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Today will be a bit more of sheaf basics. We will discuss the functors on qco
sheaves a bit more. Let ϕ : X → Y . Then we have the direct image functor ϕ∗,
and the ϕ−1 functor. This is fine on the level of sets, i.e. ϕ−1 is adjoint to ϕ∗ in
this case, but we have to promote ϕ−1 to some functor ϕ∗ in order to be adjoint for
modules, i.e. to get a proper sheaf of OX -modules from sheaves of OY modules.

1. Affine schemes

Let ϕ : X = SpecA → Y = SpecB be a map of affine schemes with corre-
sponding ring homomorphism α : B → A. Then for M ∈ QCoh (X) we want to
understand what the correct notion of ϕ∗M is. Recall that a morphism of ringed
spaces really consists of the data

(
ϕ,ϕ[, ϕ#

)
where

ϕ[ : OY → ϕ∗OX ϕ# : ϕ−1OY → OX .

Then ϕ∗M is just sort of automatically a ϕ∗OX -module, but the map ϕ[ also gives
this the structure of an OY module.

The inverse image functor however isn’t so nice. If we start with an OY -module,
then we can take ϕ−1N , which is naturally a ϕ−1OY -module, but now the map ϕ#

somehow gives us the wrong direction. It turns out we want to tensor OX ⊗ϕ−1OY
OX =: ϕ∗N and for modules, this is the adjoint of the direct image functor.

In this case, we haveM = M̃ for M an A-module. Write MB for M considered
as a B-module according to α. By definition,

ϕ∗ (M) (Xf ) =M
(
ϕ−1 (Yf )

)
=M

(
Xα(f)

)
=
(
Mα(f)

)Bf =
(
MB

)
f
.

So we just have (ϕ∗M) (Y ) = MB = M . The upshot of this is that

ϕ∗

(
M̃
)

= M̃B .

2. Arbitrary schemes

Unfortunately, for a morphism ϕ : X → Y of arbitrary schemes, it’s not even
true that it has to preserve qco sheaves.

Example 1. Recall that localization doesn’t commute with infinite products. This
means we can find a non-qco sheaf by taking an infinite product of qco sheaves.
Let Y = SpecB. We know B̃ = OY , and then we want to consider the (countably)
infinite product O∞Y . Assume there is f ∈ B which not a zero divisor, and not
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a unit. We can also consider B∞, and then form the sheaf B̃∞. Taking global
sections commutes with infinite products, so

O∞Y (Y ) = B∞ .

Now we want to look at how sections of this on Yf compare. Consider(
1, f−1, f−2, · · ·

)
∈ B∞f = O∞Y (Yf ) .

Not however that this is not an element of (B∞)f . If this were qco, it would have to

be the sheaf associated to this module, but we just saw that it isn’t. I.e. O∞Y 6= B̃∞.
Now we want to get it as a direct image. But this is easy, just take

X =
∐
∞
Y

to be an infinite disjoint union where ϕ is just projection. Then ϕ∗OX is just O∞Y
so we found a qco sheaf which has direct image which is not qco.

This motivates the following definitions.

Definition 1. A space X is quasicompact if every open covering has a finite sub-
cover.1

Example 2. Recall X = SpecR is quasicompact. Take some open cover

X =
⋃
Uα

where Uα = X \ V (Iα). But this is equivalent to

∅ =
⋂
V (Iα) = V

(∑
Iα

)
which means

∑
Iα = (1), so we have some finite sum

1 = fα1
+ · · ·+ fαk

and then we have a finite cover

X =

k⋃
i=1

Uαi .

Example 3. The following is a slightly more interesting example. Consider A∞k \
{0}. This is covered by the

Xxi = Spec k
[
x−1
i , x1, · · ·

]
.

But the ideal of 0 is not finitely generated, so there can never be a finite subcover
so this cannot be quasicompact.

Remark 1. Note that any space X is quasicompact iff X has a finite affine covering.

Definition 2. A morphism ϕ : X → Y is quasicompact if (equivalently)2

(i) For U quasicompact, ϕ−1 (U) is quasicompact.
(ii) ϕ−1 (U) is quasicompact for all affine open subsets U ⊂ Y .

(iii) ϕ−1 (U) is quasicompact for U in some affine open covering of Y .

1Recall compact was exactly this, but also Hausdorff. When dealing with the Zariski topology

Hausdorff spaces are very rare, so we don’t want to insist on this.
2This is simultaneously a definition and a theorem saying these are equivalent.
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Proof. (i) =⇒ (ii) =⇒ (iii) is clear.
(iii) =⇒ (i): Assume that ϕ−1 (U) is quasicompact for U in some affine open

covering of U . Then we want to show that the preimage of any quasicompact set
is quasicompact. It is enough to show that the preimage of any Uf = SpecRf is
quasicompact. So let U = SpecR ⊆ Y be in some affine open covering of U such
that ϕ−1 (U) is quasicompact. This means

W = ϕ−1 (U) = Wα1
∪ · · · ∪Wαk

but then we have
ϕ−1 (Uf ) = Wα1,f ∪ · · · ∪Wαk,f

so we are done. �

It would be nice if we could say that quasicompact morphisms preserve qco
sheaves, but unfortunately this isn’t true either, so we have to make another def-
inition. For a morphism ϕ : X → Y , we can consider X ×Y X and the universal
property says that a morphism to this comes in the form of two Y -morphisms to
X. In particular, we can consider the diagonal map ∆:

X X ×Y X

(x) (x, x)

∆

.

Definition 3. ϕ is separated if ∆ (X) is closed in X ×Y X.

Note that this implies that ∆ is a closed embedding.

Definition 4. ϕ is quasi-separated if ∆ is a quasi-compact morphism.

Let’s get to know this definition a bit. Let Y = ∪αYα be covered by affine Yα.
Then X = ∪αϕ−1 (Yα) and then we have the diagonal map

∆ : Xα → Xα ×Y Xα = Xα ×Yα Xα .

Now let X → Y = SpecR and cover X with affines X = ∪Xβ . Now the

Xα ×R Xβ = SpecSα ⊗R Sβ
cover X ×R X so Xα ↪→ Xα × Xα is really SpecSα ↪→ SpecSα ⊗R Sα which
corresponds to Sα ⊗R Sα � Sα, with kernel consisting of elements which look like
x⊗1−1⊗x. This means the diagonal map Xα ↪→ Xα×Xα is a closed embedding.
The issue is that we potentially don’t know this is the case for X itself. But if
the image is closed, and it is locally a closed embedding, then the whole thing is a
closed embedding. The consequence of this is that if X is separated over an affine
scheme like this, the intersection of two affines will be affines.

As it turns out, being quasicompact and quasiseparated together will be enough
to preserve qco sheaves.
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