LECTURE 34 MATH 256B

LECTURE: PROFESSOR MARK HAIMAN NOTES: JACKSON VAN DYKE

We will wrap up dimension theory so we can do some sheaf cohomology and smoothness.

1. DIMENSION THEORY

Let $f: X \to Y$ be finite. Then we know

- (i) f having discrete fibers implies $\dim_x X \leq \dim_y Y$ where y = f(x).
- (ii) f satisfy the "going up theorem".¹ I.e. if we have $W \subseteq X$ and Z irreducible such that

$$\begin{array}{c} W & \longleftrightarrow & X \\ \downarrow & & \downarrow^f \\ Z & \longleftrightarrow & Y \end{array}$$

then for any $Z' \subseteq Z$ irreducible, we can find $W' \subseteq W$ such that

$$\begin{array}{cccc} W' & & \longrightarrow & W & \longleftrightarrow & X \\ & \downarrow & & \downarrow & & \downarrow_f & \cdot \\ & \downarrow & & \downarrow & & \downarrow_f & \cdot \\ Z' & & \longrightarrow & Z & & \hookrightarrow & Y \end{array}$$

(iii) We also have the going down theorem which says the following.

Theorem 1 (Going down). Let $f : X \to Y$ be finite and surjective. Let $X = \operatorname{Spec} B$ and $Y = \operatorname{Spec} A$ be affine irreducible. If A is integrally closed, i.e. it is integrally closed in its field of fractions K(A), then

i.e. for any $Z' \subseteq Z \subseteq Y$ irreducible and W' as before, then there is some W as in the above diagram.

Counterexample 1 (In the case A is not integrally closed). Consider a nodal curve such as $C = V(y^2 - x^2(x+1))$. This curve crosses itself at the origin and is irreducible. We can parameterize this curve with an affine line $\mathbb{A} = \operatorname{Spec} k[t]$. Explicitly this is

$$t \mapsto (x, y) = (t^2 - 1, t(t^2 - 1))$$

Date: April 22, 2019.

¹Geometrically this is the going down theorem.

Write the map $g : \mathbb{A}^1 \to X$. In this case $t = \pm 1$ both map to the origin. This corresponds to a map

$$k[x,y] / \left(y^2 - x^2 \left(x + 1\right)\right) \hookrightarrow k[t] .$$

This is a finite morphism, and k[t] is integrally closed, and these rings have the same field of fractions which is k(t). So this is a situation where these conditions are not met.

Now take $Y = \mathbb{A}^2 \times C$ and then $X = \mathbb{A}^1 \times \mathbb{A}^2$ the parameterization of Let z be the graph of g. Now take $z' \in Y$ a point on the nodal curve on z. Then there is a unique life of z to $\mathbb{A}^1 \times \mathbb{A}^2$.

When going down holds, then it will be true that X and Y are the same dimension (which we new already from going up) but in fact it will hold point-wise:

$$\dim_x X = \dim_y Y$$

This is good for the following reason. Let X be an irreducible algebraic scheme over k. Then we have the following theorem.

Theorem 2. dim_x $X = \operatorname{tr} \operatorname{deg}_k K(X)$ for all $x \in X_{\ell}$.

Noether's normalization lemma will give us that there exists a finite surjective morphism $X \to \mathbb{A}_k^d = \operatorname{Spec} k [t_1, \ldots, t_d]$ such that $x \mapsto m = (\underline{t})$ is the origin.

The point is that going down down applies to give us

 $\dim_x X = \dim_m \mathbb{A}^d = \dim [\underline{t}]_m = d = \operatorname{tr} \operatorname{deg}_k K(X) \ .$

1.1. Noether normalization. Let $R = k [\underline{x}] / I$ and $n \subseteq R$. Then we want $t_1, \ldots, t_d \in n$ algebraically independent, $k [t_1, \ldots, t_d] \hookrightarrow R$, and R is a finitely generated $k [\underline{t}]$ module.

Step 1. First we do it without the algebraically independent condition. So we have R/n finite over k. Let a_1, \ldots, a_r span R/n. Now write

$$x_i = w_i + \sum d_i a_i$$

where $w_i \in n$ and

$$a_i a_j = z_{ij} + \sum c_k a_j$$

for $z_{ij} \in n$. Then $\underline{a}, \underline{w}, \underline{z}$ generate R/n. Then we have that R is finitely generated over $k[\underline{w}, \underline{z}]$. I.e. if the ws and zs were algebraically independent then we would be done.

Step 2. So we have R a finitely generated module over $k [t_1, \ldots, t_m]$ not algebraically independent. Then suppose $k [t_1, \ldots, t_n] \ni f (t_1, \ldots, t_n) = 0$ in R. Now we do some sort of change of variables. Let $u_n = t_n$ and

$$u_n = t_i - t_n^{N_i}$$

for $0 \ll N_1 \ll \ldots$ Then we have that

$$t_i \mapsto u_i + u_n^{N_i}$$

is monic in the u_n . Now we can just remove one of the variables. Now we can repeat this process until they are algebraically independent.