
LECTURE 16

LECTURE: PROFESSOR MARK HAIMAN
NOTES: JACKSON VAN DYKE

Today we will do some classical algebraic geometry. We will consider two pro-
jective varieties, and we want to see if their product is a projective variety. In
particular we want to embed this in projective space. This construction is called
the Segré embedding.

1. Segré embedding

1.1. Classical picture. Consider two projective varieties X ⊆ Pl
k and Y ⊆ Pm

k .
Then the embedding is given by:

X ×k Y ⊆ Pl
k × Pm

k Pn = P(l+1)(m+1)−1

(x0 : · · · : xl) , (y0 : · · · : ym) (z00, · · · , zlm)

S

where

zij = xiyj .

This is a large space we’re embedding this in, but if we take any fewer dimensions
we could hit the point (0 : · · · : 0).

Supposing that this is a closed embedding, this should correspond to some ho-
mogeneous ideal I in the zijs such that the image of S is V (I). Some things that
are certainly in I look like

I 3 zijzi′j′ − zi′jzij′ = xixi′yiyi′ .

Another way of describing these elements is as the 2 × 2 minors of the following
matrix:  y0

· · ·
ym

(x0 · · · xl

)
=

 z00 · · · zl0
...

. . .
...

z0m · · · zlm

 .

But this might not be the whole ideal.
We can view this situation as follows.

Pl
k = Proj k [x0, · · · , xl] = ProjR

Pm
k = Proj k [y0, · · · , yl] = ProjS

Pn
k = Proj k [z00, · · · , zlm] .
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Now we can map:

(1)
k [z]

(
k [x]⊗k k

[
y
])

∆

zij xiyj

where

R⊗k S =
⊕

(d,e)∈N2

Rd ⊗ Se

is N× N graded with diagonal

(R⊗k S)∆ =
⊕
d∈N

Rd ⊗ Sd .

As it turns out the map in (1) is surjective. This is an example of the follow-
ing theorem which will tell us that that Proj of this really is the product of the
corresponding schemes.

2. Main theorem

Theorem 1. Let R and S be graded A-algebras where A has degree 0. So X =
ProjR and Y = ProjS are graded schemes over A. Then

X ×A Y ∼= Proj ((R⊗A S)∆) .

Remark 1. If V (R1) , V (S1) = ∅ we have

L = OX (1)⊗OY (1) .

and a map

Rd ⊗ Sd → Γ (OX (d)⊗OY (d)) = Γ
(
L⊗d

)
so we get a map

(R⊗A S)∆ = Γ+ (L) .

Now if we wanted to continue proving it in this case we would have to construct an
inverse map, i.e. we need the line bundles:

M = OX (1)⊗OY (0) N = OX (0)⊗OY (1) .

To get these we form the R⊗A S-module

M = (R [d]⊗A S [e])∆ ,

and then we can check that

M∨ = OX (d)⊗OY (e) .

The theorem holds for the general case though, so we will prove that version in
more detail.

Proof. Let Z = Proj ((R⊗A S)∆). We know X is covered by the Xf for f ∈ Rd,
and Y is covered by the Yg for g ∈ Re where

Xf = Spec (Rf )0 Yg = Spec (Sg)0 .

So we have

Xf ×A Yg = Spec
(
(Rf )0 ⊗A (Sg)0

)
.



LECTURE 16 3

Now define1

h = fe ⊗ gd ∈ (R⊗A S)∆ .

Then

Zh = Spec
(

((R⊗A S)d)
(0,0)

)
,

and we want to show that Zh ' Xf ×A Yg. So we want to construct a map:

(Rf )0 ⊗R (Sg)0 ((R⊗A S)h)
(0,0)

r/f i ⊗ s/gj ??

'

where deg r = deg
(
f i
)

= id and deg s = deg
(
gj
)

= je. For some powers (written
?) we have:

h? =
(
f? ⊗ g?

)
⊗ f i ⊗ gj ,

so we map this to:

?? =
r ⊗ s

f i ⊗ gj
=

f?r ⊗ g?s

h?

and in the other direction we map

r ⊗ s

h
→ r

fd
⊗ s

ge
.

These details can be worked out without much trouble, and indeed

Zh
∼= Xf ×A Yg

so we are done. �

Consider again the situation that these are invertible sheaves. Then for d > 0,
e > 0 we have

Proj
(

(R⊗ S)N(d,e)

)
' X ×A Y

but now OZ (1) is OX (d)⊗OY (e). So somehow we got the same scheme but with
different line bundles.

3. Back to the Segré embedding

So the theorem tells us that Proj
(
k [x]⊗k k

[
y
])

∆
= X ⊗k Y but we still don’t

know exactly what the ideal is. So we somehow want to know the kernel of (1).
So now we will take J generated by the proposed generators above, so this sits as
follows:

J ⊆ I ⊆ k [z]
(
k [x]⊗k k

[
y
])

∆
,

and then the question is if I = J . Take monomials xa and yb where |a| = |b| = d
for a basis of (

k [x]⊗ k
[
y
])

∆
.

We can always order monomials by writing them as

xa0
0 · · ·x

al

l = xi1 · · ·xid

1If we wanted to be more efficient we would want something in degree lcm (d, e) but this works
fine.
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for i1 ≤ i2 ≤ · · · and similarly yb = yj1 · · · yjd for j1 ≤ j2 ≤ · · · . Then there is an
obvious map

zi,j · · · zid,jd 7→ xayb .

And now for i < i′ and j > j′ we have

zijzi′j′ = zi′jzij′

so if we have a bad monomial we do moves such as this until it is ordered. Therefore
such things span, so J = I, so those are really the equations of the Segré map.

The other issue is if X and Y themselves have equations. We can just insist on
them in the obvious way, but we might worry if this is enough. Again from the
theorem, this will be enough if these relations define the diagonal subring of the
tensor product. But since tensor products preserve quotients we have

k [x] /I ⊗k k
[
y
]
/J = k

[
x, y
]
/Ik

[
y
]

+ Jk [x]

so this is sufficient.
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