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We will cover some aspects of sheaf theory on affine schemes which we didn’t
cover last semester.

1. Affine schemes

Let X = SpecR, and M be an R-module. We then created a sheaf M̃ of OX -
modules. Then we had a theorem

Theorem 1. The global sections are M̃ (X) = M .

We also have that

M̃ (Xf ) = Mf

where Xf = SpecR
[
f−1

]
. We also saw that this was an exact functor. Then we

have the obvious functor Γ which just takes global sections. Then this theorem is
saying that Γ is left inverse to ·̃. The opposite however isn’t true. We will give
some examples of this. Note that even more is true: Γ is actually left adjoint to ·̃.
I.e. for some OX -module N , we have a canonical isomorphism

HomR (M,Γ (N )) ' HomOX

(
M̃,N

)
.

This is true because of the following. Let σ ∈ HomOX

(
M̃,N

)
. Giving this is

equivalent to giving this for each Xf :

Mf → N (Xf ) .

These of course have to be given compatibly. And the universal property of local-
ization tells us that this is the same as an R-module homomorphism M → N (Xf )
which comes from a morphism

M → N (X) .

Now we want to somehow intrinsically identify the image of the ·̃ functor. To
answer this we need a definition which is somehow independent of talking about
sheaves associated to modules:

Definition 1. For an OX -module M, we call it quasi-coherent (qco) if X can be
covered by open sets U such that M|U has a presentation as:

O(J)
X

∣∣∣
U
→ O(I)

X

∣∣∣
U
→ M|U → 0

where we allow the indexing set I and J to be infinite. I.e. we have a presentation
of this as a cokernel of the first map.
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Remark 1. This definition makes sense for X any ringed space, but is basically only
useful for schemes.

Let X be a scheme. If this happens for some open covering, we can cover each
of the opens by affines, so WLOG we can take U = SpecR to cover X. Note that
localization preserves direct sums, which means we actually have:

R̃(J) → R̃(I)

which just comes from an R-module homomorphism with cokernel M :

R(J) → R(I) →M → 0

but since ·̃ is exact, we have that the cokernel of the first map is M̃ :

R̃(J) → R̃(I) → M̃ → 0

So M̃ is certainly quasi-coherent. Now if X is an affine scheme itself, then we claim
that the quasi-coherent schemes are all of the form M̃ .

Proposition 1. If X = SpecR and M is quasi-coherent, then M = M̃ where
M =M (X).

Proof. We want to show that M (Xf ) = Mf . Cover X with opens:

X =
⋃
i

Xgi

so we have
M|Xgi

= M̃i .

But now if we consider the following intersections we have:

M (Xgi ∩Xf ) =M (Xgi)f

and similarly
M
(
Xgi ∩Xgj ∩Xf

)
=M

(
Xgi ∩Xgj

)
f
.

Now the sections on all of X can be described as:

0→M (X)→
⊕
i

M (Xgi)→
⊕
i,j

M
(
Xgi ∩Xgj

)
where the global sections are the kernel of this map because of the sheaf axiom.
This works the same way on the Xf s:

0→M (Xf )→
⊕
i

M (Xgi ∩Xf )→
⊕
i,j

M
(
Xgi ∩Xgj ∩Xf

)
.

But now notice that from the above observations we have the two maps given by
localization:

0 M (X)
⊕
i

M (Xgi)
⊕
i,j

M
(
Xgi ∩Xgj

)

0 M (Xf )
⊕
i

M (Xgi ∩Xf )
⊕
i,j

M
(
Xgi ∩Xgj ∩Xf

)(−)f (−)f .

But since localization is an exact functor, we get a map on the kernels as well, i.e.
we have:

(−)f :M (X)→M (Xf ) =M (X)f .
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One thing thatM (Xf ) =M (X)f is saying, is that if σ ∈M (X) has σ|Xf
= 0

then this is equivalent to some power n killing it: fnσ = 0. It is also saying that
for every section τ ∈ M (Xf ) there exists some n such that fnτ extends to some
σ ∈M (X).

2. Examples

Let’s have some examples of sheaves of OX -modules (on affine schemes) that are
not in the image of the localization functor. In other words, for X = SpecR, we
want to find some OX module M which is not qco. There are three main types of
examples of these.

Example 1. The first is easy but artificial such as R = k [x](x) (or R = Z(p)). In

this case, SpecR = {Q = (0) , P = (x)} so Q → P . The only nonempty open sets

are X = {Q}, and {Q}. To give a sheaf, we need to specify it on the open sets X
and {Q}:

M (X) =MP M ({Q}) =MQ

and give a restriction mapMP →MQ. We know OP = Q and OQ = k (x). So we
need to give an R-module, a vector space over k (x), and a homomorphism between
them that is basically an R-module homomorphism. So take any R-module A, and
then this maps to k (x)⊗RA which maps k (x)⊗RA→ B for whatever B we choose,

but Ã is A with a map to its localization A→ k (x)⊗RA so if B 6= k (x)⊗RA then
it isn’t qco.

Example 2. Now take R = k [x], so X = SpecR = A1
k. One of the points is the

origin 0 = (x), and we have an open U = A1
k \ {0} = Gm,k. In general, for an open

subset j : U ↪→ X and a sheaf A on U , we can form a new sheaf by ‘extending it
by 0’ to get j!A, which is called A shriek. It is defined as follows. First of all, for
an open V we have

j!A (V ) ⊆ A (V ∩ U) .

If V ⊆ U , we have that

A (V ) = {σ ∈ A (V ∩ U) | ∀P 6∈ V \ U,∃ nbhd P ∈W s.t. σ|X∩U∩W = 0}
so

j!A|U = A
and for P 6∈ U ,

j!AP = 0 .

So for X = A1
k and U the affine line without the origin, the global sections are

Γ (X, j!OU ) = 0

since all the open sets are of the form Uf for some f . So this can’t be the sheaf
associated to an R-module, and j!OU cannot be qco.

Example 3. We know tensor products preserve direct sums but not infinite prod-
ucts. For the same reason ·̃ will not preserve infinite products. This gives us a third
class of examples. Most of the time an infinite product of things of the form M̃
will not be qco.

Exercise 1. Give an explicit example of this.
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