LECTURE 15 MATH 256B

LECTURE: PROFESSOR MARK HAIMAN NOTES: JACKSON VAN DYKE

Recall we are considering $X = \operatorname{Proj} R$ where $V(R_1) = \emptyset$ and we want to understand the functor \underline{X} . In particular, given $\varphi : T \to X$ and $\mathcal{L} = \varphi^* \mathcal{O}(1)$, we claim that

$$\underline{\underline{X}}(T) = \{\mathcal{L}, R \to \Gamma_+(\mathcal{L})\} / \cong$$
$$\Gamma_+(\mathcal{L}) \coloneqq \bigoplus_{d \ge 0} \Gamma\left(T, \mathcal{L}^{\otimes d}\right) .$$

where

Last time we saw how such a φ can give us \mathcal{L} and α , and today we want to go in the opposite direction. But first we will see some examples.

1. Examples

Example 1. Recall last time we were considering \mathbb{P}_K^n for a field K. Then take $\mathbb{P}^k = V(x_{k+1}, \cdots, x_n)$ living inside this, and write $U = \mathbb{P}^n \setminus \mathbb{P}^k$. The map $U \to \mathbb{P}^{n-1-k}$ is given by the following. We can take some point in U, and then \mathbb{P}^k and this point are on some \mathbb{P}^{k+1} , which meets \mathbb{P}^{n-1-k} in a single point. So we have a map $U \to \mathbb{P}^{n-1-k}$. Then for this to be a morphism we need a line bundle and some sections. The line bundle is $\mathcal{L} = \mathcal{O}(1)|_U$, and the sections $s_{k+1}, \cdots, s_n \in \mathcal{L}(U)$ are just x_{k+1}, \cdots, x_n . U is the biggest open set on which these comprise a generating collection.

Example 2. Let C be a projective curve (closed in \mathbb{P}^n , irreducible, smooth). Any hyperplane, i.e. a \mathbb{P}^{n-1} , will meet C in some points. Then we can find some \mathbb{P}^{n-2} inside this which avoids C. Then for any point in C, the \mathbb{P}^{n-1} which contains both this point and our \mathbb{P}^{n-2} will intersect a \mathbb{P}^1 at exactly 1 point.¹ So we have a projection map from C to \mathbb{P}^1 .

As long as we make generic choices (i.e. we don't set it up exactly wrong) the map from C to \mathbb{P}^1 will be sort of finite to one, i.e. the inverse image of any point on \mathbb{P}^1 is some finite set of points. It will also turn out to be surjective. This gives us a ramified covering of the projective line by any curve. This is a way of describing curves basically up to isomorphism.

Example 3. Let C be $V(xz - y^2)$. This is the projective closure of $x = y^2$. So choose the $\mathbb{P}^{n-1} = \mathbb{P}^1$ to be the *y*-axis, and then we take the $\mathbb{P}^{n-2} = \mathbb{P}^0$ avoiding the curve to be (0:1:0) = (x:y:z). Then we connect points on C to this point and these intersect the *x* axis. So this is how we project. So we get a ramification point at the origin, and at the point at infinity. So the conic C maps to \mathbb{P}^1 which is a double cover ramified at two points.

Date: February 27, 2019.

¹The idea is that \mathbb{P}^{n-1} looks like $V(x_n)$ and \mathbb{P}^1 looks like $V(x_0, \cdots, x_{n-1})$.

The Hurwitz number h_{g,k_1,\ldots,k_n} is the count of ramified coverings of \mathbb{P}^1 which are connected curves of genus g with n numbered preimages of the point at infinity having multiplicities k_1, \cdots, k_n . If we know the monodromy we can compute these. As it turns out h_{g,k_1,\ldots,k_n} is an intersection number on $\overline{m_{g,n}}$, which is somehow a moduli space of stable curve of genus g with n marked points.

Example 4. Let R = A[x]. Then $X = \operatorname{Proj}(R) = X_x$ is affine. In particular it is $\operatorname{Spec} A[x^{\pm 1}]_0 = \operatorname{Spec}(A)$. Therefore we already know what its functor is:

(1)
$$\underline{\underline{X}}(T) = \{A \to \mathcal{O}_T(T)\} \ .$$

So let's see if this more complicated description above agrees with this. We should have a line bundle \mathcal{L} on T, and a morphism $A[x] \xrightarrow{\alpha} \Gamma(\mathcal{L})$. As a part of this there is

$$\alpha_0: A \to \Gamma\left(T, \mathcal{O}_T\right)$$

which is the morphism in (1). The image of x:

$$\alpha\left(x\right) = s \in \Gamma\left(T, \mathcal{L}\right)$$

is a section of \mathcal{L} , and in particular it is a generating section. But if a line bundle has a global section which generates it, then we have an isomorphism:

$$\mathcal{O} \xrightarrow{\simeq} \mathcal{L}$$
$$1 \longmapsto s$$

So these points of view do agree in this case.

2. How to prove this

So we want to see how given \mathcal{L} and $\alpha : R \to \Gamma_+(\mathcal{L})$ (such that $\alpha(R_1)$ generates \mathcal{L}) we can get $\varphi : T \to X$. There is a canonical morphism $\psi : T \to \operatorname{Proj} \Gamma_+(\mathcal{L})$ (assuming \mathcal{L} is globally generated). For $s \in \Gamma(T, \mathcal{L})$ we get $T_s = T \setminus V(s)$ and s generates $\mathcal{L}|_{T_s}$. In particular we have an isomorphism

$$\mathcal{O}|_{T_s}\simeq \mathcal{L}|_{T_s}$$

which sends $1 \mapsto s$. Then we can tensor with \mathcal{L}^{\vee} to get the inverse of this map:

$$\otimes \mathcal{L}^{\vee}: \mathcal{L}^{\vee} \xrightarrow{\simeq} \mathcal{O}$$

We write $\mathcal{L}^{-\otimes n} = \mathcal{L}^{\vee \otimes n}$. So we have $s^{-1} \in \mathcal{L}^{\vee}(T_s)$ and $s \in \Gamma_+(\mathcal{L})_1$. Then g/s^d maps into $Y_s = \text{Spec}(\Gamma_+(\mathcal{L})_s)_0$ where $g \in \Gamma(T, \mathcal{L}^{\otimes d})$ and $s^{-d} \in \Gamma(T_s, \mathcal{L}^{-\otimes d})$. So we can view $g/s^d \in \mathcal{O}_T(T_s)$. Now we have a map

$$\left[\Gamma_{+}\left(\mathcal{L}\right)_{s}\right]_{0} \to \mathcal{O}_{T}\left(T_{s}\right)$$

which means we have a map

$$T_s \to \operatorname{Spec}\left(\Gamma_+\left(\mathcal{L}\right)_s\right)_0 = Y_s$$

so these fit together and we get a morphism $T \to Y$. In particular this factors through $W = \bigcup_s Y_s$:

LECTURE 15

The point is that the union of the Y_s s might not cover Y, but the union of the T_s s do cover T, so we get this map.

Now we're almost done. For $R \to \Gamma_+(\mathcal{L})$ we get a map between opens

$$U \to X = \operatorname{Proj} R$$

where $Y \supset U$ and $U = Y \setminus V(\alpha(R_+)) = Y \setminus V(\alpha(R_1))$. But since $\alpha(R_1)$ generates \mathcal{L} , the map $T \to Y$ actually maps $T \to U$:

Now we have to check a bunch of things, but it all works out. So we get a map $\varphi:T\to X$ as desired.