LECTURE 21 MATH 256B

LECTURE: PROFESSOR MARK HAIMAN NOTES: JACKSON VAN DYKE

Recall we have a scheme X and line bundle (invertible sheaf) \mathcal{L} . Then canonically we get an open set $W \subseteq X$ and a map $\varphi : W \to \operatorname{Proj} \Gamma_+(\mathcal{L})$.

Proposition 1. W = X and φ is a locally closed embedding iff there exist enough $s \in \mathcal{L}^{\otimes d}(X)$ such that

- (i) X_s cover X,
- (ii) X_s is affine, and
- (iii) for all $g \in \mathcal{O}(X_s)$ there exists n such that $gs^{\otimes n}$ extends to $t \in \mathcal{L}^{\otimes nd}(X)$. Note $s^{\otimes n} \in \mathcal{L}^{\otimes nd}(X_s)$.

If we assume qco we can weaken these assumptions. If we have $U \subseteq X$ such that $\mathcal{L}|_U \cong \mathcal{O}_U$ then $U \cap X_s = U_s$ is affine. In addition, if $X_s \subseteq U$ then X_s is affine. In particular, if the X_s s form a base of the topology on X then we get (i) and (ii) from proposition 1 for free. In addition, this implies $X_s \cap X_t = X_{st}$ is affine and X is quasi-separated.

Now suppose $\varphi : X = W \hookrightarrow Y$ is a topological embedding,¹ i.e. a homeomorphism onto a subspace of Y. So $Y = \operatorname{Proj} \Gamma_+(\mathcal{L})$, and as always the Y_s s form a base of the topology on Y. This implies that the X_s s form a base for the topology on X. So it is certainly necessary that the X_s s form a base. As such, in this case we only need to worry about (*iii*).

To see this, assume X is quasi-compact and quasi-separated. The idea is that this gives us (*iii*) for free now. Recall that in this case if $\mathcal{M} \in \mathbf{QCoh}(X)$, and $f \in \mathcal{O}(X)$, then this implies $\mathcal{M}(X_f) = \mathcal{M}(X)_f$.

Also recall that if $p: X \to T$ is quasicompact and quasi-separated, then this means $p_*(\mathbf{QCoh}(X)) \subseteq \mathbf{QCoh}(T)$. In particular, for $T = \operatorname{Spec} A$ and $M = \mathcal{M}(X)$ we want to know if $p_*(\operatorname{Spec} A_f) = M_f$ and we know we have

$$p_*(\operatorname{Spec} A_f) = \mathcal{M}(X_f)$$
.

So the question is if $\mathcal{M}(X)_f = \mathcal{M}(X_f)$. The way we saw this was covering X with affines U_i such that $\mathcal{M}|_{U_i} = \tilde{M}_i$. Then $U_i \cap U_j = \bigcup U_{ijk}$. Then we compare the two exact sequences:

$$0 \longrightarrow \mathcal{M}(X) \longrightarrow \bigoplus_{i} \mathcal{M}(U_{i}) \longrightarrow \bigoplus_{ijk} \mathcal{M}(U_{ijk})$$

$$\downarrow^{(-)_{f}} \qquad \qquad \downarrow^{(-)_{f}}$$

$$0 \longrightarrow \mathcal{M}(X_{f}) \longrightarrow \bigoplus_{i} \mathcal{M}\left((U_{i})_{f}\right) \longrightarrow \bigoplus_{ijk} \mathcal{M}\left((U_{ijk})_{f}\right)$$

Date: March 13, 2019.

¹Note that importantly we are not assuming this is an embedding of schemes

which tells us that

$$\mathcal{M}\left(X_{f}\right) = \mathcal{M}\left(X\right)_{f} .$$

This argument is very fundamental. We have seen it in the proof showing that qco sheaves are sheaves associated to modules on schemes, and a second time as above when we saw that quasi-compact and quasi-separated morphisms preserve qco sheaves. This argument generalizes in the following way. For $f \in \mathcal{L}(X)$ we have

$$\mathcal{M}(X_f) = \Gamma_+(X, \mathcal{M}, \mathcal{L}) = \bigoplus_{d \ge 0} \mathcal{M} \otimes \mathcal{L}^{\otimes d}(X)$$

Then cover X with affine U_i such that $\mathcal{L}|_{U_i} \simeq \mathcal{O}_{U_i}$. Then we have effectively the same sequence as above in the second line, and we write the first line for $\bigoplus \mathcal{M} \otimes \mathcal{L}^{\otimes d}$.

The upshot is that (iii) is always satisfied for X quasicompact and quasiseparated. So now just assume X is quasi-compact and also that there is a topological embedding given by this canonical map. Then as we said before the X_{fs} will be a base of the topology, so the affine ones will be a base, and then we get quasiseparated for free and therefore (iii) for free. Therefore we have the following:

Theorem 1. Let X be quasicompact, and \mathcal{L} be an invertible \mathcal{O}_X -module. Then *TFAE*:

- (a) $\varphi: X = W \hookrightarrow Y = \operatorname{Proj} \Gamma_+(\mathcal{L})$ is a locally closed embedding.
- (b) X = W and φ is a topological embedding.
- (c) The $X_s s$ form a base of the topology on X.
- (d) The affine $X_s s$ cover X.

Proof. The more clear implications are $(a) \implies (b) \implies (c) \implies (d)$. Along the way we noticed that (c) implies that X is quasi-separated. In particular we saw that $(d) \implies (a)$ so we are done.

Definition 1. \mathcal{L} is *ample*² if X is quasicompact and (a) - (d) from theorem 1 hold.

Definition 2. Let $f: X \to T$. Then \mathcal{L} is *ample for* f if f is quasi-compact and T can be covered by affines U such that \mathcal{L} is ample on $f^{-1}(U)$.

Remark 1. We are on our way to defining a quasi-projective morphism and quasi-projective variety.

So now assume we have f as in the definition. Then we have a sort of f-relative version of Γ_+ :

$$f_+\mathcal{L} \coloneqq \bigoplus_{d \ge 0} f_*\mathcal{L}^{\otimes d}$$

which is a quasi-coherent sheaf of graded \mathcal{O}_T -algebras. Then for $U = \operatorname{Spec} A \subseteq T$ we have

$$\mathcal{E}_{+}\mathcal{L}\left(U\right) = \Gamma_{+}\left(f^{-1}\left(U\right),\mathcal{L}\right)$$

Now we can piece these together to get:

²Note this is a property which somehow X and \mathcal{L} have, not just \mathcal{L} .

LECTURE 21

where the quasi-compact and quasi-separated gives us a canonical map $X \supset W \rightarrow$ Proj $(f_+(\mathcal{L}))$. So $X = W \hookrightarrow \operatorname{Proj}(f_+(\mathcal{L}))$ is a locally closed embedding.

Example 1. Let $X = \operatorname{Proj} R$ where $V(R_1) = \emptyset \subset X$. $\mathcal{L} = \mathcal{O}(1)$ is invertible. Recall $R_d \to \mathcal{L}^{\otimes d}$. This implies that \mathcal{L} is (very) ample (if X is quasicompact).

Example 2. Let $\mathcal{L} = \mathcal{O}$. First of all X has to be quasicompact. Since $\mathcal{L}^{\otimes n} = \mathcal{O}$ we have

$$\Gamma_{+}\left(\mathcal{L}\right) = \mathcal{O}\left(X\right)\left[t\right]$$

and $Y = \operatorname{Spec} \mathcal{O}(X)$. In this case this means X is a quasicompact locally closed subset of an affine scheme. Therefore it is affine, so this is the same as saying X is a compact open subset of an affine scheme. Such things are called quasi-affine which is sufficient for \mathcal{O} to be ample.