^{\vee} to get

$$
\mathcal{L} \rightarrow \mathcal{O} \rightarrow \mathcal{O} / I \rightarrow 0
$$

since $\mathcal{O} / I=\mathcal{L}^{\vee} \otimes \mathcal{A}$. Now we can look at the support of \mathcal{A}. In general the support of a sheaf doesn't have to be closed but the support of a section of a sheaf is closed. Since the support of the whole sheaf is the union of the supports of its sections, and its enough to take generating sections we have that $\operatorname{Supp}(\mathcal{A})$ is closed. In addition, tensoring with \mathcal{L}^{\vee} doesn't change this, so

$$
\operatorname{Supp}(\mathcal{A})=\operatorname{Supp}(\mathcal{O} / I)=V(I) .
$$

From this we can see that its complement is the locus of points where s generates \mathcal{O} in a stalk. So let $W=T \backslash V(s)$. Then this map $s: \mathcal{O} \rightarrow \mathcal{L}$ is surjective on W, but since this is an invertible sheaf, it is actually an isomorphism, and this is clearly the largest open subset on which it could be. So s generates \mathcal{L} on W in two senses. It's an isomorphism, and in every point of W the germ of s is a generator of \mathcal{L}.

Now let's get back to projective space. So we have this ring homomorphism $\alpha: k\left[x_{0}, \cdots, x_{n}\right] \rightarrow \Gamma_{+}(\mathcal{L})$. We know what happens in degree 0 , so we just have to specify the image of the x_{i}. Since they have no relations in the polynomial ring, we can send them anywhere arbitrarily:

$$
\alpha\left(x_{i}\right)=s_{i} \in \Gamma(T, \mathcal{L})
$$

Then $U_{i}=T \backslash V\left(s_{i}\right)$ over T.
On $U_{i}, s_{j}=f_{j i} s_{i}$ for some $f_{j i}$ on U_{i}. Then we get a sort of ratio of these

$$
\left(s_{0}: s_{1}: \cdots: s_{n}\right)=\left(f_{0 i}: f_{1 i}: \cdots: 1=f_{i i}: \cdots: f_{n i}\right)
$$

The point is that sections of an invertible sheaf are functions, but ratios of them are also somehow functions as long as the one in the denominator is a generator. In particular we can evaluate at any point, to get a map

$$
p \in T \mapsto\left(s_{0}: \cdots: s_{n}\right)(p)
$$

Geometrically, at a point p, the fiber of the sheaf of functions is values of functions at p, which is a line, and the fiber of \mathcal{L} is also a line. But for functions it has an origin and a scale (a value 1), and \mathcal{L} is a line with an origin but no unit. So the point is that if we have two sections of \mathcal{L}, their values in the fiber only really have a well-defined ratio.

Example 1. Consider $\mathbb{P}^{k} \subseteq \mathbb{P}^{n}$ given by $V\left(x_{k+1}, \cdots, x_{n}\right)$. We could also consider $V\left(x_{0}, \cdots, x_{k}\right)$ which looks like \mathbb{P}^{n-1-k}. Notice that these are disjoint. Now suppose we take some \mathbb{P}^{k+1} containing our \mathbb{P}^{k}. Then there is exactly one point where this meets \mathbb{P}^{n-1-k}. In particular we can take some point in $\mathbb{P}^{n} \backslash \mathbb{P}^{k}$. Then \mathbb{P}^{k} and this point are on some \mathbb{P}^{k+1}, which meets \mathbb{P}^{n-1-k} in a single point. So we have a map $\mathbb{P}^{n} \backslash \mathbb{P}^{k} \rightarrow \mathbb{P}^{n-1-k}$, but is this a morphism?

Well if it's supposed to be a morphism to a projective space, it should be specified by a line bundle and an appropriate number of sections with no common zero locus. Take $\mathcal{L}=\mathcal{O}(1)$ for the line bundle. Then we need $n-k$ sections s_{k+1}, \cdots, s_{n} of this which are generating sections on T. The point is that these are just $s_{i}=x_{i}$. These are sections with zero loci $V\left(x_{i}\right)$, and the complement of this \mathbb{P}_{k} is the union of the open sets where these are generators. I.e. these generate $\mathcal{O}(1)$ on T.

[^0]: Date: February 25, 2019.
 ${ }^{1}$ More generally the pullback of a vector bundle is a vector bundle.
 ${ }^{2} \mathcal{L}$ and $R \rightarrow \Gamma_{+}(\mathcal{L})$ up to isomorphism.

