LECTURE 31
 MATH 256B

LECTURE: PROFESSOR MARK HAIMAN

NOTES: JACKSON VAN DYKE

1. Classical Grassmannians

Fix a ground field $k=\bar{k}$. Consider the classical Grassmannian $G(n, m) \xrightarrow{p} k$. Recall we want to think of this as parameterizing the quotients, i.e. the closed points are its k-valued points which parameterize $W \subseteq k^{n}$ such that

$$
\operatorname{dim}\left(k^{n} / W\right)=m
$$

On $G(n, m)$ we have a tautological vector bundle

$$
\mathcal{V}=\mathcal{O}^{n} / \mathcal{N}
$$

locally free of rank $m \cdot p^{*} k^{n}$ consists of sections of a rank m vector bundle (or dual of it). Then $V=\operatorname{Spec} S(\mathcal{V})$ is an algebraic vector bundle over $G(n, m)$. Now for $l \leq m$ we want to look at

This gadget will be like a flag variety. Let's see what it means to give a k-point of this:

Well we have $\operatorname{dim}(W)=n-m$, and for $W^{\prime} \supseteq W$ with $\operatorname{dim} k^{n} / W^{\prime}=l$, we want to think of this as $\left(k^{n} / W\right) /\left(W^{\prime} / W\right)$. So the idea is that this parameterizes chains

$$
k^{n} \supset W^{\prime} \supset W \supset 0
$$

where W^{\prime} is of dimension $n-l$ and W is of dimension $n-m$. So this is a partial flag variety. If it had elements of every dimension it would be a complete flag.

One thing we can see from this is the following. We have a map $G(\mathcal{V}, l) \rightarrow G(n, l)$ which sends this sort of flag to the point W^{\prime}. In terms of this construction this is the following. For any base S, and two sheaves $\mathcal{M}_{1} \rightarrow \mathcal{M}_{2}$ and we can form $G\left(\mathcal{M}_{1}, r\right)$ and $G\left(\mathcal{M}_{2}, r\right)$ and then we have a natural map

$$
G\left(\mathcal{M}_{1}, r\right) \leftarrow G\left(\mathcal{M}_{2}, r\right)
$$

In particular, on any scheme S we can wor with \mathcal{O}^{n}, and then

$$
G\left(\mathcal{O}^{n}, l\right)=S \times_{\operatorname{Spec} \mathbb{Z}} G\left(\widetilde{\mathbb{Z}^{n}}, l\right)_{\mathbb{Z}}
$$

So in this case this is really a map

$$
G(\mathcal{V}, l) \rightarrow G(n, l) \times G(n, m)
$$

and this takes the chain and maps it to the pair $\left(W^{\prime}, W\right)$. In fact this is a closed embedding.

Before we claimed the following. If we look at the locus in $G(n, l) \times G(n, m)$ where we have a pair

$$
\left\{\left(W^{\prime}, W\right) \mid \operatorname{dim}\left(W^{\prime} \cap W\right) \geq r\right\} \subseteq G(n, l) \times G(n, m)
$$

then this looks like

where $\operatorname{dim}\left(W^{\prime \prime}\right)=r, \operatorname{dim}(W)=n-m$, and $\operatorname{dim}\left(W^{\prime}\right)=n-l$. Then this sits as a triple inside

$$
G(n, l) \times G(n, m) \times G(n, n-r)
$$

2. A Question

How big is the homogeneous coordinate ring R such that $G(n, m)=\operatorname{Proj} R$? This isn't really well-defined. Somehow R is supposed to be natural. So it's

$$
k\left[x_{I}\right] / \text { (Plücker relations) }
$$

where the x_{I} are the Plücker coordinates (i.e. there are $\binom{n}{m}$ of them). Then the question is the dimension $\operatorname{dim}_{k} R_{d}$ for all d. Another way of thinking about this is as follows. This sits as a subvariety in

$$
G(n, m) \subseteq \mathbb{P}^{\binom{n}{m}-1}
$$

So this has some

$$
\mathcal{L}=\mathcal{O}(1)=\wedge^{m} \mathcal{V}
$$

We know immediately that

$$
R_{0}=k \quad \operatorname{dim}_{k} R_{1}=\binom{n}{m}
$$

and in fact it turns out that

$$
R_{1}=\Gamma(\mathcal{L}) \quad R_{d}=\Gamma\left(\mathcal{L}^{d}\right)
$$

since we have

$$
\left(\wedge^{m} \mathcal{V}\right)^{\otimes d} \rightarrow R_{d} \quad \quad S^{d}\left(\wedge^{m} \mathcal{V}\right) \rightarrow R_{d}
$$

Now $\mathrm{GL}_{n} \subset k^{n}$, so it acts on the Grassmannian, so it acts on the R_{d}. In fact we have an algebraic representation $\mathrm{GL}_{n} \subset R_{d}$. For GL_{n} there is a classification of irreducible representations given by highest weight-modules, and this allows us to determine the dimension of any weight space of any representation. Then $S^{d}\left(\wedge^{m} \mathcal{V}\right) \rightarrow R_{d}$ has a lot of irreducible components, but this map somehow kills all but one of them, and somehow it gives us the biggest one. In particular

$$
\wedge^{m} k^{n} \xrightarrow{\simeq} R_{1}
$$

is the highest weight module

$$
\wedge^{m} k^{n}=\underbrace{V_{1}, \ldots, 1}_{m}, 0, \ldots, 0
$$

Then

$$
V_{1, \ldots, 1,0, \ldots, 0}^{\otimes d}=V_{d, \ldots, d, 0, \ldots, 0} \oplus \ldots
$$

is an irreducible representation of GL_{n} whose highest weight is just d times the first highest weight. These have characters given by the Schur functions

$$
\chi_{R_{d}}=S_{d, \ldots, d, 0, \ldots, 0}\left(x_{1}, \ldots, x_{n}\right)
$$

Recall a semi-standard Young-tableaux is an $m \times d$ array of numbers between 1 and n which have to increase weakly along the rows, and strongly along the columns. Then the number of such objects is the dimension of R_{d}. But these are the same as three-dimensional young diagrams, so the takeaway is that $\operatorname{dim} R_{d}$ is the number of three-dimensional Young diagrams inside a $d \times m \times(n-m)$ rectangular prism. This is clearly symmetric in m and n, and it is also symmetric in d.

A Grassmannian is really a partial flag variety with only one step. If we put a complete flag in here, the stabilizer consists of the upper triangular matrices which is a Borel subgroup. Then for a partial flag we get a parabolic subgroup P. On G / P there are various line bundles, and they come from taking each of the quotient spaces corresponding to the elements of the flags, take the highest exterior power:

$$
\wedge^{d_{i}} W_{i} \mathcal{L}_{i}
$$

where $\operatorname{dim} W_{i}=n-d_{i}$. These aren't individually ample, since they're the pullback of the natural ample line bundle on the product of Grassmannians pulled back. Now we can take the tensor product

$$
\mathcal{L}=L_{1}^{\otimes r_{1}} \otimes \ldots \otimes L_{n}^{\otimes r_{n}}
$$

of all of these. These are at least generated by their global sections. Now we can take the global sections on G / B of one of these \mathcal{L} s:

$$
\Gamma_{G / P}(\mathcal{L})
$$

and this always an irreducible GL_{n} representation. As it turns out taking the Euler characteristic of the sheaf cohomology somehow yields the Weyl character formula. Then the story for Grassmannians is a special case of this.

