LECTURE 3 MATH 256B

LECTURES BY: PROFESSOR MARK HAIMAN
NOTES BY: JACKSON VAN DYKE

Today we will discuss some more examples and features of the Proj construction.

1. Examples of Proj

Example 1. As we saw last time, $\operatorname{Proj} k\left[x_{0}, \cdots, x_{n}\right]$ is classical projective space \mathbb{P}_{k}^{n}. This is covered by affines $X_{x_{i}}$, i.e. the same ad hoc affines we found to show it was a scheme to begin with. Explicitly these now look like:

$$
X_{x_{i}}=\operatorname{Spec} k\left[x_{0} / x_{i}, \cdots, x_{n} / x_{i}\right] \cong \mathbb{A}_{k}^{n}
$$

where we omit x_{i} / x_{i}. Note that $X_{x_{i}} \cap X_{x_{j}}=X_{x_{i} x_{j}}$. Note that classically we only saw this for $k=\bar{k}$, but this construction works more generally.
Example 2. For any k-algebra A, we can consider $Y=\operatorname{Spec} A$, and $\operatorname{Proj} A\left[x_{0}, \cdots, x_{n}\right]$. This will be covered by n-dimensional affines over A in exactly the same way:

$$
X_{x_{i}}=\mathbb{A}_{A}^{n}=\operatorname{Spec} A\left[v_{1}, \cdots, v_{n}\right]
$$

But we can also think of this as

$$
A[\underline{x}]=A \otimes_{k} k[\underline{v}]
$$

so

$$
\mathbb{A}_{A}^{n}=\operatorname{Spec} A \times \mathbb{A}_{k}^{n}
$$

and therefore

$$
\operatorname{Proj} A\left[x_{0}, \cdots, x_{n}\right]=Y \times \mathbb{P}_{k}^{n}
$$

In general, the Proj of something with nontrivial degree 0 part will be the product of Spec of this thing with projective space.

2. Functoriality

Recall that since we have the quotient map $R \rightarrow R / I$ we get that $\operatorname{Spec} R / I \hookrightarrow$ Spec R is a closed subscheme. In light of this, we might wonder whether or not $\operatorname{Proj}(R / I) \hookrightarrow \operatorname{Proj}(R)$ is a closed subscheme. In fact it's not even quite clear if there is an induced map at all.

For R a graded ring and I a graded ideal, then the map $R \rightarrow R / I$ is naturally a grade ring homomorphism. More generally, for a graded ring homomorphism $B \rightarrow A$, we want to know if this gives us a map $X=\operatorname{Proj} A \rightarrow \operatorname{Proj} B=Y$. If we take some $f \in B_{d}$ for $d>0$, then the open set $Y_{f} \subset Y$ corresponding to f is $Y_{f}=\operatorname{Spec}\left(B\left[f^{-1}\right]\right)_{0}$. Now for $\varphi: B \rightarrow A$, we get an induced map $B\left[f^{-1}\right] \rightarrow A\left[\varphi(f)^{-1}\right]$ which is still a graded homomorphism. In particular, it sends the degree 0 part to the degree 0 part, so we get a map $X_{\varphi(f)} \rightarrow Y_{f}$. That

[^0]is, for each of the standard open sets in Y we found an open set in X which maps naturally to it. By construction this is sort of compatible on the overlaps.

The potential issue here is that the $X_{\varphi(f)}$ might not cover X. Recall that by definition:

$$
X=\operatorname{Proj} A \hookrightarrow \operatorname{Spec}(A) \backslash V\left(A_{+}\right) \quad Y=\operatorname{Proj} B \hookrightarrow \operatorname{Spec}(B) \backslash V\left(B_{+}\right) .
$$

We know that we always have $\varphi\left(B_{+}\right) \subset A_{+}$since it is a graded homomorphism, which implies $V\left(A_{+}\right) \subseteq V\left(\varphi\left(B_{+}\right)\right)$. We also know that $\alpha: \operatorname{Spec} A \rightarrow \operatorname{Spec} B$ satisfies

$$
V\left(\varphi\left(B_{+}\right)\right)=\alpha^{-1} V\left(B_{+}\right)
$$

so we get:

$$
V\left(A_{+}\right) \subseteq \alpha^{-1} V\left(B_{+}\right) \quad \alpha\left(V\left(A_{+}\right)\right) \subseteq V\left(B_{+}\right)
$$

But if these are not equal, then $\alpha\left(\operatorname{Spec} A \backslash V\left(A_{+}\right)\right)$doesn't have to be contained in Spec $B \backslash V\left(B_{+}\right)$. What we do have is that we can intersect Spec $(A) \backslash \alpha^{-1}\left(V\left(B_{+}\right)\right)=$ $\operatorname{Spec}(A) \backslash V\left(\varphi\left(B_{+}\right)\right)$with Spec $A \backslash V\left(A_{+}\right)$to get this sort of canonical open subset of X :

$$
U=X \backslash V\left(\varphi\left(B_{+}\right)\right)
$$

Example 3. The geometry of this is as follows. Consider the graded ring homomorphism $k[x] \hookrightarrow k[x, y]$ Then the corresponding map from $\mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$ maps lines to lines, and the vertical line to a point. This is sort of silly, but in higher dimensions, the only maps from higher projective space to the projective line are constant maps.

Note that if $\sqrt{\varphi\left(B_{+}\right)}=A_{+}($e.g. $R \rightarrow R / I)$ we have that $U=X \backslash V\left(A_{+}\right)$so in this case, things work out fine. In particular, if

$$
\left(R\left[f^{-1}\right]\right)_{0}=\left((R / I)\left[f^{-1}\right]\right)_{0}
$$

since we also have

$$
(R / I)\left[f^{-1}\right]=R\left[f^{-1}\right] / I
$$

then the kernel of this map is $\left(I R\left[f^{-1}\right]\right)_{0}$, and this is all compatible. Now the local picture on open subsets is that of an inclusion of a closed subscheme.

This means that any graded ideal $I \subseteq k\left[x_{0}, \cdots, x_{n}\right]$ will correspond to a closed subvariety $X \subseteq \mathbb{P}_{k}^{n}$. This is exactly the classical subscheme defined by some collection of homogeneous polynomials that we are expecting.

More generally, if we have some graded ring R, and $f \in R_{1}$, then $X_{f}=$ $\operatorname{Spec} R\left[f^{-1}\right]_{0}$. Recall we studied this in two steps. First we took

$$
R\left[f^{-1}\right]_{\mathbb{Z} d} \simeq R\left[f^{-1}\right]_{0}\left[x^{ \pm 1}\right]
$$

Then for we passed to $R\left[f^{-1}\right]_{\mathbb{Z} d} /(f-1)$ and for $d=1, R\left[f^{-1}\right] /(f-1)=$ $R /(f-1)$. Therefore as long as $f \in R_{1}$, we have $X_{f}=\operatorname{Spec} R /(f-1)$.

3. Weighted projective space

In Proj, two different ideals can define the same variety. This is immediate in the sense that if $\sqrt{I} \supseteq R_{+}$, then $V(I)$ is empty. In particular, (1) and $\left(x_{0}, \cdots, x_{n}\right)$ both have $V(I)=\emptyset$. More interestingly, we could also take $\left(x_{0}^{2}, \cdots, x_{n}^{2}\right)$ which also has empty vanishing locus. This is something to do with a large degrees phenomenon: if two ideals agree in large degree, they will define the same subscheme.

The following is a basic fact about projective space. Suppose we want to compare $\operatorname{Proj} R$ to the thinned out version $\operatorname{Proj} R_{\mathbb{Z} d}$ for $d>0$. First of all $R_{\mathbb{Z} d} \subseteq R$, but we
know this doesn't necessarily induce a map of Proj of these rings. However in this case, since $\varphi\left(\left(R_{\mathbb{Z} d}\right)_{+}\right)=\left(R_{\mathbb{Z} d}\right)_{+}$, we know that $\sqrt{\varphi\left(\left(R_{\mathbb{Z} d}\right)_{+}\right)}=R_{+}$so we do in fact get a map

$$
X=\operatorname{Proj} R \rightarrow \operatorname{Proj} R_{\mathbb{Z} d}=Y
$$

Now notice that we always have that $V(f)=V\left(f^{d}\right)$, so $X_{f}=X_{f^{d}}$ and f^{d} is a homogeneous multiple of d. So X_{f} is covered by open sets of this form. In particular, $X_{g} \rightarrow Y_{g}$, and in local terms we have

$$
\left(R_{\mathbb{Z} d}\right)\left[g^{-1}\right]_{0} \rightarrow R\left[g^{-1}\right]_{0} .
$$

But these rings are the same, so the map $X_{g} \rightarrow Y_{g}$ is an isomorphism on pieces of the cover, so Proj $R \xrightarrow{\sim} \operatorname{Proj} R_{\mathbb{Z} d}$ is an isomorphism.

This means that if R is some quotient, then this thinning only depends on the thinning of the ideal. I.e. $V(I)$ only depends on $I_{\mathbb{Z} d}$ for any $d>0$.

To be continued...

[^0]: Date: January 28, 2019.

