LECTURE 29
 MATH 256B

LECTURE: PROFESSOR MARK HAIMAN
 NOTES: JACKSON VAN DYKE

Last time we saw an ad hoc way to see the Grassmannian as a projective variety. Today we will do this in a more general way. In particular we will define a functor and show there is a scheme which represents it.

1. Grassmannians

Consider some scheme S and a quasi-coherent sheaf (\mathcal{O}_{S}-module) \mathcal{M}.
Example 1. The motivating example is just $S=\operatorname{Spec} k \mathcal{M}=\widetilde{k^{n}}$.
We now define the following functor

$$
\underline{\underline{G(\mathcal{M}, r)}}:(\mathbf{S c h} / \mathbf{S})^{\mathrm{op}} \rightarrow \text { Set }
$$

as follows. For $\begin{aligned} & X \\ & \downarrow p\end{aligned}$ we assign the set of $(q c o)^{1}$ subsheaves $\mathcal{N} \subseteq p^{*} \mathcal{M}$ such that S
$p^{*} \mathcal{M} / \mathcal{N}$ is locally free of frank r i.e. locally it is just \mathcal{O}_{X}^{r}.
Now we see this is actually a functor. So consider

Then we have $q^{*} \mathcal{M}=f^{*} p^{*} \mathcal{M}$ and we can apply f^{*} to the following exact sequence:

We get exactness for free at $f^{*} \mathcal{N}$, but it is actually exact elsewhere. This can be seen by a simple Tor argument. It can also be seen directly. Let $y \in Y$ (and $x=f(y))$. First decompose the middle element of the first sequence

$$
p^{*} \mathcal{M}_{x}=\mathcal{N}_{x} \oplus \mathcal{V}_{x}
$$

Then we have that this functor is

$$
\left(\mathcal{O}_{Y, y} \otimes_{\mathcal{O}_{X, x}}-\right)
$$

which preserves direct sums, so we have that the middle term of the second sequence also splits.

[^0]Now we claim $G(\mathcal{M}, r)$ is a sheaf in the Zariski topology. This is almost obvious. First cover $X=\overline{\overline{\bigcup_{\alpha} X_{\alpha} . ~ W}}$ e have some $\left.\mathcal{N} \subseteq p^{*} \mathcal{M}\right|_{X_{\alpha}}$ for each α such that

$$
\left.\mathcal{N}_{\alpha}\right|_{X_{\alpha} \cap X_{\beta}}=\left.\mathcal{N}_{\beta}\right|_{X_{\alpha} \cap X_{\beta}} .
$$

So we have a global \mathcal{N} such that

$$
\mathcal{N}_{\alpha}=\left.\mathcal{N}\right|_{X_{\alpha}}
$$

Now we want to somehow make S affine. Consider some open $W \subseteq S$. This gives a subfunctor

$$
\underline{\underline{G_{W}}} \subset \underline{\underline{G(\mathcal{M}, r)}}
$$

defined to be:

$$
\underline{\underline{G_{W}}}(X)= \begin{cases}\emptyset & p(x) \nsubseteq W \\ \underline{\underline{G(\mathcal{M}, r)}}(X) & p(X) \subseteq W\end{cases}
$$

We claim \underline{G}_{W} is in fact an open subfunctor. Recall this means the following. Let X over S and consider a functorial $\operatorname{map}^{2} \underline{\underline{X}} \rightarrow \underline{\underline{G(\mathcal{M}, r)}}$. For

we have

$$
\underline{\underline{X}}(T) \rightarrow \underline{\underline{G(\mathcal{M}, r)}}(T) \supseteq \underline{\underline{G_{W}}}(T)
$$

and for

$$
U=p^{-1}(W)
$$

we have

$$
\underline{\underline{U}}(T)=\underline{\underline{G_{W}}}(T)
$$

The point is that we can assume S is affine.
Consider

$$
R^{(J)} \rightarrow R^{(I)} \rightarrow M \rightarrow 0
$$

Let ξ_{j} give the defining relations on the generators x_{i} of M :

$$
M=R \cdot\left\{x_{i} \mid x_{I}\right\} /\left(\xi_{j}\right)
$$

Let $\underline{\underline{G_{B}}} \subseteq G(\tilde{M}, r)$ be the following subfunctor. Let $B \subseteq I$ such that $|B|=r$. For a scheme $\overline{X \text { over } S}$, map this to $\mathcal{N} \subseteq p^{*} \tilde{M}$ such that $p^{*} \tilde{M} / \mathcal{N}$ is free on $\left\{x_{b} \mid b \in B\right\}$. The claim is that $\underline{\underline{G_{B}}}$ is an open subfunctor represented by an affine scheme over S. We want to look at any $p: X \rightarrow S$. First consider $X=\operatorname{Spec} A$ affine: $\underline{\underline{G_{B}}}(\operatorname{Spec} A)$. So consider $p: X \rightarrow S=\operatorname{Spec} R$. This corresponds to $R \rightarrow A$. Then

$$
p^{*} \tilde{M}=\widetilde{A \otimes_{R} M}
$$

somehow contains the $1 \otimes x_{i} \in A \otimes_{R} M$ which we just write as x_{i} and

$$
\xi_{i} \mapsto \sum_{i} r_{i j} x_{i}
$$

[^1]So now we want a quotient sheaf which corresponds to a quotient of this module:

$$
0 \rightarrow N \rightarrow A \otimes M \rightarrow V \rightarrow 0
$$

such that $V \cong A^{r}$ such that x_{b} for $b \in B$ map to the unit vectors of A^{r}. Certainly we have

$$
x_{i} \mapsto \sum a_{i b} x_{b} \quad(\bmod N)
$$

for some $a_{i b} \in A$. But these are not arbitrary. We have the following conditions:
(1) $a_{i b}=\delta_{i b}$ for $i \in B$.
(2) $\sum r_{j i} a_{i b}=0$ for all $j \in J$ and $b \in B$.

Certainly we can map

$$
A^{(I)} \rightarrow A^{r},
$$

and the conditions say exactly that it factors through the map $A^{(I)} \rightarrow A \otimes M$, and we get that

$$
N=\left(x_{i}-\sum a_{i b} x_{b}\right)
$$

So we get a one-to-one correspondence between the set $\underline{\underline{G_{B}}}(\operatorname{Spec} A)$ and solutions to these linear equations. I.e. for

$$
H=R\left[a_{i b} \mid i \in I, b \in B\right] /\left(a_{i b}-\delta_{i b}, i \in B \mid \sum r_{j i} a_{i b}, j \in J, b \in B\right)
$$

we have

$$
\underline{\underline{G_{B}}}(\operatorname{Spec} A)=\operatorname{Hom}_{R-\operatorname{Alg}}(H, A)=\underline{\underline{\operatorname{Spec} H}}(\operatorname{Spec} A) .
$$

Now we want to consider

$$
\underline{\underline{\text { Spec } H}}(X)
$$

for

This is in correspondence with

$$
H \rightarrow \mathcal{O}_{X}(X)
$$

Now cover $X=\cup X_{\alpha}$. Then we have R-algebra homomorphisms $H \rightarrow A_{\alpha}$. So for ever α we have an element of $\underline{\underline{G_{B}}}\left(X_{\alpha}\right)$, the collection of which are compatible on intersections. This means we have a one-to-one correspondence between $\underline{\underline{G_{B}}}(X)$ and $\underline{\underline{\operatorname{Spec} H}}(X)$.

We have some more work to do, but to close today, consider the case that \mathcal{M} is free

$$
\mathcal{M}=\mathcal{O}_{S}^{n}
$$

Then $p^{*} \mathcal{M}=\mathcal{O}_{X}^{n}$ for $p: X \rightarrow S$. Then in this case the first type of relation is encapsulated in the matrix

$$
\left(\begin{array}{ll}
\mathrm{id}_{r \times r} & a_{i b}
\end{array}\right)
$$

and the second type don't exist here. So Spec H is just an affine space with these coordinates, and this looks quite a lot like the classical picture...

To be continued...

[^0]: ${ }^{1}$ This is in parentheses because because $p^{*} \mathcal{M}$ is qco anyway, and if we have an exact sequence where the quotient is qco, then the kernel is as well. So we don't need to separately insist on this.

[^1]: ${ }^{2}$ Recall that by Yoneda such a map is the same as an element $\mathcal{N} \in G(\mathcal{M}, r)(X)$.

