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1. Last time

Recall we observed that if we have a quasicompact morphism X
p−→ Y then there

is a local ring criterion for whether a point is in the image. This was that y 6∈ p (x)
iff its infinitesimal local neighborhood has empty preimage, in the sense that

(SpecOX,y)×Y X = ∅ .

We also observed that for finite morphisms Nakayama’s lemma implied that these
have some sort of ‘Nakayama property’ which was that

(SpecOX,y)×Y X = ∅ ⇐⇒ p−1 (y) = ∅ .

Putting these together shows us that a point is not in the closure iff it is not in
the image. I.e.

p (x) = p (x) .

We can enhance this slightly by observing that if we have a closed subscheme Z ⊆ X
then the composition Z ⊆ X

p−→ Y is also finite, which means p is a closed map
since it sends closed sets to closed sets.

2. Nakayama’s lemma and elimination theory

Now consider X = ProjR
p−→ Y . Let R be a qco graded OY -algebra, locally f.g.,

with R0 locally a f.g. OY -module. Note these conditions imply that in fact every
Rd is a f.g. OY -module. The typical situation is that R0 = OY .

Now what can we say about this morphism? First of all this will be a quasicom-
pact morphisms because of this local finite generation. In fact p is of finite type
(which implies quasicompact). Then we also claim that this has the Nakayama
property. This comes down to the fact that these are finitely generated modules,
so Nakayama applied to them.

So let (A,m) = OY,y be a local ring, k = A/m, then let R be a graded A-algebra.
So assume Proj (k ⊗A R) = ∅ since this is the preimage p−1 (y). Write S = k⊗AR.
Then we want to show ProjS is empty. This means V (S+) = SpecS. But this
means that S+ is generated over S0 by finitely many nilpotent elements. This
implies that there exists some N such that Sd = 0 for all d > N . In this case
Sd = k ⊗A Rd, and Rd was a finitely generated module over the local ring A, so
by Nakayama’s lemma this implies Rd = 0 for d > N . Therefore the image of p is
closed. Then as before we have the following:

Theorem 1. If X = Proj (R)
p−→ Y with R as above, then p is a closed map.
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This by itself gives us elimination theory. Classically the picture is somehow

Z ⊆ Pnk ×k Amk

Amk
for Z closed:

Z = Proj k [a1, . . . , am, x0, . . . , xn] /J → Spec k [a1, . . . , an] .

Then the conclusion is that the image of this map is closed. So this theorem implies
classical elimination theory, and in some sense is equivalent to it.

Example 1. A finite morphism X = SpecA
p−→ Y is a special case of this since

X = Proj (A [t]).

If we base extend p:

X ′ X = Proj k

Y ′ Y

p′ p

q

we get that p′ is also closed since X = Proj k′ where k′ = q∗k. As in this case, if
a morphism has a property and every base extension has the property we say that
the morphism universally has the property. Note that closed maps are not trivially
universal (as other features or morphisms are) so there is content to this statement.

In this situation there are a couple other things we know about p. It is of finite
type (quasicompact and locally of finite type). This is automatically a universal
thing. It is also separated, since any Proj to a base is a separated morphism.
Again base extensions of separated morphisms are always separated, so it is auto-
matically universal. Therefore we haver that p is universally closed, of finite type,
and separated, so it is in fact proper. This turns out to sort of be the right thing
to consider.

3. Yoga of morphisms

We will somehow use the previous discussion as a prototype, but have a general
discussion about the yoga of morphisms. Consider the class of universally closed
morphisms. Of course this is closed under base extension by definition. It is also
closed under composition, and includes the closed embeddings.

Now we do the yoga. Note that this all holds for any any class of morphisms
which has these three properties. Examples include affine, quasicompact, finite-
type, separated, proper (since it applied to the previous three) and many more
morphisms. We will see that given a morphism of two schemes over a given base:

X Y

Z

f

p

q

such that p is universally closed, and q is separated, then this implies f is universally
closed.

Consider the graph of f . We can think of this as a map

Γf : X → X ×Z Y .



LECTURE 27 MATH 256B 3

Then we can project to Y :

(1) X X ×Z Y Y
Γf

f

π .

One way to think of π is as a base extension of f itself:

X ×Z Y X

Y Z

π p

q

.

Since p was universally closed, π is closed, and in fact universally closed.
As it turns out the map Γf is a base extension as well:

X Y

X ×Z Y Y ×Z Y

f

Γf ∆

(f,1)

.

One can easily check this is a set theoretic fiber product. Then it is the scheme
theoretic fiber product because the functor represented by this is the fiber product
of the functors represented by the other schemes. Now the map Y → Z is separated,
which means ∆ is a closed embedding (it is always locally closed). Therefore Γf
is universally closed. But since universally closed morphisms are closed under
composition, from (1) we have that f is universally closed.

Now we can answer another motivating question which was the following. Con-
sider q : X → T quasi-projective. Then we can take

X Y = Proj (k)

T

i

q ,

and the question is when i is a closed embedding. We know it is locally closed,
so we just need it to be a closed map. And in particular, i is a closed embedding
precisely when q is universally closed. So now we understand which quasi-projective
morphisms give a closed embedding, and in particular they just have to be proper.
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