LECTURE 37
 MATH 256B

LECTURE: PROFESSOR MARK HAIMAN

NOTES: JACKSON VAN DYKE

1. LONG-EXACT SEQUENCES

Fix an abelian category \mathcal{A} and consider the category of complexes $\mathbf{C}(\mathcal{A})$. Let $f: A \rightarrow B$ be a morphism in this category. Then we can define the mapping cone of f, cone (f). In the i th degree we put A^{i+1} and B^{i}. Then the maps in this complex are defined as follows:

$$
\begin{equation*}
(i-1) \tag{i}
\end{equation*}
$$

Remark 1. The situation with signs here is that the shift operator and the boundary sort of anti-commute. If you follow this generic rule signs should always work out.

We have a canonical injective map $B \rightarrow$ cone (f) and the additional maps:

$$
A \xrightarrow{f} B \longrightarrow \operatorname{cone}(f) \longrightarrow A[1] \xrightarrow{f} B[1] .
$$

This goes on forever, and is called an exact triangle and is written either as:

or as

$$
A \rightarrow B \rightarrow \operatorname{cone}(f) \xrightarrow{+1} .
$$

The point here is that such things induce an exact sequence on H^{i}.
Example 1. We show exactness at the step $B \rightarrow \operatorname{cone}(f) \rightarrow A$. Take a cycle $(a, b) \in Z^{i}($ cone $(f))$. Recall this means $\partial a=0$ and $f(a)+\partial b=0$. Saying this maps to 0 in A means $a=\partial a^{\prime}$ for some a^{\prime}. So we want to show (a, b) is in the image of the cohomology, i.e. we want to find a cycle in B and boundary in cone (f) which is equal to (a, b) modulo boundaries.
$f(a)+\partial b=0$ means $\partial\left(f\left(a^{\prime}\right)+b\right)=0$, so $f\left(a^{\prime}\right)+b \in B^{i}$ is a cycle so it maps to $\left(0, f\left(a^{\prime}\right)+b\right)$. Now we have

$$
\partial\left(a^{\prime}, 0\right)=\left(-a, f\left(a^{\prime}\right)\right)
$$

[^0]so we have that
$$
(a, b)=\left(0, f\left(a^{\prime}\right)+b\right)-\partial\left(a^{\prime}, 0\right)
$$
and we are done.
Lemma 1. Consider some subcomplex $N \subseteq A$.
(i) If N is acyclic ${ }^{1}$ then $A \xrightarrow{\simeq} A / N$ is a quasi-isomorphism.
(ii) Dually, if the quotient is acyclic, then $N \stackrel{\simeq}{\leftrightarrows} A$ is a quasi-isomorphism.

Proof. We only prove the first statement. Let N be acyclic. Let $x \in A^{i}$ with $\partial x \in N^{i+1}$. Then there exists some $y \in N^{i}$ such that $\partial x=\partial y$. Then $\partial(x-y)=0$, which means $x-y \in Z^{i}(A)$.

Let

$$
A \xrightarrow{f} B \rightarrow \operatorname{cone}(f) \xrightarrow{+1}
$$

be an exact triangle. Then this induces a long exact sequence of objects of \mathcal{A} :

$$
\cdots \rightarrow H^{i}(A) \rightarrow H^{i}(B) \rightarrow H^{i} \text { cone }(f) \rightarrow H^{i+1}(A) \rightarrow \cdots
$$

Then we have:
Corollary 1. f is a quasi-isomorphism iff cone (f) is acyclic.
Let $f: A \rightarrow B$. Then we have an exact sequence:

$$
0 \longrightarrow \operatorname{ker}(f)[1] \longrightarrow \operatorname{cone}(f) \longrightarrow \operatorname{cone}(\in f \rightarrow B) \longrightarrow 0 \text {. }
$$

Now suppose f is surjective. Then the cone of the isomorphism cone $(\operatorname{im} f \rightarrow B)$ is acyclic, which means $\operatorname{ker}(f) \xrightarrow{\simeq} \operatorname{cone}(f)[-1]$ is a quasi-isomorphism.

So if f is surjective the picture is

Now consider a SES:

$$
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
$$

Then $A \simeq \operatorname{cone}(f)[-1]$. There is also

$$
0 \longrightarrow A \oplus \operatorname{im} f \longrightarrow \operatorname{cone}(f) \longrightarrow \operatorname{coker} f \longrightarrow 0
$$

which is somehow dual to the other picture. This sequence is the same as:

$$
0 \longrightarrow \operatorname{cone}(A \rightarrow \operatorname{im} f) \longrightarrow \operatorname{cone}(f) \longrightarrow \operatorname{coker} f \longrightarrow 0
$$

Now if f is injective then this means

$$
A \simeq \operatorname{im} f
$$

is a quasi-isomorphism, and

$$
\operatorname{cone}(f) \simeq \operatorname{coker} f
$$

is a quasi-isomorphism.

[^1]So we have two ways of somehow turning a SES into a triangle:

$$
A \longrightarrow B \longrightarrow \text { cone }(f) \xrightarrow{+1} \ldots
$$

$$
\text { cone }(g)[-1] \longrightarrow A \longrightarrow B \xrightarrow{+1} \ldots
$$

but we can rewrite the second as:

$$
B \longrightarrow C \longrightarrow \text { cone }(g)=A[1] \xrightarrow{+1} \ldots .
$$

Now we can compare these as follows. We have the following maps:

where \simeq denotes quasi-isomorphism. This diagram homotopy anti-commutes. The point is that we get two maps $C \rightarrow A[1]$ in the derived category by following the two sides of this diagram.

So for an exact sequence of complexes

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

we get the long exact sequence

$$
\cdots \rightarrow H^{i}(A) \rightarrow H^{i}(B) \rightarrow H^{i}(C) \rightarrow H^{i-1}(A) \rightarrow \cdots .
$$

2. Homotopic maps

Consider two complexes A^{\bullet} and B^{\bullet}. Then we can form another complex Hom ${ }^{\bullet}(A, B)$ which has

$$
\operatorname{Hom}^{i}(A, B)=\prod_{j} \operatorname{Hom}\left(A^{j}, B^{j+i}\right)
$$

For some j and some $\varphi: A^{j} \rightarrow B^{j+i}$ we have the diagram:

but we can also consider

Then the boundary map in the complex $\operatorname{Hom}^{\bullet}(A, B)$ is given by:

$$
\partial_{\mathrm{Hom}}=\varphi \partial-(-1)^{i} \partial \varphi .
$$

We can check this squares to 0 .

Consider $Z^{0}\left(\mathrm{Hom}^{\bullet}\right)(A, B)$. This consists of maps $A^{i} \rightarrow B^{i}$ for every i. Then the fact that these are cycles means exactly that the following diagram commutes:

But this is exactly what it means to be a morphism of complexes, so

$$
Z^{0} \operatorname{Hom}^{\bullet}(A, B)=\operatorname{Hom}(A, B) .
$$

Then the 0-boundaries $B^{0} \operatorname{Hom}^{\bullet}(A, B)$ are maps $A^{i} \rightarrow B^{i}$ of the form $f=\partial s+s \partial$ for $s: A^{i} \rightarrow B^{i-1}$ such that the following diagram commutes:

We say such maps are homotopic to the identity and write $f \sim 0$.
Fact 1. Let $f: A \rightarrow B$. Then TFAE:
(i) $f \sim 0$
(ii) f factors as $A \rightarrow \operatorname{cone}\left(1_{A}\right) \rightarrow B$
(iii) f factors as $A \rightarrow \operatorname{cone}\left(1_{B}\right)[-1] \rightarrow B$

This means if it is homotopic to 0 it induces the zero arrow in the derived category so the functor $\mathbf{C}(\mathcal{A}) \rightarrow \mathbf{D}(\mathcal{A})$ factors as

$$
\mathbf{C}(\mathcal{A}) \rightarrow \mathbf{K}(\mathcal{A}) \rightarrow \mathbf{D}(\mathcal{A})
$$

[^0]: Date: April 29, 2019.

[^1]: ${ }^{1}$ This means all cohomology is trivial.

