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Today we would like to get to the point where we can actually compute sheaf
cohomology.

1. Čech complexes

Let X be a ringed space, and let M be a sheaf of OX -modules. Let U = {Uα}
be a collection of open sets. Write jα : Uα ↪→ X. From this we will construct a
complex. First we have the following:

0 M
∏
α (jα)∗

(
M |Uα

) ∏
α,β (jαβ)∗

(
M |Uα∩Uβ

)
· · · .

The nth term will look like ∏
|I|=n

(jI)∗
(
M |UI

)
and the map from the previous term is some sort of signed sum. This is called the
Čech complex of a sheaf with respect to a covering.

Pick some particular index α, and then write

U ′ = {Uβ}β 6=α U ′′ = (Uβ ∩ Uα)β 6=α .

Then the complex C• (M,U) is the mapping cone of

j : C• (M,U ′)→ C• (M,U ′′) .

Now restrict the complex C• (M,U)|Uα . This is acyclic, but then we can do

this for any Uα. So as a complex of sheaves, C• (M,U) is acyclic on ∪αUα. Now
we want to use this sort of thing to calculate the right derived functors RΓ of the
global sections functor.

2. Sheaf cohomology

Let B be a base of the topology on C with finite intersections. Then we say a
sheaf M is B-acyclic if

ΓUC
• (M,U)

is acyclic for all U which are coverings in B by U ∈ B.
Consider an exact sequence of sheaves

0→ A→M → N → 0

where M is B acyclic. Then we want to see that for U ∈ B the following sequence
is still exact:

0→ A (U)→M (U)→ N (U)→ 0 .
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For s ∈ N (U) there is some t0 ∈ M (Uα) such that t0 7→ s|Uα . Then we can
consider

tα − tβ ∈ ΓUC
2 (M,U)

on Uα∩Uβ . This is the boundary of tα ∈ ΓU (M,U). But this means the differential
of this is 0. In fact, this is even in a smaller complex

(tα − tβ) ∈ ΓUC
2 (A,U)

and it is still a cycle. Then this comes from some hα ∈ ΓUC
1 (A,U) under the map

ΓUC
1 (A,U)→ ΓUC

2 (A,U) .

These are somehow corrections. Define

t′α = tα − hα
and then

t′α − t′β
∣∣
Uα∩Uβ

= 0

so these are somehow compatible.
The other thing we want to know is that if the first two are acyclic then so is

the third. This turns out to follow from the above discussion.
The upshot is that B-acyclic sheaves are acyclic for the functor ΓU for any U ∈ B.

2.1. The fundamental theorem.

Theorem 1. If M̃ is a quasi-coherent sheaf on an affine scheme X = SpecR, then

RΓ
(
M̃
)

= Γ
(
M̃
)
,

i.e. M is acyclic for Γ.

Remark 1. One might think this is obvious since Γ is exact on quasi-coherent
sheaves. But the way to think of Γ is as a functor on all sheaves. Then we take
the derived functor and this is true on quasi-coherent sheaves within this larger
category. Somehow the category QCoh (X) is not such a good category since it
doesnt have enough injectives and other issues. The proof is still somehow trivial.

Proof. Take B = {Xf}. Then we show this is true for ΓXf . We already know if M̃
is finitely B-acyclic then we are done. Take

Xf =
⋃
Xfi .

All of the products in the Čech complex are finite so they’re direct sums, and direct
sums of qcoh sheaves are qcoh, and then we are done by exactness of Γ on qcoh
sheaves. �

Corollary 1. All products of quasi-coherent sheaves on X = SpecR are acyclic.

This means even for an infinite covering, as long as the js are quasi-compact
and separated morphisms then we can use a Čech complex as above to compute
the sheaf cohomology of a quasi-coherent sheaf.

If X has the property that intersections of affines are affine (e.g. separated) then
B can just be all affines. So even if X is not affine then this complex will still be
acyclic on any of these affines.
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3. An example

We will compute Hi (Pnk ,O (d)). We will do this over k, but every time we say
vector space we could also say free-module and it would all still work.

Recall Pnk = Proj k [x1, . . . , xn+1]. Consider the following complex:

(1) 0 k [x]
⊕
i

k [x]xi
⊕
k [x]xi,xj · · ·

⊕
k [x]x1,...,xn+1

.

This complex is a complex of graded R-modules, and the sheaf associated to this on
projective space is the Čech complex of O (d) with respect to the standard covering
by affines.

We can basically see that this whole complex is in fact the tensor over k of

0→ k [x]→ k
[
x, x−1

]
→ 0 .

In this case the cohomology is:

H0 = 0 H1 = x−1k
[
x−1

]
.

The complex (1) is exact at every step except the last. But if we add the term

. . .→ (x1 . . . xn+1)
−1
k
[
x−11 , . . . , x−1n+1

]
→ 0

then it is actually exact.
Now remove the first and last nontrivial term of (1). If we d-shift and take the

degree 0 part of this then this exactly represents RΓO (d) on Pn. In the middle it
has no cohomology, and then the cohomology at the ends is just the two end terms,
i.e.

Hi (Pn,O (d)) =


k [x](d) i = 0

0 0 < i < n

(x1 . . . xn+1)
−1
k
[
x−11 , . . . , x−1n+1

]
i = n

.

Let’s say we want to compute the cohomology of any coherent sheaf on projective
space. We know this is associated to a f.g. graded module. Now we can find a f.g.
graded free resolution of this module. Each term is a direct sum of degree shifts of
the polynomial ring. I.e. they look like

. . .→
⊕
O (−dj)

⊕
O (−di)→ M̃ .

Then in principle we can compute the cohomology of M from this. We can in
fact do these computations for any projective variety since we can just map it into
projective space and make the computation.

In any case, just the existence of this means that if we think of M has an iterated
mapping cone, then every complex like this will always have finite-dimensional
cohomology in every degree.

If we tensor this entire complex with O (n) for large n, then eventually all of
these negative degrees will become positive, and nobody has higher cohomology,
only zero cohomology. I.e. we have resolved M̃ by acyclic objects. Then the
conclusion turns out to be that

Hi (M ⊗O (n)) = 0

for n sufficiently large. This is Serre’s vanishing theorem.
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