LECTURE 33 MATH 256B

LECTURE: PROFESSOR MARK HAIMAN NOTES: JACKSON VAN DYKE

1. DIMENSION THEORY OF NOETHERIAN LOCAL RINGS

Let (A, \mathfrak{m}) be a Noetherian local ring. We can't get very far without this assumption.

1.1. **Dimension zero.** If A has dimension 0 then this means \mathfrak{m} is the only prime, i.e. Spec $A = {\mathfrak{m}}$. This is equivalent to $\mathfrak{m} = \sqrt{0}$ which is equivalent to $\mathfrak{m}^d = 0$ for some d. Now M has finite length n. If there exists

$$0 = M_0 \subset M_1 \subset \ldots \subset M_n = M$$

we have that

$$M_{i+1}/M_i = A/\mathfrak{m} \; .$$

So the fact that $\mathfrak{m}^d = 0$ implies that A has finite length which implies $l(A/\mathfrak{m}^d)$ is bounded, which implies $\mathfrak{m}^d = \mathfrak{m}^{d+1}$ for some d, so $\mathfrak{m}^d = 0$ by Nakayama's lemma. So these are all equivalent.

So we understand dimension 0 quite well.

1.2. **Prime avoidance.** Let R be any ring with prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ and I any ideal.

Lemma 1. $I \subseteq \mathfrak{p}_1 \cup \ldots \cup \mathfrak{p}_n$ implies $I \subseteq P_i$ for some i.

Proof. WLOG we can assume there is no

$$P_i \subseteq \bigcup_{j \neq i} P_j$$
.

So there exists some $x_i \in P_i$ such that $x_i \notin P_j$ for $j \neq i$. Then define

$$a_k = \prod_{i \neq k} x_j \; .$$

This is in P_i for all $i \neq k$ and not in P_k .

Now assume $I \not\subseteq P_i$ for all *i*. Then we have some $b_k \in I \setminus P_k$ and we can form

 $a_k b_k$

which is in I and P_i for $i \neq k$, but not in P_k . Then we can form

$$x = \sum a_k b_k \in I \setminus \bigcup_i P_i$$

as desired.

Date: April 17, 2019.

1.3. Artin-Rees lemma.

Lemma 2. Let A be Noetherian with an ideal $I \subseteq A$. Let M be a f.g. module with submodule N. Then there exists some m such that

$$N \cap I^d M = I^{d-m} \left(N \cap I^m M \right)$$

for all $d \geq m$.

Proof. Form the algebra

$$A[tI] = A \oplus I \oplus I^2 \oplus \cdots$$

This is finitely generated over a Noetherian ring so it is Noetherian. Now make a similar definition for M:

$$M[tI] = M \oplus IM \oplus I^2M \oplus \cdots$$

So now this is a graded A[tI] module which is (finitely) generated by the generators of M. Then we have

$$M\left[tI\right] = \bigoplus_{d} I^{d}M \supseteq \bigoplus_{d} N \cap I^{d}M$$

which is an A[tI] submodule. So let's say this is generated in degrees $d \leq m$ for some m.

1.4. Krull's principal ideal theorem. Let (A, \mathfrak{m}) be a Noetherian local ring.

Theorem 1 (Krull). If a prime \mathfrak{p} is minimal among primes containing (f), then $ht(\mathfrak{p}) \leq 1$.

Geometrically this is talking about irreducible components.

Proof. Localizing at \mathfrak{p} , WLOG we can take $\mathfrak{p} = \mathfrak{m}$. Then we want to show dim $A \leq 1$. I.e. if (A, \mathfrak{m}) is a Noetherian local domain, not a field, and \mathfrak{m} is minimal over (f) then 0 and \mathfrak{m} are the only primes. In other words we want to show for $t \neq 0$ dim A/(t) = 0.

We have the sequence

$$\begin{array}{ccc} 0 & \longrightarrow & (f) \,/ \, \left(f^d \right) \, \longrightarrow \, A/ \left(f^d \right) \, \longrightarrow \, A/ \left(f \right) \, \longrightarrow \, 0 \\ & & \downarrow \simeq \\ & & A/ \left(f^{d-1} \right) \end{array}$$

So we get that the lengths satisfy:

$$\underbrace{\ell\left(A/\left(f^{d}\right)\right)}_{=d\cdot r} = \ell\left(A/\left(f^{d-1}\right)\right) + \underbrace{\ell\left(A/\left(f\right)\right)}_{=r}$$

and then we have

$$0 \to (t) / (t) \cap (f^d) \to A / (f^d) \to A / (t, f^d) \to 0 .$$

Then this implies that for $d \ge m$ we have

$$(t) \cap \left(f^d\right) = f^{d-m} \cdot \left((t) \cap \left(f^m\right)\right)$$

so we have

$$\ell\left(\left(t\right)/f^{d-m}\left(t\right)\right) = \left(d-m\right) \cdot r$$

LECTURE 33

MATH 256B

which means

 \mathbf{SO}

$$\ell\left(\left(t\right)/\left(t\right)\cap\left(f^{d}\right)\right) \ge \left(d-m\right)\cdot r$$
$$\ell\left(A/\left(t,f^{d}\right)\right) \le dr - \left(d_{0}m\right)\cdot r = m \cdot r$$

which implies

as desired.

1.5. Consequences of Krull's theorem. Now for dim A > 0, pick $x_1 \in \mathfrak{m}$ and $x_1 \notin$ the minimal prime. Then the number of minimum primes in a Noetherian ring is finite

 $\dim\left(A/\left(t\right) \right) =0\ .$

$$\dim \left(A/x_i \right) < \dim A \; .$$

Now repeating this and applying the ACC to the (x_1, \ldots, x_k) we stop at some n where we have

$$\dim A/\left(x_1,\ldots,x_n\right)=0$$

So we can reduce the dimension by at most 1. In fact, by Krull's theorem we lowered it by exactly 1. For \mathfrak{m} minimal over (x_1, \ldots, x_n) we have dim $A/(\underline{x}) = 0$ so $n \leq \dim A$ so in fact

 $\dim A = n \; .$

Such a thing is called a system of parameters.