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1. Projective morphisms

Recall from last time that we call a morphism q : X → Y projective if it is
quasi-projective and universally closed (i.e. proper). The point is that if we use
the fact that it is quasi-projective to get

X Proj (R)

T

i

q

then i is a closed embedding. If T is affine, then we can make this R be a finitely
generated algebra over whatever ring T was Spec of. In fact the morphism is proper
iff the associated embedding is closed.

If we make assumptions about the base, things get progressively nicer. For T
quasi-compact then we can get R to be generated in one degree:

X P (E)

T

i

q

and if q is also quasi-separated, we can make E locally finitely generated. If we
further assume that T has an ample sheaf (e.g. it is affine) then we can get it such

that E direct sum of copies of O, and we have X
i
↪−→ PNT → T .

Projective morphisms are almost composable. If we have X
f−→ Y

g−→ Z, then
proper morphisms are closed under composition, so as long as Z is quasi-compact,
then the composition is projective.

In addition, if g ◦ f is projective, and g is separated, then this implies f is
projective.

Basically the story is the following. Consider the category P of projective
schemes X over T where T is somehow nice such as quasi-compact and quasi-
separated (or even just affine) then this is a nice category. In particular all mor-
phisms are projective, and if T is affine, then they all have an ample sheaf.

2. Grassmannians

So now we’re back in the world of k = k. Then a Grassmann variety G (n, r) is
supposed to parameterize r-dimensional subspaces V ⊆ kn.

Example 1. For r = 1, G (n, 1) = Pn−1.
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Note that there is a natural bijection between such V ⊆ kn and V ⊥ ⊆ (kn)
∗
, so

we have a natural bijection

G (n, r) ∼= G (n, n− r) .

So in the case of projective space, we can also think of this as G (n, n− 1) = Pn−1.
In the case of G (n, 1) we get the tautological line bundle to be O (−1), and in
the case of G (n, n− 1) we get O (1) which is somehow better because it has more
sections.

2.1. Structure as a variety. So we want to somehow put coordinates on this.
For any V ⊆ kn of dimension r choose a basis v1, . . . , vr of V . Then we can form a
matrix with r rows and n columns:

M =

v1· · ·
vr

 .

Then we can consider I ⊆ [n] where |I| = r. Write δI = detMI . Note these are
not all 0. But there are choices being made here. I.e. we might have another M ′

for the same V . But the new vectors are linear combinations of the old ones, so we
can write down a change of basis matrix, i.e. M ′ = gM , and in particular g ∈ GLr.
So we get new coordinates δ′I which are related to the old ones by:

δ′I = det (M ′I) = det (gMI) = det (g) δI .

So if we write down these coordinates, we get a point:

(· · · : δI : · · · ) ∈ PN

for N =
(
n
r

)
− 1 which only depends on V as a point of projective space. These

coordinates are called the Plücker coordinates. Note this is well-defined since they
cannot all be 0. So now we have a map

G (n, r)→
(
PNk
)
cl
.

So now we want to figure out if this is injective, and if it is defined by homogeneous
equations. The answer is yes and yes, but first we will work out an explicit example.

2.2. Explicit example. We will calculate G (4, 2). This is the first example which
isn’t just projective space. This will be a proper subvariety of projective space. In
this case our matrices look like

M =

(
x1 x2 x3 x4
y1 y2 y3 y4

)
and the δij are

δij = det

(
xi xj
yi yj

)
.

We will have six of them. If δ12 6= 0 WLOG

M =

(
1 0 a b
0 1 c d

)
and then

δ12 = 1 δ23 = −a δ13 = c

δ24 = −b δ14 = d δ34 = det

(
a b
c d

)
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which are related by the following polynomial equation:

δ12δ34 + δ14δ23 − δ13δ24 = 0 .

Such a relation is called a Plücker relation. The point is X ⊆ P5 is defined by

X = V (δ12δ34 + δ14δ23 − δ13δ24)

and then

Gr (4, 2) X P5

j

.

We can write
j−1 (Uδ12)

'−→ Xδ12
∼= A4 = Spec k [a, b, c, d]

and by symmetry this works for the other opens. So Gr (4, 3) is somehow a natural
projective variety.

Without going through the details, we discuss doing this with large matrices.
Consider Gr (7, 4). This has

(
7
4

)
Plücker coordinates. Then for any matrix we can

WLOG write it as: 
1 0 0 0 a b c
0 1 0 0 d e f
0 0 1 0 g h i
0 0 0 1 j k l

 .

Now we can play the same game. Any minor will have k columns from the identity
matrix, and l interesting columns. Then the determinant will just be the same as
the determinant of some l × l minor of the interesting part of the original matrix.
Then the story holds effectively the same way.

Basically what happens is we take our favorite two rows and favorite two columns.
Then we multiple it by a choice of r − 2 rows and columns of the identity matrix
to get a homogeneous quadratic. So, for example, in this case we get

δ1234δ1457 = ±δ1345δ1247 ± δ1347δ1245 .
So the quadratics always somehow look like three terms.

The general story covers Gr (7, 4) with affines Ar(n−r). We haven’t defined
smoothness and dimension, but whatever they mean certainly they should mean
that this thing is smooth and of dimension r (n− r).
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