LECTURE 7
MATH 256B

LECTURE: PROFESSOR MARK HAIMAN
NOTES: JACKSON VAN DYKE

We will cover some aspects of sheaf theory on affine schemes which we didn’t
cover last semester.

1. AFFINE SCHEMES

Let X = Spec R, and M be an R-module. We then created a sheaf M of Ox-
modules. Then we had a theorem

Theorem 1. The global sections are M (X) = M.
We also have that

M (Xy) = My
where Xy = Spec R [ f *1}. We also saw that this was an exact functor. Then we
have the obvious functor I' which just takes global sections. Then this theorem is
saying that T is left inverse to *. The opposite however isn’t true. We will give
some examples of this. Note that even more is true: I' is actually left adjoint to ~.
Le. for some Ox-module N, we have a canonical isomorphism

Homp (M, T (N)) ~ Homop, (M,N) :

This is true because of the following. Let ¢ € Homp, (M,N) Giving this is
equivalent to giving this for each Xj:

My — N (Xy) .
These of course have to be given compatibly. And the universal property of local-

ization tells us that this is the same as an R-module homomorphism M — N (X)
which comes from a morphism

M—N(X) .

Now we want to somehow intrinsically identify the image of the ~ functor. To
answer this we need a definition which is somehow independent of talking about
sheaves associated to modules:

Definition 1. For an Ox-module M, we call it quasi-coherent (qco) if X can be
covered by open sets U such that M|, has a presentation as:

O(J)‘ O(I)‘ M 0
X U_> X U_> v =

where we allow the indexing set I and J to be infinite. I.e. we have a presentation
of this as a cokernel of the first map.
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Remark 1. This definition makes sense for X any ringed space, but is basically only
useful for schemes.

Let X be a scheme. If this happens for some open covering, we can cover each
of the opens by affines, so WLOG we can take U = Spec R to cover X. Note that
localization preserves direct sums, which means we actually have:

R — R
which just comes from an R-module homomorphism with cokernel M:
RY) 5 RO 5 M 0
but since * is exact, we have that the cokernel of the first map is M:
RY 5 R 5 M —0

So M is certainly quasi-coherent. Now if X is an affine scheme itself, then we claim
that the quasi-coherent schemes are all of the form M.

Proposition 1. If X = SpecR and M is quasi-coherent, then M = M where
M=M(X).

Proof. We want to show that M (Xy) = My. Cover X with opens:
X = UX%

so we have .
M| X, = M; .
But now if we consider the following intersections we have:

M (X_lh' me) =M (Xgi)f

and similarly
M (Xg, N Xy, NXf) =M (X, ngj)f :
Now the sections on all of X can be described as:
0= M(X) = EPM(X,,) > P M (X, NnXy,)
i i,
where the global sections are the kernel of this map because of the sheaf axiom.
This works the same way on the Xys:

0= M(Xy) = P M (X, N Xp) > @PM (X, N Xy, N XF) .
i 1)
But now notice that from the above observations we have the two maps given by
localization:

0 —— M(X) —— M (Xy,) ———— DM (X, N X))

yf)f l(—)f
0—— M(Xf) E—— @M (Xgi ﬂXf) E— @M (Xgi ﬂng ﬂXf)
i 0,J
But since localization is an exact functor, we get a map on the kernels as well, i.e.
we have:

(=), M(X) = M(Xp) = M(X), .
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One thing that M (Xy) = M (X) is saying, is that if ¢ € M (X) has 0|y =0
then this is equivalent to some power n killing it: f"c = 0. It is also saying that
for every section 7 € M (Xy) there exists some n such that f™7 extends to some

o€ M(X).
2. EXAMPLES

Let’s have some examples of sheaves of O x-modules (on affine schemes) that are
not in the image of the localization functor. In other words, for X = Spec R, we
want to find some Ox module M which is not qco. There are three main types of
examples of these.

Example 1. The first is easy but artificial such as R = k2], (or R = Z)). In
this case, Spec R = {Q = (0), P = (z)} so @ — P. The only nonempty open sets

are X = {Q}, and {Q}. To give a sheaf, we need to specify it on the open sets X
and {Q}:

M(X)=Mp M ({Q}) = Mg

and give a restriction map Mp — Mg. We know Op = @ and Og = k (z). So we
need to give an R-module, a vector space over k (x), and a homomorphism between
them that is basically an R-module homomorphism. So take any R-module A, and
then this maps to k () ® g A which maps k (z)®p A — B for whatever B we choose,
but A is A with a map to its localization A — k (z) @ A so if B # k (r) © A then
it isn’t qco.
Example 2. Now take R = k[z], so X = Spec R = A}. One of the points is the
origin 0 = (z), and we have an open U = Al \ {0} = G, x. In general, for an open
subset j : U < X and a sheaf A on U, we can form a new sheaf by ‘extending it
by 0’ to get ji.A, which is called A shriek. It is defined as follows. First of all, for
an open V we have

JAWV)CAWVNU) .
If V C U, we have that

AWV)={oe A(VNU) VPV \U,3nbhd P € W s.t. o|xryaw =0}

SO
JrAly = A
and for P ¢ U,
i Ap =0.
So for X = A} and U the affine line without the origin, the global sections are
I'(X,50v) =0

since all the open sets are of the form Uy for some f. So this can’t be the sheaf
associated to an R-module, and 5Oy cannot be qco.

Example 3. We know tensor products preserve direct sums but not infinite prod-
ucts. For the same reason ~ will not preserve infinite products. This gives us a third
class of examples. Most of the time an infinite product of things of the form M
will not be qco.

Exercise 1. Give an explicit example of this.
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