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We will continue with some basic properties and examples of ample line bundles.

1. Ample line bundles

1.1. Definition review. Recall that, first of all, we really only want to deal with
this concept on a quasi-compact scheme. We defined an invertible sheaf L to be
ample if (equivalently)

(1) L gives X ↪→ Proj Γ+ (L),
(2) there exist enough s ∈ L⊗d (X) such that the Xs form a base of the topol-

ogy, or
(3) there exist enough s ∈ L⊗d (X) such that the Xs form an affine covering.

Then we had a relative version, where we said that L is ample for f : X → T if
f is quasicompact, and L is ample on f−1 (U) for U ⊆ T affine.

1.2. Some basic properties. An initial property of these is that L is ample iff
L⊗n is ample.

Definition 1. L is flexible if the Xss for s ∈ L⊗d cover X. Note that if X is
quasi-compact, then this just means some L⊗n is globally generated.

Fact 1. If we tensor an ample line bundle with a flexible line bundle this is still
ample.

This fact is most useful when we want to tensor an ample bundle with a globally
generated line bundle. So this tells us this is in fact still ample.

Fact 2. Let L be ample. If M ∈ QCoh (X) then

M (Xs) = (Γ+ (M,L)s)0

where
Γ+ (M,L) =

⊕
d

M⊗L⊗d (X) .

The point is that somehow M = j∗Γ+ (M,L)
∼

where j is the embedding into
the Proj.

For a ∈M (Xs) we have that

a⊗ s⊗n ∈M⊗L⊗nd (Xs)

extends t ∈M⊗L⊗nd (X).

Fact 3. If M is locally finitely generated, then for some n � 0, M ⊗ L⊗n is
generated by finitely many global sections.
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The point of this is that the following sheaf homomorphism is surjective

Om �M⊗L⊗n .
Then we can tensor with L⊗−n to get(

L⊗−n
)m

�M .

In particular, if everything is affine then both (L⊗−n)
m

andM are locally finitely
generated, and the kernel is finitely generated as well (at least in the Noetherian
situation) so we get a presentation of M.1

SupposeM is an invertible sheaf itself, and that there exists an ample bundle L
on X. Then we know for some n, M⊗L⊗n is generated by global sections, which
means we have that L′ :=M⊗Ln+1 is ample and

M = L′ ⊗
(
L⊗n+1

)⊗−1
= (ample)⊗ (ample)

⊗−1
.

The idea is somehow that we should think of this as telling us that there is some
sort of ample cone inside of Pic (X). So somehow the Picard group is much more
structured in this case. We somehow get a partial order from this.

1.3. Examples.

Example 1. Consider the flag variety G/B for G = GLn (C). Recall a general flag
consists of choices Fk (of dimension k) such that

F0 = 0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn = Cn .

A particular Borel subgroup B is given by upper triangular matrices. Now we can
consider a chain of subspaces

0 ⊂ C1 = C · e1 ⊂ · · · ⊂ Cn−1 ⊂ Cn

which is stabilized by B. Therefore the set of all such flags is identified with G/B.
This is an algebraic variety because if we just look at subspaces at one level, this
is the Grassmannian variety, and then the whole thing is a product of these.

For a general flag F∗, we have Fk/Fk−1 ∼= C so we get a natural line bundle

Lk

G/B

.

Now it turns out

Ln ⊗ · · · ⊗ Ln−k+1 = Λk

are all globally generated. Note Λn is trivial. Then we can form

Λa11 ⊗ · · · ⊗ Λ
an−1

n−1

for ai ≥ 0. These are exactly the globally generated ones, and the flexible ones as
well. These are not all ample. The reason is, for example, that Λk is really the
exterior power:

Λk = ∧k (Fn/Fn−k)

so it sort of only depends on Fn−k. We can project

G/B → Grnn−k (C)

1This will be important for the proof of Serre’s vanishing theorem.
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by sending F∗ 7→ Fn−k. Now if we write p∗V = Fn/Fn−k, then ∧k (V ) is ample
over Grnn−k (C), but not when we pull it back.

Now if we define
Lρ = Λ1 ⊗ · · · ⊗ Λn−1 ,

then this is ample. In this picture the Picard group is somehow Zn−1, then the
first quadrant gives us the globally generated bundles, and and the interior of this
quadrant consists of the ample bundles.

Inside this B there is also the Cartan torus T consisting of diagonal matrices.
Then characters of this are the weights. In fact B = T n U (where U consists of
strictly upper triangular matrices) since U is the kernel of B → T . Then given a
weight we have

B → T → C× .
But a weight here is just a monomial za11 · · · zann in the diagonal entries.

Given this situation we have the action C× � C by scalar multiplication, and
now we can form the orbit space

G×B C =
{

(g, x) ∈ G× C | (gb, x) =
(
g, b−1x

)}
which still maps to G/B. Then every fiber will be a copy of C in a non-canonical
way.

So the story is, given a character λ : T → C×, there is action of B on C,
then G ×B Cλ → G/B gives a line bundle on G/B which are exactly the globally
generated line bundles up to a sign.2

Example 2. Let C be a general curve in Pn isomorphic to P1. Note that some n
will always exist since any curve can be embedded in P3, but this will work for any
n.

If we take a point this is a closed subvariety, and we can consider :W the ideal
sheaf. Locally there is just one coordinate x. So this is a principal ideal in an
integral domain, and therefore it is isomorphic as a module to just O. So the ideal
sheaf is a line bundle I = L⊗−1. If we’re on a curve and two points give rise to the
same line bundle, then it must mean that there is a section of this line bundle that
vanishes at one point and a pole on the other and vice versa. This is like a function
to P1. This could be some sort of multiple covering, but as long as this isn’t a
double zero, it is locally 1-to-1, which turns out to mean it’s an isomorphism.

This tells us that this line bundle is very much not globally generated. But it
actually is ample, because our curve was embedded in Pn. On this we have O (1)
which is very ample, but sections of O (1) have zero locus given by a hyperplane.
So if we just pick a hyperplane meeitng the curve in a finite set of distinct points,
then this bunch of points must be ample.

The upshot is that the ideal sheaf of a single point won’t even be globally gen-
erated, but if we take it of multiple points it will be ample. And if we take high
powers it will be O (1) for some projective embedding.

On any curve which is not P1, there will be a line bundle whose only global section
vanishes at a single point, but powers of this will give a projectie embedding, i.e.
it is ample, even though it is far from beng globally generated.

2This is because a fundamental mistake was made in the very beginning of this subject: we
really should have taken B to be lower triangular matrices!
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