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1. Cohomology

1.1. Usual cohomology. Let A be an abelian group. What do we mean by the
cohomology groups Hi (X,A) of a space X. If X is a smooth real manifold and we
want A = R or C, then we can get this with de Rham cohomology. I.e. we can look
at the k-forms, or k-cochains, then then ∂ = d maps these to the k + 1 cochains.
Of course d2 = 0, a form is called closed if the differential of it is 0, and if it is in
the image of d it is called exact. Then the closed forms modulo the exact forms
form the de Rham cohomology.

For much more general spaces and coefficients, we can construct simplicial coho-
mology. In this case a k-cochain is a function of k-dimensional simplices σ : ∆k → X
to A:

f : {σ : ∆k → X} → A .

Then the boundary map ∂ takes k-simplices to k + 1 simplices and is defined by:

(∂f) (σ) =
∑
±f (σi) .

where σ : ∆k+1 → X. I.e. it takes the sum of the values of f on the k-dimensional
faces (simplices) of the k + 1-dimensional simplex. ∂2 = 0 as before, and then at
each stage we can look at the cycles and mod out by the boundaries to get the ith
cohomology. This coincides with the de Rham cohomology when X is a manifold,
but even this doesn’t work for arbitrary spaces.

Since we want to work in the Zariski topology, we need something even more
general than this. In our situation we want to allow for coefficients in some quasi-
coherent sheaf.

1.2. Sheaf cohomology. So we let X be any space whatsoever, and A a sheaf of
abelian groups and we want to define sheaf cohomology Hi (X,A). In particular
we define it to be the ith derived functor

RiΓ (X,A) .

This reduces to the usual cohomology when A = A is the constant sheaf.
R0Γ (X,A) consists of functions from A to the connected components of X. This

is what we get in the usual cohomology theories as well.
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2. Homological algebra

2.1. Abelian categories.

Example 1. Modules over any ring (even noncommutative), sheaves ofOX -modules,
and the category of complexes are all examples. We will primarily be interested in
the second example.

One common feature between all of these examples is that Hom (A,B) forms an
abelian group, and composition is bilinear. If we just have this, the category is
sometimes called pre-additive.

But it turns out something nice happens in this situation. Assume our category
has a product. Then if it’s an abelian category we can construct the maps i1 =
(1A, 0) and i2 = (0, 1B):

A×B

A B

p1

p2

i1

i2

In any category when we have such four morphisms we have a product, and in fact
these are automatically coproducts. We should think of this as a direct sum.

If we assume that these all exist then it is called an additive category, i.e. if it
has finite direct sums.

Now consider a map f : A→ B. This might have a kernel, which is an object K
and a morphism i : K → A which is terminal among maps K → A which compose
with f to be trivial. Similarly it might have a cokernel, which is an object Q and
a morphism q : B → Q which is universal with respect to this property.

The cokernel of i is called the coimage of f , and the kernel of the cokernel is
called the image of f . We always have a map coim (f) → im (f), and for modules
this is an isomorphism. We will call the category abelian if it has kernels and
cokernels, and that coimages are always the same as images.

There is a theorem which says that any abelian category is the same as a full
subcategory of the category of modules over some ring. So we know that we can
stop specifying properties of this category. The moral of this is that it’s okay to
pretend we’re working with modules when we’re really working an abelian category.
One reason is this general representability theorem, the other is that we can use
a more functorial approach (looking at functors representing objects instead) and
the third is to do things sort of stalk by stalk.

2.2. Complexes. So let A be any abelian category. Then C (A) consists of com-
plexes of A. These are collections of objects Ai for i ∈ Z and maps ∂i:

. . . Ai−1 Ai Ai+1 . . .
∂i−2 ∂i−1 ∂i ∂i+1

Then a morphism is a collection of maps fi : Ai → Bi such that all of the squares
commute:

. . . Ai−1 Ai Ai+1 . . .

. . . Bi−1 Bi Bi+1 . . .

∂i−2

fi−2

∂i−1

fi−1

∂i

fi

∂i+1

fi+1

∂i−2 ∂i−1 ∂i ∂i+1
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Any such complex has cohomology:

Hi (A•) = ker ∂i/ im ∂i−1 .

Definition 1. f : A• → B• is a quasi-isomorphism if it induces an isomorphism

Hi (A•)
∼=−→ Hi (B•) for all i.

Of course every quasi-isomorphism is not an isomorphism.

Counterexample 1. If we have the complex

. . .→ 0→ A
1A−−→ A→ 0→ . . .

then this has homology 0, so it is quasi-isomorphic to the zero complex, but of
course it isn’t isomorphic to this complex.

The derived category is
D (A) = Q−1C (A)

where we have inverted all of the quasi-isomorphisms.

Remark 1. There are some set-theoretic issues when forming this, but as it turns
out the right strategy for dealing with them is ignoring them.

Consider an exact sequence of complexes:

0→ A• → B• → C• → 0 .

This induces a long-exact sequence

. . .→ Hi−1 (C)→ Hi (A)→ Hi (B)→ Hi (C)→ Hi+1 → Hi+1 (B)→ . . .

which we will see next time.
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