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We want to eventually talk about ample and very ample line bundles. These
somehow give an embedding of a space into projective space. But today we will
take a break from the technical machinery of Proj. In particular we will talk about
how invertible sheaves are the same as line bundles and the general meaning of
having a vector bundle.

1. Affine morphisms

Let ϕ : X → Y be a morphism of schemes. This is affine if ϕ−1 (U) is affine for
every affine open U ⊆ Y .

Example 1. If X is a vector bundle1over Y the projection will be an affine mor-
phism.

Example 2. If ϕ is a closed embedding this is affine.

Warning 1. A locally closed embedding or an open embedding is not in general
an affine morphism.

Example 3. The inclusion X ↪→ A2 is not an affine morphism simply because A2

is affine and X is not.

1.1. Locality. This definition seems innocuous, but there is a subtle technical
issue. In particular this notion is defined in a somehow local way. So now we might
wonder if we can determined whether or not a morphism is affine based only on
the preimages of an open covering of Y . One thing that is true is the following.
Let U = SpecR ⊆ Y such that ϕ−1 (U) = SpecS is affine. Then U has a bunch of
affines inside of it, the Uf s, and then ϕ−1 (Uf ) = SpecSf is affine as well. So as
long as Y has a covering by affines with affine preimage, then there is a base of the
topology consisting of affines which have affine preimages.

So the question is the following. Suppose Y = SpecR is affine such that we have
a finite cover

Y =
⋃

i=1,...,n

Yfi

and ϕ−1 (Yfi) = Xfi is affine for all i. Does this imply that X is affine? The answer
is yes.

Proof. First notice that ϕ is quasi-compact and separated. As we have seen this
means ϕ∗OX = A is a qco OY -module (in fact it is a sheaf of OY -algebras). Since
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Y = SpecR, we have that A = Ã where A = OY (A) = OX (X). In the same way,
since A is now the sheaf associated to this module, we have

A (Yfi) = Afi = OX (Xfi) .

But we assumed Xfi was affine, so Xfi = SpecAfi , and we want to show that X =
SpecA is affine. From the ring homomorphism A→ OX (X) we have a morphism
X → SpecA, and we also have a morphism Xfi → SpecAfi . In particular, the
SpecAfi cover A, and the following diagram commutes:

X SpecA

Xfi SpecAfi
∼

so we do get an isomorphism X ' SpecA. �

2. The Spec construction

Let ϕ : X → Y be an affine morphism. So A = ϕ∗OX is a sheaf of OX algebras.
In particular, this is a qco sheaf as before. This sheaf basically tells us what X is.
For U = SpecR ⊆ Y we have ϕ−1 (U) = SpecS, and in particular

S = OX

(
ϕ−1 (U)

)
= A (U) .

Now we have a morphism OY (U) = R → A (U) = S, which gives us a map
SpecS → SpecR. So by some patching argument we can somehow recover X.

In particular, we didn’t need X at all. We could have just started with any
old qco sheaf. One obvious reason this needs to be qco is because otherwise we
would get a qco sheaf of algebras back at the end. The actual reason is somehow
hidden in the patching argument. This means affine schemes over Y , i.e. schemes
with an affine morphism to Y , are in one-to-one equivalence to qco OY -algebras A.
This is somehow a generalization of the story for affines. In the affine case going
from algebras to schemes is just saying that ring homomorphisms correspond to
morphisms of Spec. Motivated by this, for A = ϕ∗ (OX) we write X = Spec (A).

Remark 1. Even the universal property of Spec holds for this object as well. In
particular for an arbitrary scheme over Y , we have that a Y -morphism to X is the
same as a morphism of the associated algebras in the other direction:

Z X

Y

.

Remark 2. If we are given a sheaf of graded algebras over Y we can do a similar
thing to form some sort of Proj in the analogous way.

2.1. Examples.

Example 4. For i : X ↪→ Y a closed embedding, and U = SpecR an affine in Y we
have that i−1 (U) = X ∩U = SpecR/I is affine. Then I (U)→ R/I where I ⊆ OY

is a qco ideal sheaf. Then we can write OY /I = i∗OX (is the A from above) and
so we have X = Spec (OY /I).
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3. Vector bundles

3.1. Classical case. Let k = k and let X be a classical variety. In this case a
vector bundle is a classical algebraic variety V and a map ϕ : V → X where this
locally looks like a product with a vector space. One example of such a thing is the
trivial rank n vector bundle X × An

k → X.

Definition 1.
W

X

ϕ is a rank n vector bundle if we have an open cover U ⊆ X such

that ϕ−1 (U) ∼= An
k ×k U and given U, V ⊆ X we have

ϕ−1 (U ∩ V ) ∼=u An
k × (U ∩ V ) ∼=v An

k × (U ∩ V )

and then we insist that the map between these is k-linear on the fibers.

Now we want to somehow rephrase this in terms of functions. Consider gen-
erating sections e1, · · · , en of ϕ−1 (U) and e′1, · · · , e′n on ϕ−1 (V ). Then we have
ϕ−1 (U ∩ V ) = An

k × (U ∩ V ), and we want there to be M ∈ GLn (U ∩ V ) such thate′1
· · ·
e′n

 = M

e1
· · ·
en

 .

As it turns out this is somehow a more correct version of this data.

Definition 2.
W

X

ϕ is a rank n vector bundle if ϕ is affine, the sheaf of algebras

ϕ∗OW is locally of the form Z [x1, · · · , xn]⊗Z OX on open sets U covering X, and
if we consider the two isomorphisms coming from U and V :

Z [x]⊗OU∩V ' ϕ∗OU∩V ' Z
[
y
]
⊗OU∩V

then on Y ⊆ U∩V we require that the resulting composition is a linear isomorphism

O (Y ) [x] ∼= O (Y )
[
y
]
.

I.e. this is determined by y1
· · ·
yn

 = M

x1

· · ·
xn


for M ∈ GLn (O (Y )).

Notice that from this description it is immediate that an invertible sheaf is the
same as a rank 1 vector bundle.
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