LECTURE 5 MATH 256A

LECTURES: PROFESSOR MARK HAIMAN

NOTES: JACKSON VAN DYKE

1. Quotients

1.1. Classical picture. We want to finish discussing the sense in which we can think of $\operatorname{Proj} R$ as a quotient of $\operatorname{Spec} R \backslash V\left(R_{+}\right)$by the \mathbb{G}_{m} action. Before we get bogged down with abstraction, let's remember the classical story. Let $A=\mathcal{O}(Y)$, then $\operatorname{Proj}\left(A\left[x_{0}, \cdots, x_{n}\right] / I\right)$ is a projective variety. In this case $\operatorname{Spec} R$ is $\mathbb{A}^{n+1} \times Y$ and the k^{\times}action is just by scaling. So we remove the fixed locus, a copy of Y, and quotient out by k^{\times}to get $Y \times \mathbb{P}_{k}^{n}$.
1.2. Generality. First we need some sort of canonical morphism : $\pi: \operatorname{Spec}(R) \backslash$ $V\left(R_{+}\right) \rightarrow \operatorname{Proj}(R)$. The way we constructed Proj to begin with was somehow the wrong way around. To see this as a quotient, we want to view it as sending points to their G-orbits. So let's see we actually have such a map. Let $Z=\operatorname{Spec} R$ and $X=\operatorname{Proj} R$. As usual we have that X is covered by the $X_{f}=\operatorname{Spec}\left(R_{f}\right)_{0}$, and Z is covered by the $Z_{f}=\operatorname{Spec}\left(R_{f}\right)$ so locally we have maps $Z_{f} \rightarrow X_{f}$, and the global map is pasted together like this. Note that this does indeed map fixed points to fixed points, and non-fixed points to their orbits, so this is a quotient in a topological sense.

There are many sorts of quotients. One is the sort of functorial quotient:

$$
\underline{\underline{Y}}(T)=\underline{\underline{X}}(T) / \underline{\underline{G}}(T)
$$

But this is too strong because if this is true, then $X=Y \times G$ to begin with. We also have a 'locally-functorial' notion of a quotient, e.g. X could be a principal G bundle over Y in the Zariski topology. Finally there is a weaker notion, which is what is called a "coarse" quotient. So consider an action $G \subset X$, and a G-equivariant map $\pi: X \rightarrow Y$ such that $G \subset Y$ trivially. Then the property we want is just that it is universal among such things. I.e. for every G-equivariant map $\varphi: X \rightarrow Z$, where Z has trivial G action, we have the following:

This notion also seems functorial, but it turns out it is much weaker. We want to see the functorial quotient as a special case of the coarse quotient. Note that this will imply that the locally functorial quotient is also a special case. So suppose we do have a functorial quotient. Then given $\varphi: X \rightarrow Z$, consider the induced map $\underline{\underline{X}}(T) \rightarrow \underline{\underline{Z}}(T)$ for any scheme T, which is equivariant with respect

[^0]to $\underline{\underline{G}}(T) \subset \underline{\underline{X}}(T)$. Then for $\underline{\underline{Y}}(T)=\underline{\underline{X}}(T) / \underline{\underline{G}}(T)$ the functorial quotient, it fits in the diagram:

and by Yoneda, there exists a unique such map $Y \rightarrow Z$.
1.3. Specifics. First let's see that the map Spec $R \backslash V\left(R_{+}\right) \rightarrow \operatorname{Proj} R$ is a weak quotient. The action $\mathbb{G}_{m} \bigcirc \operatorname{Spec} S$ gives us a trivial \mathbb{Z} grading in S, meaning $S=S_{0}$. For the moment let $Z=\operatorname{Spec} A$ be an affine scheme. We are supposed to think of Z as having a trivial \mathbb{G}_{m} action

So this is a weak weak quotient.
Now consider

and notice we can cover $\varphi^{-1}(U)$ with X_{f} s for $f \in R_{d}$ for $d>0$. Then the maps between affines correspond to maps $A \rightarrow\left(R_{f}\right)_{0}$. But this says exactly that for $Y=\operatorname{Proj} R$ and $Y_{f}=\operatorname{Spec}\left(R_{f}\right)_{0}$ we have that the morphism $X_{f} \rightarrow U$ factors through Y_{f}, which gives us a unique morphism Proj $R \rightarrow Z$ making the diagram commute:

Example 1. Take the affine line $\operatorname{Spec} k[x]$. The fixed point is 0 , so we get $k^{\times} / k^{\times}=$ $\mathrm{pt} \simeq \operatorname{Spec} k$. Indeed $X_{x}=\operatorname{Spec} k\left[x^{ \pm 1}\right]_{0}=\operatorname{Spec} k$ covers it. The issue with the weak quotient if we don't remove the origin, is that there are two orbits, but we just get one point.

Example 2. Now consider $k[x, y]$. We have $k[x, y]_{0}=k$, so the weak quotient is a point when we don't remove the origin. The idea is that the origin is in the closure of every orbit. But in a sensible quotient, we need to distinguish the orbits, so we remove the fixed locus.

Suppose that R_{1} generates R_{+}.
Exercise 1. Prove this is equivalent to the condition that R_{0} and R_{1} generate R as a ring.

Actually we just need $R_{+} \subseteq \sqrt{R}$. I.e. the Y_{f}, for $\operatorname{deg} f=1$, cover $\operatorname{Spec} R \backslash V\left(R_{+}\right)$ and the X_{f} cover $\operatorname{Proj} R$. As usual let $X_{f}=\operatorname{Spec} R_{f}$ and $Y_{f}=\operatorname{Spec}\left(R_{f}\right)_{0}$. Now we have

$$
\begin{aligned}
& \left(R_{f}\right)_{n} \\
& f^{n} \uparrow \mid{ }^{f^{-} n} \\
& \left(R_{f}\right)_{0}
\end{aligned}
$$

and then $\operatorname{Spec} R_{f}=\operatorname{Spec}\left(R_{f}\right)_{0} \times_{\operatorname{Spec} \mathbb{Z}} \mathbb{G}_{m, \mathbb{Z}}$ is a strong quotient, and $X=\operatorname{Spec} R \backslash$ $V\left(R_{+}\right) \rightarrow Y=\operatorname{Spec} R$ is a principal \mathbb{G}_{m} bundle.

2. Preview of next time

On affine schemes $X=\operatorname{Spec} R$, if we have an R-module M, we get a sheaf \tilde{M} of \mathcal{O}_{X} modules. In particular we have the stalks $\tilde{M}_{\mathfrak{p}}=M_{\mathfrak{p}}$. Then we had a theorem that we also have $\tilde{M}\left(X_{f}\right)=M_{f}$. As a special case, $\Gamma(\tilde{M})=M$. In other words we have an adjunction

In particular \sim^{\sim} is left adjoint to Γ. So this is an equivalence of categories between R-Mod and its image in $\mathcal{O}_{X^{-}}$-Mod. The image consists of quasi-coherent $\mathcal{O}_{X^{-}}$ modules.

As it turns out, we can do the same for Proj. In particular, we take $X=\operatorname{Proj} R$, and then we map M a graded R-module to \tilde{M} an \mathcal{O}_{X} module. It works basically the same, except now

$$
\tilde{M}\left(X_{f}\right)=\left(\tilde{M}_{f}\right)_{0}
$$

[^0]: Date: February 1, 2019.

