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We will wrap up dimension theory so we can do some sheaf cohomology and
smoothness.

1. DIMENSION THEORY

Let f: X — Y be finite. Then we know
(1) f having discrete fibers implies dim, X < dim, Y where y = f (z).
(ii) f satisfy the “going up theorem”.! Ie. if we have W C X and Z irreducible
such that
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then for any Z’ C Z irreducible, we can find W’ C W such that
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(iii) We also have the going down theorem which says the following.

Theorem 1 (Going down). Let f : X — Y be finite and surjective. Let
X = Spec B and Y = Spec A be affine irreducible. If A is integrally closed,
i.e. it is integrally closed in its field of fractions K (A), then
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i.e. for any Z' C Z CY drreducible and W' as before, then there is some
W as in the above diagram.

Counterexample 1 (In the case A is not integrally closed). Consider a nodal
curve such as C =V (y2 — 22 (z + 1)) This curve crosses itself at the origin and
is irreducible. We can parameterize this curve with an affine line A = Speck [¢].
Explicitly this is

te (z,y)= (-1t (*-1)) .
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1Geometrically this is the going down theorem.
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Write the map g : A — X. In this case t = £1 both map to the origin. This
corresponds to a map
k[x,y]/(y2 — 22 ($+1)) — k[t] .
This is a finite morphism, and k [¢] is integrally closed, and these rings have the
same field of fractions which is k (¢). So this is a situation where these conditions
are not met.
Now take Y = A% x C and then X = A! x A? the parameterization of Let z be

the graph of g. Now take 2’ € Y a point on the nodal curve on z. Then there is a
unique life of z to A! x AZ.

When going down holds, then it will be true that X and Y are the same dimension
(which we new already from going up) but in fact it will hold point-wise:
dim, X =dim, Y .

This is good for the following reason. Let X be an irreducible algebraic scheme
over k. Then we have the following theorem.

Theorem 2. dim, X = trdeg, K (X) for all z € X,.

Noether’s normalization lemma will give us that there exists a finite surjective
morphism X — A¢ = Speck [t1,...,t4) such that  — m = (¢) is the origin.
The point is that going down down applies to give us
dim, X = dim,, A = dim [t],, = d = trdeg;, K (X) .
1.1. Noether normalization. Let R = k[z]/I and n C R. Then we want

t1,...,tq € n algebraically independent, k[t1,...,ts] — R, and R is a finitely
generated k [t] module.

Step 1. First we do it without the algebraically independent condition. So we have
R/n finite over k. Let ay,...,a, span R/n. Now write

T, = w; + Z d;a;
where w; € n and
a;a; = zijj + Z Cra;
for z;; € n. Then a, w, z generate R/n. Then we have that R is finitely generated

over k [w, z]. Le. if the ws and zs were algebraically independent then we would be
done.

Step 2. So we have R a finitely generated module over k [t1, . . ., t,,] not algebraically
independent. Then suppose k [t1,...,tn] D f (t1,...,t,) = 0in R. Now we do some
sort of change of variables. Let u,, = t, and

Up = t; — 1"
for 0 < Ny < .... Then we have that

is monic in the u,. Now we can just remove one of the variables. Now we can
repeat this process until they are algebraically independent.
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