LECTURE 15
 MATH 256B

LECTURE: PROFESSOR MARK HAIMAN

NOTES: JACKSON VAN DYKE

Recall we are considering $X=\operatorname{Proj} R$ where $V\left(R_{1}\right)=\emptyset$ and we want to understand the functor \underline{X}. In particular, given $\varphi: T \rightarrow X$ and $\mathcal{L}=\varphi^{*} \mathcal{O}(1)$, we claim that

$$
\underline{\underline{X}}(T)=\left\{\mathcal{L}, R \rightarrow \Gamma_{+}(\mathcal{L})\right\} / \cong
$$

where

$$
\Gamma_{+}(\mathcal{L}):=\bigoplus_{d \geq 0} \Gamma\left(T, \mathcal{L}^{\otimes d}\right)
$$

Last time we saw how such a φ can give us \mathcal{L} and α, and today we want to go in the opposite direction. But first we will see some examples.

1. Examples

Example 1. Recall last time we were considering \mathbb{P}_{K}^{n} for a field K. Then take $\mathbb{P}^{k}=V\left(x_{k+1}, \cdots, x_{n}\right)$ living inside this, and write $U=\mathbb{P}^{n} \backslash \mathbb{P}^{k}$. The map $U \rightarrow$ \mathbb{P}^{n-1-k} is given by the following. We can take some point in U, and then \mathbb{P}^{k} and this point are on some \mathbb{P}^{k+1}, which meets \mathbb{P}^{n-1-k} in a single point. So we have a map $U \rightarrow \mathbb{P}^{n-1-k}$. Then for this to be a morphism we need a line bundle and some sections. The line bundle is $\mathcal{L}=\left.\mathcal{O}(1)\right|_{U}$, and the sections $s_{k+1}, \cdots, s_{n} \in \mathcal{L}(U)$ are just $x_{k+1}, \cdots, x_{n} . U$ is the biggest open set on which these comprise a generating collection.

Example 2. Let C be a projective curve (closed in \mathbb{P}^{n}, irreducible, smooth). Any hyperplane, i.e. a \mathbb{P}^{n-1}, will meet C in some points. Then we can find some \mathbb{P}^{n-2} inside this which avoids C. Then for any point in C, the \mathbb{P}^{n-1} which contains both this point and our \mathbb{P}^{n-2} will intersect a \mathbb{P}^{1} at exactly 1 point. ${ }^{1}$ So we have a projection map from C to \mathbb{P}^{1}.

As long as we make generic choices (i.e. we don't set it up exactly wrong) the map from C to \mathbb{P}^{1} will be sort of finite to one, i.e. the inverse image of any point on \mathbb{P}^{1} is some finite set of points. It will also turn out to be surjective. This gives us a ramified covering of the projective line by any curve. This is a way of describing curves basically up to isomorphism.
Example 3. Let C be $V\left(x z-y^{2}\right)$. This is the projective closure of $x=y^{2}$. So choose the $\mathbb{P}^{n-1}=\mathbb{P}^{1}$ to be the y-axis, and then we take the $\mathbb{P}^{n-2}=\mathbb{P}^{0}$ avoiding the curve to be $(0: 1: 0)=(x: y: z)$. Then we connect points on C to this point and these intersect the x axis. So this is how we project. So we get a ramification point at the origin, and at the point at infinity. So the conic C maps to \mathbb{P}^{1} which is a double cover ramified at two points.

[^0]The Hurwitz number $h_{g, k_{1}, \ldots, k_{n}}$ is the count of ramified coverings of \mathbb{P}^{1} which are connected curves of genus g with n numbered preimages of the point at infinity having multiplicities k_{1}, \cdots, k_{n}. If we know the monodromy we can compute these. As it turns out $h_{g, k_{1}, \ldots, k_{n}}$ is an intersection number on $\overline{m_{g, n}}$, which is somehow a moduli space of stable curve of genus g with n marked points.

Example 4. Let $R=A[x]$. Then $X=\operatorname{Proj}(R)=X_{x}$ is affine. In particular it is Spec $A\left[x^{ \pm 1}\right]_{0}=\operatorname{Spec}(A)$. Therefore we already know what its functor is:

$$
\begin{equation*}
\underline{\underline{X}}(T)=\left\{A \rightarrow \mathcal{O}_{T}(T)\right\} . \tag{1}
\end{equation*}
$$

So let's see if this more complicated description above agrees with this. We should have a line bundle \mathcal{L} on T, and a morphism $A[x] \xrightarrow{\alpha} \Gamma(\mathcal{L})$. As a part of this there is

$$
\alpha_{0}: A \rightarrow \Gamma\left(T, \mathcal{O}_{T}\right)
$$

which is the morphism in (1). The image of x :

$$
\alpha(x)=s \in \Gamma(T, \mathcal{L})
$$

is a section of \mathcal{L}, and in particular it is a generating section. But if a line bundle has a global section which generates it, then we have an isomorphism:

$$
\begin{aligned}
& \mathcal{O} \xrightarrow{\simeq} \mathcal{L} \\
& 1 \longmapsto s
\end{aligned}
$$

So these points of view do agree in this case.

2. How to Prove this

So we want to see how given \mathcal{L} and $\alpha: R \rightarrow \Gamma_{+}(\mathcal{L})$ (such that $\alpha\left(R_{1}\right)$ generates $\mathcal{L})$ we can get $\varphi: T \rightarrow X$. There is a canonical morphism $\psi: T \rightarrow \operatorname{Proj} \Gamma_{+}(\mathcal{L})$ (assuming \mathcal{L} is globally generated). For $s \in \Gamma(T, \mathcal{L})$ we get $T_{s}=T \backslash V(s)$ and s generates $\left.\mathcal{L}\right|_{T_{s}}$. In particular we have an isomorphism

$$
\left.\left.\mathcal{O}\right|_{T_{s}} \simeq \mathcal{L}\right|_{T_{s}}
$$

which sends $1 \mapsto s$. Then we can tensor with \mathcal{L}^{\vee} to get the inverse of this map:

$$
s \otimes \mathcal{L}^{\vee}: \mathcal{L}^{\vee} \xrightarrow{\simeq} \mathcal{O} .
$$

We write $\mathcal{L}^{-\otimes n}=\mathcal{L}^{\vee \otimes n}$. So we have $s^{-1} \in \mathcal{L}^{\vee}\left(T_{s}\right)$ and $s \in \Gamma_{+}(\mathcal{L})_{1}$. Then g / s^{d} maps into $Y_{s}=\operatorname{Spec}\left(\Gamma_{+}(\mathcal{L})_{s}\right)_{0}$ where $g \in \Gamma\left(T, \mathcal{L}^{\otimes d}\right)$ and $s^{-d} \in \Gamma\left(T_{s}, \mathcal{L}^{-\otimes d}\right)$. So we can view $g / s^{d} \in \mathcal{O}_{T}\left(T_{s}\right)$. Now we have a map

$$
\left(\Gamma_{+}(\mathcal{L})_{s}\right)_{0} \rightarrow \mathcal{O}_{T}\left(T_{s}\right)
$$

which means we have a map

$$
T_{s} \rightarrow \operatorname{Spec}\left(\Gamma_{+}(\mathcal{L})_{s}\right)_{0}=Y_{s}
$$

so these fit together and we get a morphism $T \rightarrow Y$. In particular this factors through $W=\bigcup_{s} Y_{s}$:

The point is that the union of the $Y_{s} \mathrm{~s}$ might not cover Y, but the union of the $T_{s} \mathrm{~s}$ do cover T, so we get this map.

Now we're almost done. For $R \rightarrow \Gamma_{+}(\mathcal{L})$ we get a map between opens

$$
U \rightarrow X=\operatorname{Proj} R
$$

where $Y \supset U$ and $U=Y \backslash V\left(\alpha\left(R_{+}\right)\right)=Y \backslash V\left(\alpha\left(R_{1}\right)\right)$. But since $\alpha\left(R_{1}\right)$ generates \mathcal{L}, the map $T \rightarrow Y$ actually maps $T \rightarrow U$:

Now we have to check a bunch of things, but it all works out. So we get a map $\varphi: T \rightarrow X$ as desired.

[^0]: Date: February 27, 2019.
 ${ }^{1}$ The idea is that \mathbb{P}^{n-1} looks like $V\left(x_{n}\right)$ and \mathbb{P}^{1} looks like $V\left(x_{0}, \cdots, x_{n-1}\right)$.

