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The text is Varadarajan’s Lie groups, Lie algebras and their representations. We
won’t follow this closely. O�ce hours haven’t been specified yet.

1. Manifolds

1.1. Preliminaries. We will start with a review of smooth manifolds.

Definition 1. A manifold is a pair
�
M, {U↵,'↵}↵2A

�
where M is a topological

space, and {U↵,'↵} is an atlas. This means the U↵ are open subsets and

'↵ : U↵
⇠�! V↵ ⇢ R

n

are homeomorphisms. These must satisfy the properties:

(1) The U↵ cover M .
(2) Compatibility in the sense that '� � '�1

↵ : '↵ (U↵ \ U�) ! '� (U↵ \ U�) is
smooth.

(3) Maximality.

Example 1. Consider the n-sphere

Sn =
n
x 2 R

n | |x|2 = 1
o

We have e↵ectively glued two copies of Rn according to open embeddings.

If we go about making spaces by gluing things together, we get two sort of
pathologies. The first is that the resulting space will not always be Hausdor↵.

Example 2. Consider M = R qR⇥ R. That is we take the disjoint union of two
copies of R glued along the nonzero values in R. This can be imagined as R with two
zeros. The basic problem here is that continuous functions can’t tell the di↵erence
between these two points.

Remark 1. Note that we can perform this gluing in two di↵erent ways. If we embed
R

⇥ with the identity, we get this pathological non-Hausdor↵ space. If we however
take one embedding to be the identity, and the other embedding to be the inverse
function, then you get a di↵erent space. In fact this second space turns out to be
S1.

This motivates some typical additional assumptions:

(1) M is Hausdor↵.
(2) M is paracompact.
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Paracompactness just means that every time we have an open cover, we can find
a refinement of this cover such that the resulting open cover is locally finite. A
typical example of what this condition restricts us from considering, i.e. something
which is not paracompact, is the long line. The main reason that we like these
conditions, is that we want well-behaved function theory. For example we want
partitions of unity subordinate to covers.

For this class, all n-manifolds will be closed submanifolds of RN for some n ⌧ N .

1.2. Categorical point of view. There is a category Mfd where the objects are
manifolds, and between any two manifolds, we have the set HomMfd (M,N) which
consists of the smooth maps M ! N . Note that we have compositions

Hom (M,N)⇥Hom(N,P ) ! Hom(M,P )

given by the set-theoretic composition.
Note that there are many flavors:

(1) Smooth manifolds (smooth)
(2) Complex manifolds (holomorphic)
(3) Smooth algebraic varieties (polynomial maps)
(4) Banach manifolds (smooth)

The point is, there are lots of contexts where it makes sense to talk about a manifold,
and these contexts are characterized by a particular notion of a “good” function.

2. Lie groups

Definition 2. A Lie group G is a group object in Mfd.

This means the following:

(1) G is a manifold
(2) G is a group
(3) These structures are compatible in the sense that multiplicationG⇥G

m�! G

and inverse G
i�! G are smooth.

Recall that this means

(1) m is associative
(2) There is a unit e 2 G such that

m (g, e) = m (e, g) = g m (g, i (g)) = e = m (i (g) , g)

Exercise 1. Derive that i is smooth from the fact that m is smooth.

Example 3. S1 is a Lie group in the sense that

S1 = R/Z

where the multiplication is just addition. Via an exponential map we can also write
this as

R/Z = {z 2 Z | |z| = 1}
We can also regard S1 ,! C

⇥ as a subset of the nonzero complex numbers, which
is also a Lie group. We say S1 is a Lie subgroup.

Example 4. Now consider S3 ⇢ R
4 where we think of R4 = H as the quaternions.

Recall that these are

H = {a+ ib+ jc+ kd | a, b, c, d 2 R}
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with the rules that:

i2 = j2 = k2 = �1 ij = k jk = i ki = j

Note that the unit is just 1 and the inverse of a+ bi+ cj + dk is

a� bi� cj � dk

a2 + b2 + c2 + d2

Now if we look at S3 ,! H, it turns out that we have the following:

Exercise 2. Check that S3 is closed under quaternionic multiplication.

So S3 is a Lie group because of the quaternions.

Example 5. As a Lie group, C⇥ ' S1 ⇥ R>0 where we send rei✓ to (✓, r) and
similarly, H⇥ ' S3 ⇥ R>0. Note that C⇥ and H

⇥ are noncompact. Note that this
has nothing to do with the group theory, but rather the geometry. Similarly, we can
talk about abelian Lie groups, but this is independent of the manifold structure.

Remark 2. None of the other spheres besides S0, S1, and S3 are Lie groups. We
might expect S7 to be a Lie group on account of the so-called octonions, but the
octonions do not form an associative algebra.

Example 6. S2 is not a Lie group. Recall that �
�
S2

�
= 2. But we also have the

following:

Claim 1. If G is a connected Lie group, � (G) = 0. If G is finite, � (G) = |G|.
Example 7. Vector spaces and their automorphisms provide some nice1 examples.
Let V be a finite dimensional vector space, then the general linear group:

GL (V ) = GL (n,R) = Aut (V )

is the set of n⇥ n invertible matrices.
Now recall that GL (V ) also acts on ⇤dimV V ' R, and we get the following

GL (V ) V

GL
�
⇤dimV V

�
⇤dimV V ' R

det

�
�

so we get a short exact sequence:

1 ! SL (V ) ! GL (V ) ! GL
�
⇤dimV V

�
! 1

So the reason some people “don’t like” GL (V ) is that it has a normal subgroup, so
it is not simple. Note that it splits as a manifold, but not as a group. But is SL (V )
simple? If a group has a nontrivial center, then it certainly isn’t simple. And the
center of SL (V ) has the diagonal matrices

0

@
a · · · 0
· · · a · · ·
0 · · · a

1

A

where an = 1 as its center.

Exercise 3. Show that [SL (V ) , SL (V )] = SL (V ).

Fact 1. All normal subgroups of SL (V ) are finite, and in fact are contained in the
center.

1
According to Professor Nadler, humans understand linear things and basically nothing else.
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2.1. Group actions. Group actions are the main reason Lie was interested in such
things to begin with.

Definition 3. Given a Lie group G and a manifold X, an action of G on X is a
smooth map a : G⇥X ! X such that

(1) a is associative:

a (g1, a (g2, x)) = a (m (g1, g2) , x)

(2) This is unital, so a (e, x) = x.

The two examples to think about are the following:

Example 8. Suppose X is a vector space, and every element of G acts by not only
a smooth map, but a linear map. Then this action is called a representation and
we think of this as a homomorphism G ! GL (X).

Exercise 4. Understand the natural action of SL (2,C) on CP
1.
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1. Examples of Lie groups and representations

Recall that a Lie group is a smooth manifold G, which is also a group such that

the group multiplication and inverse map is smooth with respect to the manifold

structure. These of course have to be associative and unital.

Also recall the nature of a group action on a space. We will always have in mind

that the space we are acting on is some smooth manifold X. The action is a smooth

map G⇥X ! X. This action must also satisfy associativity and that the identity

acts as the identity di↵eomorphism.

We should keep the following examples in mind.

Example 1. The group G = GL (n,C) is a Lie group consisting of n⇥n invertible

matrices.

Example 2. A representation is a special case of a group action on a manifold.

For any vector space V , G ⇥ V ! V is given by linear di↵eomorphisms which are

of course associative and unital.

Example 3. In particular, consider GL (2,C). This consists of all matrices

✓
a b

c d

◆

such that ad� bc 6= 0. Take X = CP1
. The action is GL (2,C)⇥CP1 ! CP1

which

maps

A =

✓
a b

c d

◆
, l =

✓
x

y

◆
7!

✓
ax+ by

cx+ dy

◆

If we think about this in terms of slope, this says that the line with slope y/x goes

to the line with slope (cx+ dy) / (ax+ by). This is what is called a fractional linear

transformation.

Example 4. For V = C2
we get an example of a representation where GL (2,C)⇥

C2 ! C2
is the natural action.

2. Higher dimensional examples

We now generalize to any n. For G = GL (n,C), V = Cn
, what are the poten-

tial spaces X we might consider? We will consider complex projective space, the

Grassmannian of n planes, and flag manifolds.

Date: August 28, 2018.
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Figure 1. The horizontal axis is Ck
, and the vertical axis is Cn�k

.

The line P is such that P \ Cn�k
= {0}.

2.1. Complex projective space. Well first we can have X = CPn�1
.

Exercise 1. What is the analogue of the “slope” in this higher dimensional case?

How do we see this is a manifold? We cover this with copies of Cn�1
. For all

i 2 {1, · · · , n} write

Ui ' Cn�1 ' {(x1, · · · , xi�1, 1, xi+1, · · · , xn)}

Exercise 2. Check that these are all appropriately compatible in their intersec-

tions.

2.2. Grassmannian. Another possibility, is to consider the “Grassmannian” which

is

X = Gr (k, n,C) = {k-planes in Cn
through 0}

Exercise 3. For what k,k
0
,n,n

0
do we have a di↵eomorphism between Gr (k, n,C) '

Gr (k
0
, n

0
,C).

How do we see this is a manifold? Consider the following chart in Gr (k, n).

Consider a k-plane P as in fig. 1. such that P \Cn�k
= {0}. Then consider U to be

the set of all such k-planes. Note that U ' Hom
�
Ck

,Cn�k
�
. This is of course just

a collection of matrices, so U ' Ck(n�k)
. Now we need to check that these objects

actually cover Gr (n, k). We will take two approaches.

This open set U can be defined anytime we break this up into k coordinates, and

the complement. That is, for any I ⇢ {1, · · · , n} such that |I| = k, we can split

this space into CI
and CIc

and now we can define UI for this choice of I.

The second approach is to note the following:

Exercise 4. GL (n,C) acts transitively on all three of the spaces we are considering

here.

Then we can use the group action to move U around to cover.

Exercise 5. Check that these agree on the intersections.
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2.3. Flag manifolds. Another example is a flag manifold. Let’s write some subset

k ✓ {1, · · · , n� 1} .

Then we can consider the flag manifold Fl (k) which consists of nested sequences of

subspaces Ek1 ⇢ Ek2 ⇢ · · · with dimension of Eki = ki where ki is the ith element

of k.

To see this is a manifold, we can consider it as a subspace of the following:

Fl (k, n,C) ✓
Y

ki

Gr (ki, n,C)

Exercise 6. Show that Fl (k, n,C) is cut out of the above as a regular value of a

smooth map so it is a submanifold.

3. Types of group actions

We now introduce some terminology for di↵erent types of group action. We will

write an action G⇥X ! X as G

�

X. We say an action is transitive if for every

x, y 2 X, there exists some g 2 G such that g · x = y. This is somehow saying G

is bigger than X. We can also ask that the action is free, which means for every

x 2 X, if g · x = x, then g = e. This is somehow saying X is bigger than G.

Define the orbit of x 2 X to be

X ◆ G · x := {y 2 X | 9g 2 G s.t. y = g · x}
Then the stabilizer is

G ◆ Gx := {g 2 G | g · x = x}
Note that an action is transitive i↵ there is only one orbit, and an action is free

i↵ every stabilizer is trivial.

Lemma 1. Stabilizers are closed subgroups. In addition, for y = gx, we have
Gy = gGxg

�1.

Proof. The second statement is e↵ectively obvious so we focus on the first state-

ment. The fact that the stabilizer is a subgroup is immediate. We prove it is closed.

The stabilizer Gx is the fiber at x of the map g 7! g ·x. Since X is Hausdor↵, points

are closed, so the fiber is closed, so the stabilizer is closed. ⇤
Example 5. Consider G = GL (n,C) �

Fl (k, n,C). This is a transitive action so

there is only one orbit. The stabilizer Gx of a point

x = {Ek1 = Span {e1, · · · , ek1} , · · · , Eki = Span {e1, · · · eki}}
is the collection of matrices such that the top left ki block has zeros beneath it for

every i. Note that for full flags we get the collection of all upper-triangular matrices

in GL (n,C).

Based on lemma 1 we introduce the following definition:

Definition 1. A Lie subgroup H ⇢ G is a subgroup, which is also closed.

Example 6 (Non-example). We o↵er a subgroup H ⇢ G which is not closed. Take

G = T
2
, and then H = R⇥ {irrational slope} then we get a subgroup which is not

closed.

From now on we assume all subgroups are Lie subgroups.
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Lemma 2. Lie subgroups are Lie groups. In particular we have a bijection between
Lie subgroups and transitive G actions.

Exercise 7. Prove lemma 2. I.e. show that Lie subgroups are in fact submanifolds.

Example 7. Consider GL (2,C) � �
CP1�k

. For what k is this transitive? For

what k is this free? For what k does this have finitely many orbits? What are the

stabilizers?

The case k = 0 is trivial. For k = 1 this is transitive but not free. It is not

free because the diagonal matrices scale the vectors without changing the line, so

the stabilizer of any point contains the diagonal matrices which comprise C⇥
. For

x = (1, 0),

Gx =

⇢✓
a b

0 d

◆
| ad 6= 0

�

For k = 2, this action is not transitive, and it has two orbits which consist of pairs

of matching lines l1 = l2, and di↵erent lines l1 6= l2. What about the stabilizers?

First take x to be l1 = l2 = [e1], and we get

Gx =

⇢✓
a b

0 d

◆
| ad 6= 0

�

and then for x consisting of l1 = [e1],l2 = [e2] we get

Gx =

⇢✓
a 0

0 d

◆
| ad 6= 0

�

Exercise 8. Complete the same analysis for k = 3.

Exercise 9. Consider GL (2,R) � CP1
. Calculate the orbits. Calculate the stabi-

lizers.

Next time we start with G acting on itself by left/right translations. This will

lead us to Lie algebras.
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O�ce hours are now settled to be after class on Thursdays from 12 : 30 � 2 in
Evans 815, or still by appointment.

1. The action of GL (2,C) on
�
CP1�k

Recall we are studying the action of GL (2,C) on
�
CP1�k. We already thought

about k = 0, 1, 2. When k = 3, we are studying triples of lines in C2. There are
three orbits of this action. The first is when l1 = l2 = l3. This looks like a copy of
CP1 again. The stabilizer of the configuration l1 = l2 = l3 = e1, consists of upper
triangular matrices

B =

⌧✓
⇤ ⇤

0 ⇤

◆�

Note that CP1
' GL (2,C) /B. B is for Borel subgroup. Note B is not Abelian.

Then li = lj 6= lk is another orbit, which looks like
�
CP1

⇥ CP1�
\CP1 diagonal ,

so we just remove the diagonal. For li = lj = e1 and lj = e2, the stabilizer consists
of diagonal matrices

T =

⌧✓
⇤ 0
0 ⇤

◆�

Note that, the orbit
�
CP1

⇥ CP1�
\ CP1

' GL (2,C) /T . T is for torus.
The final orbit consists of distinct lines. This is an open, dense, orbit. This is all

that’s left, so it’s
�
CP1�3 minus everything else. The stabilizer of l1 = e1, l2 = e2

and l3 = (1, 1) is Z for center consisting of

Z =

⌧✓
a 0
0 a

◆�

For a 6= 0.
Note that we have the following exact sequence:

1 C B T 1

So we can write this as a semidirect product B ' Co T .

Exercise 1. Describe T

� C.

The third orbit is just O = GL (2,C) /Z. Since Z is the center, it is normal,
which means this is a group. This has a name: PGL (2,C) ' GL (2,C) /Z.

Exercise 2. We know GL (n,C) = AutVect (Cn). Convince yourself that PGL (n,C) =
AutAlgVar

�
Pn�1

�
.

Date: August 30, 2018.
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Assume a Lie group G

�

X simply transitively, i.e. transitive and free. Then
we might hope that X is also a group, or that they’re canonically isomorphic. But
the point is, they are not until you choose a point in x 2 X. This point is then
the identity. The way this is an isomorphism, is G ! X where g 7! g · x. In this
situation, we call this a principal G bundle over a point, or a G-torsor.

Example 1. One example is V a vector space and X an a�ne space modeled on
V . This doesn’t have an origin a priori.

2. More manifold review

Now we start di↵erentiating. Let’s review tangent and cotangent bundles. Recall
the categoryMfd where manifolds are objects, and the morphisms are smooth maps
between them. Then we have a tangent bundle functor T : Mfd ! Mfd. Dually,
there is a cotangent bundle which maps T ⇤ : Mfd ! SymplMfd.

2.1. Tangent bundles. Recall for M a smooth n-manifold, we have a rank n
vector bundle ⇡ : TM ! M . If we regard M ⇢ RN as living in an ambient RN ,
there is a copy of RN living at every point x 2 M , and then we can consider
the subspace of this space which consists of vectors tangent to this point on the
manifold. Furthermore, if M = {F = 0}, for F : RN

! RN�n, we have M =
F�1 (0) for 0 a regular value. In this space, the tangent space is the kernel of dFx .

Observe that TM ⇢ RN
⇥RN where the first copy consists of the points x, and

the second copy consists of tangent vectors. So this whole thing is cut out by F = 0
and dF = 0.

2.2. Cotangent bundles. A cotangent bundle ⇡ : T ⇤M ! M consists of the dual
space of these tangent space at each point. Note that T ⇤ is a functor into symplectic
manifolds rather than ordinary manifolds.

Consider a smooth map f : M ! N . If we want we can pass to the tangent
bundles and get df . What we get here is a correspondence:

T ⇤M T ⇤N |M = T ⇤N ⇥N M T ⇤N
df⇤

Exercise 3. T ⇤ is a functor.

Recall the composition of correspondences goes like this: If we have spaces X
and Y and some correspondence C between them, along with a correspondence D
between Y and Z. Then we form the fiber product C ⇥Y D.

C ⇥Y D

C D

X Y Z

In fact not only are the manifolds that we end up with symplectic, but the
correspondences are Lagrangian correspondences. Recall a symplectic manifold
consists of a pair (X,!) where ! is a 2-form which is closed and nondegenerate.
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Alternatively we can view this as a section ! 2 �
�
X,⇤2T ⇤X

�
. All symplectic forms

locally look like

!0 =
nX

i=1

dpi ^ dqi

Any time we consider a correspondence, we can think of T ⇤N |M , which can be
thought of as a subset of the actual product (it is a fiber product after all). In fact
it is even a submanifold:

L = T ⇤N |M ,! T ⇤M ⇥ T ⇤N

Even better than this, it is Lagrangian, so !|L = 0. Note that the symplectic form
on T ⇤M ⇥ T ⇤N is �!M + !N .

3. Lie algebras

Consider the following question: what algebraic structure do vector fields on a
manifold have? The whole point is that everything we will end up doing will be
analogous to this. Write

Vect (M) = � (M,TM)

The first thing we learn in a manifolds course is that this has a Lie bracket defined
as follows: for two vector fields v, w, we can apply the following to a function:

[v, w] f = (vw � wv) f

Exercise 4. Show [v, w] is also a vector field.

Solution. We can write:

v =
X

gi@xi w =
nX

i=1

hi@xi

in some local coordinates. Then

[v, w] f =

 
X

i

gi@xi

!0

@
X

j

hj@xj

1

A f �

0

@
X

j

hj@xj

1

A
 
X

i

gi@xi

!
f

Then we have the identity that

@xip = p@xi + pi

for any function p. Now we want to move every derivative to the right, and the
only remaining terms are first order.

Recall a Lie bracket satisfies several properties:

(1) Bilinearity over R
(2) Skew-symmetric: [v, w] = � [w, v]
(3) Jacobi identity: [u, [v, w]] = [[u, v] , w] + [v, [u,w]]

We can think of the Jacobi identity as a sort of Leibniz rule.
Fix a field k.

Definition 1. A Lie algebra over k is a k-vector space equipped with a bracket
[·, ·] : V ⌦ V ! V satisfying the three properties from above.
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A morphism of Lie algebras

' : (V1, [·, ·]1) ! (V2, [·, ·]2)

is a linear map such that ['v,'w] = ' ([v, w]). In a certain imprecise sense, these
can all be thought of as vector fields. There are two “standard” sources of Lie
algebras.

Any time we have A such that A/k is an associative algebra, we can consider
derivations of A, written Der (A). This consists of maps d : A ! A which are
k-linear and satisfy the Leibniz rule:

@ (ab) = @a · b+ a · @b

Exercise 5. Show that the composition of two derivations is not a derivation, but
the bracket of two derivations is a derivation.

Exercise 6. a. Show that Der (A) is a Lie algebra with a natural Lie bracket.
b. Check that A = C

1 (M) is a commutative algebra, and

Vect (M) = Der (C1 (M))

The other source is the following. Whenever D/k is an associative algebra, we
get a Lie algebra D, where the bracket of two elements is just

[d1, d2] = d1d2 � d2d1

Exercise 7. a. Show that D is a Lie algebra.
b. Consider D = Di↵ (M), the associative algebra of di↵erential operators.

This can be viewed as living inside End (C1 (M)). There is a natural
filtration, where Di↵0 (M) = C

1 (M). I.e. multiplying by any function
is a di↵erential operator. The elements p are characterized by satisfying
[p, f ] = 0 for any f 2 C

1 (M). Then Di↵1 (M) ◆ Di↵0 (M) which are
characterized by [p, f ] 2 Di↵0 (M) and so-on.

Then we have a map of Lie algebras

Vect (M) ! Di↵ (M)

and the image lands in Di↵1 (M). In fact Di↵1 (M) forms a Lie algebra
with quotient and sub-algebra:

0 C
1 (M) Di↵1 (M) Vect (M) 0

Check that this is all the case.

4. Relationship between associative algebras and Lie algebras

There is a pair of adjoint functors:

Liek Algk

U

Forget

where the left adjoint to F = Forget brings an algebra to the universal enveloping
algebra. This means

HomAlg (UV,A) = HomLie (V, F (A))
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Warning 1. One might hope that now it is the case that di↵erential operators are
the enveloping algebra of vector fields but this is not true in general.

Exercise 8. What is the relationship between Di↵ (M) and U (VectM).

5. Preview of relationship between Lie algebras and groups

Next time we will return to Lie groups, and in particular their relationship to Lie
algebras. Lie algebras should roughly be viewed as derivations, e.g. vector fields,
and similarly Lie groups should roughly be seen as morphisms, e.g. di↵eomor-
phisms. Then groups give us big symmetries, and vector fields give us infinitesimal
symmetries. In particular, the Lie algebra g associated to a Lie group G is somehow
a tangent plane to G at the origin.
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O�ce hours are o�cially Thursday 12:30-2 in Evans 740 or maybe Evans 814.

Midterms will be short, potentially multiple choice. Then you can probably just

drop the bad one. We are nearing the end of the basic intro part of the class, and

will soon be moving to representation theory and structure theory, so there will

likely be a midterm soon.

1. Sources of Lie algebras

Recall from last time, we defined Lie algebras, and we talked about where they

come from. Recall the sources are:

(1) Whenever you have an associative algebra A, you can consider the deriva-

tions Der (A), and this is a Lie algebra.

(2) For A an associative algebra, we can just forget the fact that it’s an algebra,

and just remember the [·, ·] structure.

Example 1. The key example of the first one is the algebra C1
(M), and then

Vect (M) = Der (C1
(M)).

Example 2. The key example of the second is A = Di↵ (M) where we just think

of this as a Lie algebra directly.

1.1. Enveloping algebras. In the case of the examples above, Vect (M) ! Di↵ (M).

One might hope that the following is the case, though it is not.

Warning 1. Di↵ (M) 6= U Vect (M)

The functor U : Lie-Alg ! k-Alg
ass

is the adjoint functor to the forgetful

functor. Explicitly, for g a Lie algebra,

Ug =

1M

n=0

g⌦n
/ (x⌦ y � y ⌦ x = [x, y])

Before modding out, this is just sums of words of the elements of g.

Remark 1. So why is the above warning true? Well g0 is just k, but the zeroth

portion of Di↵ (M) is smooth functions. So the corrected relationship is that the

sheaf of di↵erential operators is the universal enveloping algebroid of the tangent

sheaf. The sheaf of di↵erential operators is somehow a universal construction of

this sheaf of vector fields.

Date: September 4, 2018.
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2. Associating a Lie algebra to a Lie group

For G a Lie group, then TeG, the tangent space at e is a Lie algebra.

Example 3 (Meta-example). For G = Di↵eo (M), the group of di↵eomorphisms

of M , what is g = Te Di↵eo (M)? It is Vect (M). In any sense that one might

conceive of, this consists of infinitesimal di↵eomorphisms, or basically vector fields.

G consists of the symmetries of something, and the identity is a god-given symmetry,

and then we are looking for symmetries nearby. Open neighborhoods are already

too complicated, so we just want to consider the linearization.

Example 4. Let G = GL (n,C) �

V = Cn
. We won’t use it, but it just so happens

that it is acting on a vector space. So we have a map G = GL (n,C) ⇠�! Aut (V ).

So now we want to look at the Lie algebra g = gl (n,C) and understand what

the bracket is all about. GL (n,C) is open inside all n ⇥ n matrices, M (n,C) so

the tangent space at any point is also just M (n,C) = End (V ).

Exercise 1. Show that the Lie algebra structure on g = gl (n,C) is just the usual

commutator [A,B] = AB �BA.

2.1. Vector fields. Now we return to considering a general Lie group G

�

X

for some manifold X. Then we can di↵erentiate this action, i.e. we have a map

↵ : G ⇥ X ! X and we can di↵erentiate to get a map T (↵) : TG ⇥ TX ! TX.

Now we can restrict to TeG ⇥ X ! TX where this copy of X is regarded as the

zero-section of X.

Then we have a map of vector bundles A : g ⇥ X ! TX so this is a moment

where we have used the fact that we are taking the tangent space at the identity

in particular. Now we can pass to global sections, so for each x 2 X, we obtain a

linear map Ax : g ! TxX, called the infinitesimal action map at x 2 X.

All together, we obtain a linear map g ! Vect (X) which maps any vector field

v 7! ṽ such that ṽx = Axv.

Example 5. IfG consists of di↵eomorphisms, then the tangent space at the identity

consists of vector fields, so this construction gives us the identity.

The idea is that for G

�

X, we can say we are looking at a map of pairs

G ! Di↵eo (X), which is a group homomorphism, and from this, we saw TeG !
Te Di↵eo (X) = Vect (X), which will be a Lie algebra homomorphism when we

understand the Lie structure on g. So basically the goal is to find a Lie algebra

structure on g such that this map is always a Lie algebra homomorphism.

Example 6. Consider GL (1,C) = C⇥ �

V = C. The action map is ↵ : C⇥⇥C ! C
which takes ↵ (z, x) ! zx. Now we want to unwind the definitions in order to see

what this map g ! Vect (X) looks like in this case.

First of all, g = C. Now we want to understand how to di↵erentiate ↵. So for

an element v 2 g, we should get vector field on C.

Remark 2. The general construction is as follows: Consider a map F : M ! N . If

we have a point x 2 M and a vector v 2 TxM , and we want to somehow transport

v to Tf(x)N , then we take an arbitrary path � : R ! M such that the tangent

line to � at x is v, then we can map this to F (�), and take F (�)
0
(0), to get our

TF (v) 2 Tf(x)N .
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Let’s take v = @z, and a path which has v as its tangent at 1. Take � (t) = e
t
,

so this is a path from R ! G = C⇥
, such that � (0) = e, and �

0
(0) = (1, 0) = @z.

Acting by � (t) for small t gives a small motion of C.
↵ (� (t) , z) = � (t) z = e

t
z

So this is the image of the path, and we just need to di↵erentiate with respect to

t, and find ṽ = z@z.

Example 7. Consider SL (2,C) �

X = CP1
. The goal is again to calculate the

map g ! Vect
�
CP1�

. For any vector field on CP1
, we can restrict to the same

vector field on CP1 \1,

g Vect
�
CP1�

Vect
�
CP1 \ {1}

�

Recall SL (2,C) = {det g = 1}. So this is sitting inside of C4
, and the tangent space

is

sl (2,C) = {x | trx = 0} .

(The reason is, if we start out with the identity matrix, and want to add an extra

matrix up to some multiple of ✏, and maintain that the determinant is 0, we have:

det

✓✓
1 0

0 1

◆
+ ✏

✓
1 b

c d

◆◆
= det

✓
1 + ✏a ✏b

✏c 1 + ✏d

◆

= (1 + ✏a) (1� ✏d)� ✏
2
bc = 1 + ✏ (a+ d) + ✏

2
ad

so we just require that the additional matrices have trace 0.)

Now for each x 2 sl (2,C), we want some f (s) @s 2 Vect (C). So choose our

favorite basis

H =

✓
1 0

0 �1

◆
E =

✓
0 1

0 0

◆
F =

✓
0 0

1 0

◆

Now define �M (t) = e
tM

to get:

�H (t) = e
tH

=

✓
e
t

0

0 e
�t

◆
�E (t) = e

tE
=

✓
1 t

0 1

◆
�F (t) = e

tF
=

✓
1 0

t 1

◆

now we just apply these to our elements of CP1
.

�F (t)

✓
a

b

◆
=

✓
a

at+ b

◆

so it took a point s = b/a and transformed it into st = (at+ b) /a. Now we take

the derivative, and evaluate at t = 0 to get 1, so under this map

F 7! @s .

Similarly, we can calculate

�H (t)

✓
a

b

◆
=

✓
e
t
a

e
�t
b

◆

so s = b/a 7! st = e
�2t

b/a, and again we di↵erentiate, to discover that

H 7! �2s@s .
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Finally, we get

�E (t)

✓
a

b

◆
=

✓
a+ bt

b

◆

so s = b/a 7! b/ (a+ bt), and now di↵erentiating, we get �b
2
/ (a+ bt)

2
, so finally

E 7! �s
2
@s .

Let’s now consider G

�

X = G acting by left multiplication. In this case, we get

a map g ! Vect (G).

Let H

�

Y , then we can talk about Vect (Y )
H ✓ Vect (Y ) the H-invariant vector

fields.

Exercise 2. Vect (Y )
H ✓ Vect (Y ) is a Lie subalgebra.

Lemma 1. The image of this map is precisely the collection of right-invariant
vector fields Vect (G)

r.

Proof. The claim here is that g
A�! Vect (G)

r
is an isomorphism of Lie algebras.

The fact that the image is contained in the right-invariant vector fields follows from

commuting the right action with the left action.

The fact that it is an isomorphism follows from the fact that A|e = id : g ! g. ⇤
Definition 1. The Lie algebra structure on g is transported via g

⇠�! Vect (G)
r ⇢

Vect (G) which is a sub Lie-algebra.

Theorem 1. If G acts on arbitrary X, then the map g ! Vect (X) is a Lie algebra
homomorphism.
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The first midterm will be on Tuesday September 18.

1. Right-invariant vector fields

Recall that we have a functor

Lie-Gp Lie-Alg

G TeG = g = Vect (G)
r

where Vect (G)
r
is the collection of right-invariant vector fields. This means for

every morphism h : H ! G, we have a morphism T (h) : h ! g. A priori this is a

map between these things, but potentially not a morphism of Lie algebras, though

this will follow from the following.

We also have an association

LieGroupActions ; LieAlgActions

where something on the left is of the form G ! Di↵eo (X), which is then associated

to g ! Vect (X).

Example 1. Consider the right-invariant vector fields on GL (n,C). This is an

open subset of Rn2

. How do we construct right-invariant vector fields? Well we

looked at the left action of G on G, di↵erentiated it, and then this gave us these

vector fields.

Recall TeG = g = gl (n,C) = M (n,C). Now let’s take some tangent vector,

and think about extending it to a right-invariant vector field. Recall we have an

isomorphism:

Lemma 1. In this example,

g Vect (G)
r

v ṽ

⇠

Now pick a path � : R ! G, a one-parameter subgroup. This just means � is a

group homomorphism between R and G. For G = GL (n,C), take

� (t) = e
tv

= I + tv +
t
2
v
2

2
+ · · ·

In general, for v 2 g, we extend this to a right-invariant vector field ṽ 2 Vect (G)
r
.

Now recall:

Date: September 6, 2018.
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Theorem 1. There exists unique local solutions to ODEs.

In this situation, this means that given any vector field in a small enough ball, we

can find a “motion” of the space that integrates this vector field for small enough

time. I.e. vector fields integrate locally in space and time. Sometimes they integrate

globally, but then you have to worry that you might “fall” o↵ your space. So now

look for an integral curve � (check existence globally) of ṽ such that � (0) = e.

Exercise 1. Check that � extends uniquely to a 1-parameter subgroup. I.e. check

that this construction not only gives us a map (�✏, ✏) ! G, but in fact R ! G and

that it is a homomorphism. [Hint: The fact that it’s a homomorphism is almost

obvious, and then you can use this fact to get the extension.]

So in the case of GL (n,C), this is the unique such 1-parameter subgroup. So

now what we want to do is take some n⇥n matrix and get a right-invariant vector

field from it. To construct ṽ, consider � acting on the left and di↵erentiate with

respect to t. Let g 2 GL (n,C). Then we send

g 7! � (t) · g = e
tv
g

Then di↵erentiate to get

ve
tv
g + e

tv
g
0|t=0 = vg

Note that v is an n⇥n matrix, which we want to picture as a tangent vector at the

identity. So now the question is, if you stand at g, what is the n⇥ n matrix which

is telling you the value of ṽ at g, and the answer is vg. This all takes advantage of

the fact that we are working in an ambient Rn2

. In general, we can only write the

following:

ṽ|g = Rg · v
which is just the statement that it is right-invariant.

2. Right-invariant vs. left-invariant

Now we might wonder, why this is right invariant rather than left invariant.

It’s clear that G acting on the right gives a map from G to the G-equivariant

automorphisms of G, Aut
G
(G), and this map is also clearly injective. But any

such automorphism is determined by the image of the identity, which allows us to

show that this is in fact surjective as well.

In conclusion, the map g ! Vect (G) lands in the right invariant vector fields.

Exercise 2. Suppose this whole theory was developed with right actions instead

of left actions. So we sent v ! ṽ
r
, and someone else sends v 7! ṽ

l
. Write a formula

relating ṽ
r|g and ṽ

l|g.

Solution. For G = GL (n,C) we just have ṽ
r|g = vg and ṽ

l|g = gv. Then

ṽ
l|g = ĝvg�1

r

|g
So we just have to conjugate it.

Note also that ṽ
l|� = ṽ

r|� since ṽ
l|� = �·v = e

tv·v and ṽ
r|� = v·� = v·etv = e

tv·v.
So they certainly agree at the identity, but in general they will disagree elsewhere.

The point here, is that the image of R inG is abelian, since R is abelian, so anywhere

in this image, conjugation doesn’t do anything, and they agree everywhere on �.
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Shear

✓
1 1

0 1

◆

✓
1 0

0 1

◆

✓
�1 1

0 �1

◆

✓
�1 0

0 �1

◆

✓
� 0

0 �
�1

◆
Hyperbolic

Elliptic

✓
0 �1

1 0

◆

Figure 1. The cones which make up the orbits of the action of

SL (2,R) on itself under conjugation. Note that for SL (2,C), the
hyperboloid of two-sheets is not present since these matrices are

then diagonalizable.

3. Conjugation and adjoint representations

We now consider conjugation in general as an additional natural action of G on

itself.

Warning 1. Action by conjugation is neither free nor transitive.

Example 2. Consider the action of GL (n,C) on itself under conjugation. The

orbits of this action are indexed by the so-called Jordan forms with nonzero eigen-

values.

For G = SL (2,C), the picture here is as in fig. 1. The stabilizer at 1 and �1 is

just G, and then

Stab

⌧✓
1 1

0 1

◆�
=

⌧✓
1 ⇤
0 1

◆�
Stab

⌧✓
�1 1

0 �1

◆�
=

⌧✓
1 ⇤
0 1

◆�

Finally we have:

Stab

⌧✓
� 0

0 �
�1

◆�
=

⌧✓
↵ 0

0 ↵
�1

◆�
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for ↵ 2 C⇥
.

If we quotient by conjugation, then only the trace is well defined, because for

any matrix, we either get � or �
�1

under the map tr : G ! C. At any point we

see �+ �
�1

, and then there are two special points ±2, each of which somehow has

these cones living above it, so they have a sort of fuzzy piece above it corresponding

to the open piece. So this is some sort of strange non-Hausdor↵ space. The main

takeaway is that the quotient looks like a line given by the trace.

We can see that the shear matrices form a cone as follows. Notice that they

must have TrA = 2, and detA = 1. So if we write the matrix as:

A =

✓
a b

c d

◆

this means a+ d = 2 and ad� bc = 1, so d (2� d)� bc = 1. Now sending d 7! d� 1

we get (d+ 1) (d� 1) + bc = 1 or

d
2
+ bc = 0

now the quadratic form associated to this is

0

@
0 1/2 0

1/2 0 0

0 0 1

1

A .

The eigenvalues of this matrix are ±1/2 and 1, so this corresponds to the equation

1

2
x
2 � 1

2
y
2
+ z

2
= 0

which is the equation for a cone.

Now, as usual, we want to di↵erentiate this and see what sort of structures we

get. So let’s restrict TG⇥TG ! TG to G⇥TeG ! TeG where the first copy of TG

has been restricted to the zero section. This is a homomorphism Ad : G ! GL (g),
called the adjoint representation. All we’ve done here is take the conjugation action

of G on itself, and then look at what this does to tangent vectors at the identity.

Example 3. For G = GL (n,C) �

M (n,C), the adjoint action is just (g, h) 7!
ghg

�1
, and we are di↵erentiating with respect to h, and we get (g, h

0
) 7! gh

0
g
�1

.

So the adjoint action of GL (n,C) is just given by this formula.

So the first thing we get from considering the conjugation, is we get a linearization

of it, which is a conjugation of G on its Lie algebra. The following claim shows that

it doesn’t just act by any old matrices, but in fact by matrices which preserve the

Lie algebra structure:

Claim 1. G ! GL (g) acts by Lie algebra isomorphisms. I.e. [Adg v,Adg w] =

Adg ([v, w]).

Proof. Recall the left multiplication action L : G ⇥ G ! G. Now we can act on

everything by conjugation:

(g, h) gh

�
kgk

�1
, khk

�1
�

kghk
�1

L

L
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Recall that [v, w] = [ṽ, w̃] |e. Now we can act by Adg on this expression to get:

Adg [v, w] = Adg ([ṽ, w̃] |e) = Adg [ṽ, w̃] |e = [Adg ṽ,Adg w̃] |e =
h
Âdg v, Âdg w

i
|e

by right invariance. ⇤
Now we want to di↵erentiate this with respect to the first variable as well. So

instead restrict to ad : TeG⇥ TeG ! TeG, so this is a map g⇥ g ! g which maps

(v, w) 7! adv w.

Theorem 2. adv (w) = [v, w]
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The midterm will cover structure theory, and will be multiple choice. We will

continue with geometric structure theory, and next time we will move on to repre-

sentation theory of Lie algebras.

1. Adjoint representations

Recall that for every g 2 G we got the Adg map in the following way: We

know G

�

G by conjugation, and then consider the induced action G

�

TG, and

in particular the action G

�

TeG ' g which we call Ad.

Write the left action ↵ : G⇥G ! G. Now ↵ is invariant under another G-action,

in particular, the diagram

G⇥ (G⇥G) G⇥G

G⇥G G

id⇥↵

conj.⇥↵ ↵

↵

commutes. The point is, the vertical arrows are an additional invariance.

Lemma 1. For g 2 G, Adg : g ! g is a Lie algebra morphism. This means that

[Adg v,Adg w] = Adg ([v, w])

Proof. Consider Adg ([v, w]). We can rewrite this as:

Adg ([v, w]) = Adg ([ṽ, w̃]e)

= ([Adg ṽ,Adg w̃] |e)

=

⇣
Âdg (v), Âdg (w)

⌘
|e

where we have used the fact that Adg is a di↵eomorphism to get to the second

line. ⇤

Recall that if we di↵erentiate again, only this time wrt the first G, we get ad :

g⇥ g ! g. More formally,

adv (w) =
d

dt

�
Ad�(t) (w)

�
|t=0

where � is some path such that � (0) = e and �0
(0) = v. Then we have the following

theorem:

Theorem 1. adv (w) = [v, w]

Date: September 11, 2018.
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Proof. We know

[v, w] = [ṽ, w̃] |e =
✓

d

dt
L�(t) (w̃)

◆
|t=0|e

and since w̃ is right-invariant, we are done. ⇤

2. Geometric structure theory

Assume everything is finite dimensional. Recall that we have the functor:

Lie-Gp Lie-Alg

G TeG = g

Then we have the following:

Theorem 2. This functor is an equivalence when restricted to connected, simply-
connected Lie groups.

Example 1. Consider g abelian, so it is isomorphic to Rn
(or just Cn

.) Since g is

abelian, [·, ·] is just 0. Which Lie groups have this algebra? The theorem tells us

there is a unique simply connected one, namely Rn
with addition. But then there

is a whole tower of things covered by this such as
�
S1

�n
, (C⇥

)
n
,
�
Cn/Z2n

�
and

many more.

Example 2. Consider g = sl (2,C). Let’s come up all the potential Lie groups

which give rise to this algebra. Of course SL (2,C) gives rise to this, but this might

not be the unique one we are looking for if it is not simply-connected, so we are

instead looking for the universal cover of this.

What is the fundamental group of SL (2,C)? We know SL (2,C) � C2
. This has

two orbits, i.e. when v = 0 and v 6= 0. The stabilizer of the first is everything, and

Stab

✓
1

0

◆
=

⌧✓
1 u
0 1

◆�

This means

SL (2,C) / Stab ' SL (2,C) /C ' C2 \ {0}
This means ⇡1 (SL (2,C)) is the same as ⇡1 of the complement of 0 in C2

. But this

is homotopy equivalent to S3
, which is simply connected (it has trivial ⇡1) so the

unique simply connected Lie group is just SL (2,C).
But what other Lie groups might give rise to this algebra? This is really just

considering things that SL (2,C) covers. If we consider the center

Z = Z (SL (2,C)) ' Z/2 =

⌧✓
±1 0

0 ±1

◆�

and mod out by this, we get PSL (2,C) = SL (2,C) /Z which has ⇡1 ' Z/2. These
turn out to be the only two. Equivalently, h1i and Z = Z/2 are the only two

discrete normal subgroups of SL (2,C).

Exercise 1. Show PSL (2,C) = SO (3,C)
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Solution. Recall SO (3) consists of M such that MT
= M�1

and detM = 1. We

want to send any A and �A to the same B 2 SO (3).

Recall Ad : G ⇥ g ! g, so for g 2 G, Adg 2 GL (g). So apply this to G =

SL (2,C). Given A 2 SL (2,C) and v 2 sl (2,C), we send this to AvA�1 2 sl (2,C),
and sl (2,C) is 3-dimensional, so this makes AdA into a 3⇥3 matrix. So the question

is, what 3 ⇥ 3 matrices do we obtain? To find out, we consider the inner product

hv, wi = Tr (vw). So if

v =

✓
x y
z �x

◆
w =

✓
r s
t �r

◆

the inner product is

hv, wi = xr + yt+ zs+ xr

and in particular,

hv, vi = x2
+ yz + zy + x2

= 2
�
x2

+ yz
�

which is a nondegenerate quadratic form. But there is only one nondegenerate

quadratic form on a complex vector space, i.e. in a di↵erent basis, this is just the

sum of the squares. Now this inner product is clearly invariant under the SL (2,C)
action, since

Tr
�
AvA�1AwA�1

�
= Tr

�
AvwA�1

�
= Tr (vw)

so the matrices preserve this quadratic form. So these 3 ⇥ 3 matrices land in

the orthogonal group of this quadratic form, now we just have to check it has

determinant 1. To do this, we consider the following basis for sl (2,C):

v1 =

✓
1 0

0 �1

◆
v2 =

✓
0 1

0 0

◆
v3 =

✓
0 0

1 0

◆

Now we calculate the action of some arbitrary A 2 SL (2,C) as

Av1A
�1

=

✓
a b
c d

◆✓
1 0

0 �1

◆✓
d �b
�c a

◆

=

✓
ad+ bc �2ab
2dc � (ad+ bc)

◆

Completing the same calculation for the other basis elements, we can express AdA

as the following matrix:

(1)

0

@
ad+ bc �ac bd
�2ab a2 �b2

2dc �c2 d2

1

A

then we can calculate:

(2) (ad+ bc)
�
a2d2 � b2c2

�
+ ac

�
�2abd2 + 2b2cd

�
+ bd

�
2abc2 � 2a2cd

�

= a3d3 � ab2c2d+ a2bcd2 � b3c3 � 2a2bcd2 + 2ab2c2d+ 2ab2c2d� 2a2bcd2

= (ad� bc)3 = 1

since A 2 SL (2,C).
This means the image lands in SO (3,C), where this is the orthogonal group with

respect to the above inner product, which is fine since all such inner products are

the same. So now we just need to show the kernel of this map is the center. But
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from the matrix in (1) we can see this directly, since if A is in the kernel, a = d = ±1

and therefore c = d = 0 as desired.

Example 3. What about g = sl (2,R). If we try the same game as in the complex

case, we find that SL (2,R) / Stab ' R2 \ {0} is the orbit, which is homotopy

equivalent to S1
, which has ⇡1 = Z. The universal cover, ^SL (2,R), has a map to

SL (2,R) with fibers Z.

Exercise 2. If we have a group which is not simply-connected, then the universal

cover is naturally a Lie group.

Solution. The universal cover is space of homotopy classes of paths from a base

point. Then we can multiply two paths pointwise to get a group, and the projection

is homomorphism.

Warning 1. This universal cover does not have any finite dimensional representa-

tions, so it cannot be viewed as consisting of matrices.

We have just been assuming this so far, but for G = GL (n,C), the fact that

adv (w) = [v, w] means that [ṽ, w̃] = vw � wv, so the bracket on gl (n,C) is truly

the commutator of the matrices since

d

dt

⇣
Ad�(t) w� (t)

�1
⌘
= vw + w (�v)

Theorem 3 (Ado). Any finite dimensional Lie algebra is a subalgebra of gl (n,R)
for some n.

Partial proof. Assume Z (g) = h0i, so nothing has bracket 0 with everything. We

know ad : g ⇥ g ! g, which we can view as a map ad : g ! End (g) = gl (n,R)
where n = dim g. Since the center is trivial, the kernel is trivial, so this is an

injection. ⇤
2.1. Killing form. The Killing form is an inner product g⇥ g ! C (or R) where
we take

hv, wik = Tr (adv adw)

which is a bilinear pairing.

Warning 2. This is not always nondegenerate.

For example, if g is abelian, adv and adw are 0. Note that all of my matrices

preserve this inner product. Now write Qk (v) = hv, vi, and then Ad : G ! O(Qk)

and ad : g ! o (Qk).
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Recall last time we were about to prove:1

Theorem 1. The following functor

Lie-Gp Lie-Alg

G g

is an equivalence when restricted to connected, simply-connected groups.

Why is this a functor? I.e. why does ' : H ! G induce a Lie-algebra homomor-
phism d' : h ! g. Consider H

�
G on the left via '. Then

Vectr (H) Vect (G)

Vectr (G)

Definition 1. Let H, G be Lie groups. Then they are said to be locally isomorphic
if there is some neighborhood UH ⇢ G of e 2 H and some neighborhood UG ⇢ G
of e 2 G and a di↵eomorphism ' : UH ! UG mapping e 7! e such that for any
h1, h2 2 UH , h1h2 2 UH i↵ ' (h1)' (h2) 2 UG and in this case,

' (h1, h2) = ' (h1)' (h2)

1. Examples

We will consider

Example 1. First of all Cn is the universal cover of (C⇥)
n
= Cn/Zn and so they

are locally isomorphic.

Define Spin (n,C) to be the double cover of SO (n,C). For n > 2, Spin (n,C) is
simply connected, so it is also the universal cover of SO (n,C).

Example 2. SO (1,C) is a single point, so Spin (1) ⇠= Z/2Z.

Example 3. SO (2,C) ⇠= C⇥, so Spin (2) = C⇥ as a double cover.

Example 4. Spin (3,C) = SL (2,C) and SO (3,C) are locally isomorphic. Recall
we have the short exact sequence

Z/2 ! SL (2,C) ! SO (3,C)

Date: September 13, 2018.

1
According to professor Nadler, we will at least prove this by December. . .

1
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Example 5. We seek to show that

Spin (4,C) = fSO (4,C) = SL (2,C)⇥ SL (2,C)

The first thing to find is dimSO (n,C), which is of course dim so (n,C). Now
di↵erentiating AAT = I we get

X
�
AT |t=0

�
+AXT |t=0 = 0

so X +XT = 0. This means the dimension of this is n (n� 1) /2, so it makes sense
that Spin (4,C) = SL (2,C) ⇥ SL (2,C) To see this identification, we can consider
SL (2,C)⇥SL (2,C) �

M2⇥2 (C) ' C4. Then we can take Q = det : M2⇥2 (C) ! C
to be our quadratic form.

Notice that ^SO (4,C) is a Z/2 cover of SL (4,C), but this still has nontrivial
center, so this is a Z/2 cover of some sort of PSO (4,C) which turns out to be.
SO (3,C) ⇥ SO (3,C) As it turns out, we can do the other possible Z/2 quotients
to get the diagram:

SL (2,C)⇥ SL (2,C)

SO (3,C)⇥ SL (2,C) SO (4,C) SO (3,C)⇥ SL (2,C)

SO (3,C)⇥ SO (3,C)

This is the Galois covering diagram for the Galois group Z/2.

Example 6. For n = 5 we have Spin (5,C) = Sp (4,C) and the diagram is just:

Sp (4)

SO (5,C)

Example 7. For n = 6 we have Spin (6,C) = SL (4,C). This has the diagram:

SL (4)

SO (6)

PSO (6) = PSL (4,C)

where the arrows represent quotienting by Z/2, even though Z (SL (4)) = Z/4. So
we are quotienting by subgroups of the center to move down this tower.

This is the end of the spin group coincidences.

2. Lie’s fundamental theorems

Theorem 2. For H and G locally isomorphic, h and g are locally isomorphic.

Theorem 3. If g and h are locally isomorphic, then any Lie groups G and H which
give rise to them are locally isomorphic, so they have the same universal cover.

Theorem 4. Every g is the Lie algebra of some G.
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Shear

✓
1 1
0 1

◆

✓
1 0
0 1

◆

✓
�1 1
0 �1

◆

✓
�1 0
0 �1

◆

✓
� 0
0 ��1

◆
Hyperbolic

Elliptic

✓
0 �1
1 0

◆

Figure 1. The cones which make up the orbits of the action of
SL (2,R) on itself under conjugation. Note that for SL (2,C), the
hyperboloid of two-sheets is not present since these matrices are
then diagonalizable.

Proof. Recall Ado’s theorem says that any finite dimensional Lie algebra is a sub-
algebra of gl (n,R) for some n. I.e. it has a faithful representation. Note that if
Z (g) = h0i, then ad : g ,! GL (g)

Take G ✓ GL (n,R) to be generated by all 1-parameter subgroups generated by
� (t) : R ! G with �0 (0) 2 g ✓ gl (n,R).

Then there are lots of things to check.

Exercise 1. Not every element of, for example SL (2,R), is in the image of some
1-parameter subgroup.

Recall this cone picture from fig. 1 Recall � (t) = etv, then we can take v 2
sl (2,R) and put it in Jordan form so we get matrices of the types:

✓
0 0
0 0

◆ ✓
a 0
0 �a

◆ ✓
0 1
0 0

◆ ✓
0 �b
b 0

◆
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for a 6= �a and b 6= 0. Now we go and write the exponentials of these things, and
we get for example

exp t

✓
0 �1
1 0

◆
=

✓
ct �st
st ct

◆

so we can get the negative identity, but we can’t get the negative shears or negative
hyperbolic elements.

Anyway, this is a sketch of a proof of the third theorem, or the essential surjec-
tivity of the theorem from the beginning. ⇤

For any Lie group G, we have the exponential map exp : g ! G defined as the
map such that if exp (v) = � (1) where � (T ) : R ! G, then � (0) = v.

Note for G ✓ GL (n,R), exp is the exponential we already know.

Exercise 2. Take the di↵erential T (exp) : Tg ! TG, and restrict this to {0}⇥ g,
which gives us a map g ! TeG. Show this is the identity.

Lemma 1. The image of one-parameter subgroups contains an open neighborhood
of e.

Proof. By the exercise, exp : g ! G is a local di↵eomorphism from a neighborhood
of 0 to a neighborhood of the identity. ⇤
Proof of the theorem. It remains to show the bijection on maps. We first show it is
surjective. Consider a Lie algebra map ' : h ! g and then we want a map H ! G
assuming H is simply connected.

Now we don’t want to construct the actual map, but rather the graph of the
map. We know a lot about subgroups, so we want to embed this problem in the
context of constructing subgroups.

Consider the graph of ' as �' ✓ h ⇥ g. Since ' is a homomorphism, we can
check that �' is a subalgebra, and now we can generate a subgroup of H⇥G whose
Lie algebra will be this graph. Then this subgroup will be the graph of the desired
map of Lie groups.

Then this is not a cover, since G is simply connected, so it’s really a map, not a
correspondence. ⇤
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The next midterm will probably be take home.

1. The last midterm question

Recall if we have a Lie group acting G
�

X we get an infinitesimal action, which
is a map g ! Vect (X) which is a map of Lie algebras, so it is linear. The moment
map is e↵ectively the transpose to this map:

µ : T ⇤
X ! g⇤

which is somehow no more or less information than g ! Vect (X). Explicitly, for
x 2 X and ⇠ 2 T

⇤
xX,

µ (x, ⇠) (v) = ⇠ (evx)

for v 2 g.

Exercise 1. We know dµ is a g⇤ valued 1-form on T
⇤
X. Then !

�1 (dµ) is now a
g⇤-valued vector field on T

⇤
X, and now this can be evaluated at v 2 g, so we get

bv = !
�1 (dµ) (v) which is now a vector field on T

⇤
X. Show that this vector field

is tangent to the zero-section, and gives us ṽ. I.e. show bv|X = ev. This is somehow
recovering the infinitesimal action from the moment map and symplectic structure.

So now we want to calculate this explicitly in the examples from the midterm.

Example 1. Let GL (1,R) = R⇥ � R by r · x = rx. This action generates the
vector field ṽ = x@x, so µ (x, ⇠) = ⇠ (x@x) = x⇠.

Example 2. Let GL (1,R) = R⇥ � R2 by r · (x1, x2) =
�
rx1, r

�1
x2

�
. Then the

vector field is x1@x1 � x2@x2 . The moment map is just µ = x1⇠1 � x2⇠2.

Example 3. Now let G

�

X = G. In this case T
⇤
X = T

⇤
G is parallelizable, so

T
⇤
G = G ⇥ g, since G ⇥ g

⇠�! TG is just right-invariant vector fields, so it’s just
mapping (g, v) 7! (g, ṽg). This means function µ : T ⇤

G ! g⇤ are just functions
G⇥ g⇤ ! g⇤.

If the action is trivial, the vector field is 0. This means µ = 0.
If the action is left multiplication, then µl (g, ⇠) = ⇠.
If the action is right multiplication, then

µr (g, ⇠) (v) = µl (g, ⇠) (Adg v) = Adg (⇠) (v)

Date: September 20, 2018.

1
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2. Lie algebras

2.1. Ignoring groups. We have now developed enough theory to see that the
theory of simply connected Lie groups is the same theory as finite dimensional lie
algebras. Therefore we will now ignore Lie groups and focus on Lie algebras. Not
because we don’t care about them, but because we understand they are equivalent.

Professor Nadler doesn’t know how to answer the following:

Exercise 2. For g a Lie algebra, then we can associate it to G a connected, simply
connected Lie group. What is the center of G?

Solution. This solution doesn’t make sense until after lecture 13 at the earliest.
We claim the following:

Claim 1. The center of the simply connected compact group G associated to a Lie
algebra g can be identified with the dual of the finite group ⇤/ZR where ⇤ is the
weight lattice and ZR is the root lattice.

If ⇤ = Hom(H,C⇥) is the weight lattice and ZR is the root lattice, which is given
by Z-linear combinations of the nonzero eigenvalues of the adjoint representation
ad, then we can write down the dual of these things to get:

⇤⇤ = {X 2 h | 8L 2 ⇤, LX 2 Z}
(ZR)⇤ = {X 2 h | 8↵ 2 ZR,↵X 2 Z}

now under the exponential map, (ZR)⇤ maps onto the center of H, which is the
center of G, so we just need to quotient out by the kernel of the exponential, but
this is exactly ⇤⇤.

Recall this is important because if G ! G/� is some covering, then � ✓ Z (G).
So knowing the center lets us calculate the types of covers and therefore all of the
groups G which might give rise to g.

2.2. Fields. From now on we will focus on representation theory of Lie algebras.
We can consider Lie algebras over any field.1 We will usually let this be C, but first
we make some comments about the general setting. For any g/k, we can pass to
g⌦k k/k where we have extended all of the bracket operations linearly.

First note that in general this operation somehow loses information. That is,
many di↵erent g/k might go to the same g⌦k k/k.

Example 4. Consider sl (2,R) ! sl (2,C), and so (3,R) ! so (3,C). We already
saw that sl (2,C) ' so (3,C). But the point is that sl (2,R) 6' so (3,R). One way
to see this, is that the universal cover of SL (2,R) is contractible and noncompact.
Whereas the universal cover of SO (3,R) is Spin (3), which is compact.

In what follows, we will start with g/C finite dimensional. If time permits, one
thing we could do is talk about what happens when k is not algebraically closed.

3. Rough classification

We won’t worry too much about the details of these definitions or their rela-
tionship right now. We’re more worried about getting a rough idea of what we are
looking at.2 Recall Ado’s theorem, which says that g ,! gl (n,C) for some n. The

1
Or rings, but we won’t worry too much about this.

2
Professor Nadler compared this to going to the Zoo. It is nice to have some idea what the

big cat house is and what the reptile house is.
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point being, that these always somehow come as matrices. This will be a theme
throughout.

3.1. Abelian Lie algebras. First we might study g abelian, so [v, w] = 0 for all
v, w 2 g. Therefore these are just complex vector spaces of some finite dimension.

Example 5. The classic example of this is just diagonal matrices Cn ✓ gl (n,C).

For arbitrary g, we can always associate a certain abelian Lie algebra to g, called
its center which is defined as

{v 2 g | 8w 2 g, [v, w] = 0}

Example 6. If we consider g = gl (n,C), then the center is z (g) = {zIn | z 2 C}.

3.2. Nilpotent Lie algebras. For any g we can define the commutator subalgebra
[g, g] which consists of all linear combinations of commutators of elements of g. Then
we can continue to take the commutator of this object with g to get a series:

[[g, g] , g] [[[g, g] , g] , g] · · ·

If this process ever reaches 0, we say g is nilpotent.

Example 7. The classic example is strictly upper triangular n⇥n matrices written
n (n,C). If we take the commutator, we lose the super diagonal, and then each
commutator after that we lose another diagonal.

Theorem 1. If g is nilpotent, then g ✓ n (n,C) for some n.

Fact 1. All subalgebras of nilpotent Lie algebras are nilpotent.

3.3. Solvable Lie algebras. There are many equivalent definitions for solvable
Lie algebras, but we define this to be a Lie algebra g such that [g, g] is nilpotent.
This doesn’t mean g is nilpotent, since this condition just says that:

[[g, g] , [g, g]] [[[g, g] , [g, g]] , [g, g]] · · ·

eventually reaches 0.

Example 8. The classic example of a solvable Lie algebra is b (n,C) consisting of
upper triangular matrices. Note that the commutator subalgebra [b, b] of course
yields strictly upper triangular matrices n, which we already saw were nilpotent.

Theorem 2. Any solvable Lie algebra g is contained g ✓ b (n,C) for some n.

3.4. Simple. There are many formulations of simple Lie algebras, but one is that
g is not abelian, and has no proper non-zero ideals. The non-abelian condition is
basically just to omit C.

Example 9. The classic example is sl (n,C). Note that gl (n,C) is not simple,
since this looks like sl (n,C)� C, and therefore has two non-zero proper ideals.

Theorem 3. If g is simple, it somehow sits inside sl (n,C).
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3.5. Semisimple. g is semi-simple if it is a direct sum of simple Lie algebras.

Example 10. The classic example is
M

i

sl (ni,C)
X

i

ni = n

so this is just sort of n⇥ n block diagonal matrices where each block has trace 0.

Fact 2. g is semi-simple i↵ the radical3, which is the maximal solvable ideal,
rad (g) = h0i.

Note that this also means semisimple Lie algebras have no center.

3.6. Reductive. The idea here is that g is reductive if it is the direct sum of a
semi-simple Lie algebra and an abelian Lie algebra:

g = gss � z .

This abelian Lie algebra will of course also be the center of g.

Fact 3. g is reductive i↵ the radical rad (g) = z is just the center.

Example 11. A classic example is gl (n,C). In some sense the reason we define
this is, well, to include this, and also to contain

lM

i=1

gl (ni,C)

which consists of block matrices with no conditions on the blocks

Proposition 1. This contains abelian Lie algebras as well as semi-simple Lie al-
gebras.

Fact 4. The sum of any two nilpotent ideals is a nilpotent ideal.

Example 12. One might be worried about strictly upper triangular matrices, and
strictly lower triangular matrices. So we can add these and take their span, but
why is this not violating that the sum of nilpotent Lie ideals is a nilpotent Lie
ideal? Neither of these are nilpotent ideals. They are somehow nilpotent, but not
normal.

3.7. Containments. Note that all abelian Lie algebras are trivially nilpotent, but
we also have that all nilpotent Lie algebras are solvable. Also note that trivially all
simple Lie algebras are semisimple, and all semisimple Lie algebras are reductive.
So being abelian and being simple are somehow two forms of “good” behavior that
are just being generalized to get the other four types. In fact we have the following:

Lemma 1. The intersection of semi-simple and solvable Lie algebras is empty.

Proof. Let g be semi-simple. Then it must be the direct sum of some simple Lie
algebras gi. It follows from linearity of the bracket, that

[g, g] =
M

i

[gi, gi]

but since the gi are simple, they cannot have nonzero proper ideals, so the [gi, gi]
have to be trivial or the whole algebra, but if they were trivial then gi would be
abelian, which is also not allowed. Therefore [gi, gi] = gi so [g, g] = g which prevents
[g, g] from being nilpotent, and therefore prevents g from being solvable. ⇤

3
This is also called the sol-radical, and is written S (g).
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Corollary 1. The intersection of reductive and solvable Lie algebras consists of all
abelian Lie algebras.

Along a similar vein, we have the Levi decomposition, which says that the fol-
lowing sequence is split-exact:

0 ! rad (g) ! g ! gss ! 0

This sits in contrast with the following sequence which is always exact, but not
necessarily split exact:

0 ! nil (g) ! g ! gred ! 0

where nil (g) is the nilradical of g (the maximal nilpotent ideal) and gred is some
reductive Lie algebra.

Proposition 2. If nilg 6✓ radg then g is solvable.

Proof. Take nilg� radg, this is solvable and strictly contains nilg so it must be the
whole thing and therefore must be solvable. ⇤

4. Classification by dimension

We will classify one and two dimensional Lie algebras, and then we will focus on
simple Lie algebras. In dimension 1, we have abelian C, but every Lie algebra of
dimension 1 is abelian.

In dimension 2, this can just be written g = C hx, yi. By definition, we know
[x, x] = [y, y] = 0, and then we want to consider [x, y] = � [y, x] = ax+ by = z.

[x, ax+ by] = b (ax+ by) [y, ax+ by] = �a (ax+ by)

which means C hax+ byi ✓ g is a Lie ideal, so either a = b = 0 or one of a, b 6= 0.
In the first case we just have g = C�g0, but then g0 is of dimension 1, which means
g is abelian. Otherwise this is just some line, and WLOG we let b 6= 0. Now for
g = C hx, zi we get [x, z] = bz so setting x

0 = x/b, we get [x0
, z] = z. In other

words, any two-dimensional Lie algebra is either abelian, or has a basis {x0
, z} such

that [x0
, z] = z. As it turns out, this case is just:

⌧✓
s u

0 �s

◆
| s, u 2 C

�

and in particular,

z =

✓
0 1
0 0

◆
x
0 =

✓
1/2 0
0 �1/2

◆

In three dimensions we encounter our first simple Lie algebra, which is sl (2,C).
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1. Comments and corrections from last time

Recall semi-simple Lie algebras are direct sums of simple Lie algebras. Equiva-
lently, rad (g), the sol-radical (maximal solvable ideal) is 0. Similarly g is reductive
i↵ rad (g) = z is equal to its center.

We also said something about a Lie algebra being split by its center, which is
not true in general. To see this, consider the following example:

Example 1. Let g = C hx, y,i such that [x, y] = , [x,] = [y,] = 0. Clearly
z = C hi, but there is no complement to the center which is closed under the
bracket.

2. Representations of sl (2,C)

2.1. Motivation. Recall we found that all dimension 1 Lie algebras are abelian,
or just C, and for dimension 2, we have either g ⇠= C2, or

g ⇠=
⌧✓

a u

0 �a

◆
| a, u 2 C

�

Now we move on to three dimensions.
We could play a similar game in dimension 3, but the interesting thing about 3

dimensions is that we get our first simple Lie algebra: sl (2,C).

2.2. Preliminaries. We will think of sl (2,C) as having the following basis:

H =

✓
1 0
0 �1

◆
X =

✓
0 1
0 0

◆
Y =

✓
0 0
1 0

◆

where the brackets are:

[H,X] = 2X [H,Y ] = 2Y [X,Y ] = H

Exercise 1. Check these by hand.

Note sl (2,C) by definition comes as 2 ⇥ 2 traceless matrices. Our generic goal
here is to classify the matrix representations of Lie algebras such as sl (2,C).

Recall:

Definition 1. A representation of a Lie algebra g is a Lie algebra map ⇢ : g !
gl (V ) for a vector space V/C. Recall gl (V ) = End (V ).

We will write the category of such representations as Rep (g). This is an abelian
category, which basically means we can do all of our friendly vector space operations
to these things.

Date: September 25, 2018.

1
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Example 2. We always have the trivial one which is just V = C 1-dimensional
and ⇢ the zero map.

Example 3. We also always have the adjoint representation where V = g, and
⇢ = ad.

We will focus on the theory of finite dimensional representations, the category of
which we write as Repfd (g). Note that this just means dimV is finite. This doesn’t
mean infinite dimensional ones aren’t worth considering, but they have their own
beautiful1 story.

2.3. Producing some representations. We could start deductively, but we will
instead start with some examples, and then see why we happen to end up with
everything.

Example 4. Let V0 = C be the trivial representation, so ⇢0 = 0. Let V1 = C2,
and ⇢1 be the inclusion sl (2,C) ,! gl (2,C).

Now we will “generate” more representations using linear algebra. One thing
we can always do, is take direct sums of representations. We will write (V1, ⇢1) �
(V2, ⇢2) = (V1 � V2, ⇢1 � ⇢2) where ⇢1�⇢2 acts via block matrices. This isn’t really
so interesting though.

We can also take the tensor product, which is very very interesting.2

(V1, ⇢1)⌦ (V2, ⇢2) = (V1 ⌦ V2, ⇢1 ⌦ ⇢2)

The definition of this map is as follows:

⇢1 ⌦ ⇢2 (x) = ⇢1 (x)⌦ idV2 + idV1 ⌦⇢2 (x)

This definition e↵ectively results from the Leibniz rule for di↵erentiating the natural
Lie group action on the tensor product. In particular, if we replace x with some
� (t), we get

⇢1 ⌦ ⇢2 (� (t)) (v1 ⌦ v2) = ⇢1 (� (t)) v1 ⌦ ⇢2 (� (t)) v2

and di↵erentiating gives us the above definition.
Now let’s calculate some tensor products.

Exercise 2. Tensoring with the trivial representation is the identity functor on
Rep.

Let’s tensor the standard representation (V1, ⇢1) with itself. First let V1 =
C he1, e2i where ei is the usual basis (1, 0) (0, 1). Then

V1 ⌦ V1 = C he1 ⌦ e1, e1 ⌦ e2, e2 ⌦ e1, e2 ⌦ e2i .

Now we calculate the action:

H (e1 ⌦ e1) = (He1)⌦ e1 + e1 ⌦ (He1) = e1 ⌦ e1 + e1 ⌦ e1 = 2 (e1 ⌦ e1)

and similarly:

H (e2 ⌦ e2) = �2 (e2 ⌦ e2) H (e1 ⌦ e2) = H (e2 ⌦ e1) = 0

1
And combinatorially complicated.

2
Professor Nadler says that this if we remember only one thing, this should maybe be it.
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Now since X annihilates e1, we can calculate

X (e1 ⌦ e1) = 0 X (e1 ⌦ e2) = e1 ⌦ e1

X (e2 ⌦ e1) = e1 ⌦ e1 X (e2 ⌦ e2) = e1 ⌦ e2 + e2 ⌦ e1

and finally for Y , we have

Y (e1 ⌦ e1) = e2 ⌦ e1 + e1 ⌦ e2 Y (e1 ⌦ e2) = e2 ⌦ e2

Y (e2 ⌦ e1) = e2 ⌦ e2 Y (e2 ⌦ e2) = 0

If we order our basis as follows:

e1 ⌦ e1 e1 ⌦ e2 e2 ⌦ e1 e2 ⌦ e2

we can explicitly write:

H =

0

BB@

2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 �2

1

CCA X =

0

BB@

0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0

1

CCA Y =

0

BB@

0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0

1

CCA

Now we want to see if V1 ⌦ V1 has any nontrivial proper subrepresentation. We
can see that:

C he1 ⌦ e1, e2 ⌦ e2, e1 ⌦ e2 + e2 ⌦ e1i = Sym2 (V1)

is such a subrepresentation.

Remark 1. Recall that:

Sym2 (V ) := V ⌦ V/ (v ⌦ w � w ⌦ v)

for any vector space V . In general this is defined as:

Symn (V ) = V
⌦n

/ (· · ·⌦ vi ⌦ vi+1 ⌦ · · ·� · · ·⌦ vi+1 ⌦ vi ⌦ · · · )

Does Sym2 (V1) have a complement? I.e. the following sequence is exact, but is
it split?

0 ! Sym2 (V1) ! V1 ⌦ V1 ! V1 ⌦ V1/ Sym
2 (V1) ! 0

Remark 2. Recall that (over C) we always have the following splitting:

(1) V
⌦2 = Sym2 (V )� ^2

V

which consists of the symmetric tensors, and the skew-symmetric tensors.

Exercise 3. Show that the splitting in (1) respects the bracket structure for any V .

Solution. Take an arbitrary g representation (V, ⇢) and consider the representation�
V

⌦2
, ⇢

⌦2
�
. First consider v ⌦ w 2 Sym2

V . For any X 2 g, we have:

(⇢⌦ ⇢) (X) (v ⌦ w) = ⇢ (v)⌦ w + v ⌦ ⇢ (w)

(⇢⌦ ⇢) (X) (w ⌦ v) = ⇢ (w)⌦ v + w ⌦ ⇢ (v)

But since v ⌦ w = w ⌦ v, these are actually equal, so this is in Sym2
V as well.

E↵ectively the same argument holds for ^2
V by linearity.
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So this does indeed have a complement, and this gives us another subalgebra

^2 (V ) = C he1 ⌦ e2 � e2 ⌦ e1i

Now the question is, do we already know these by another name?
We know Sym2 (V1) is 3-dimensional, and ^2 (V1) is 1-dimensional. As it turns

out, we can check manually, that ^2 (V1) = V0 is the trivial representation, but we
also have the following:

Exercise 4. Any 1-dimensional representation of a semi-simple Lie algebra is triv-
ial.

Solution. Consider the case of a simple Lie algebra. The kernel of ⇢ must contain
the bracket, but if g is simple, [g, g] = g, so ⇢ must be trivial. But for semi-simple,
we also have [g, g] = g so it holds for this case as well.

Now notice that Sym2 (V1) is just the adjoint representation. In fact, we can
write down an isomorphism explicitly:

H 7! � (e1 ⌦ e2 + e2 ⌦ e1) X 7! e1 ⌦ e1 Y 7! �e2 ⌦ e2

Now we just have to check this map respects the action of the basis elements H, X,
and Y . This map clearly respects the H action since the eigenvalues match. For
the X action we can calculate:

adX X = 0 = X (�e1 ⌦ e1)

adX Y = H 7! � (e1 ⌦ e2 � e2 ⌦ e1) = X (�e2 ⌦ e2)

adX H = �2X 7! �2e1 ⌦ e1 = X (� (e1 ⌦ e2 + e2 ⌦ e1))

Finally, we have to check the action of Y :

adY (Y ) = 0 = Y (�e2 ⌦ e2)

adY (X) = � adX (Y ) = �H 7! e2 ⌦ e2 + e1 ⌦ e2 = Y (e1 ⌦ e1)

adY (H) = � adH (Y ) = 2Y 7! �2e2 ⌦ e2 = Y (� (e1 ⌦ e2 + e2 ⌦ e1))

So this does indeed preserve the action of the basis of sl (2,C).

2.4. General story.

Definition 2. A semi-simple category is a category such that all objects are a
direct sum of irreducible objects.

Here irreducible means there are no nontrivial proper subrepresentations.

Theorem 1. The category of finite dimensional representations, Repfd (sl (2,C)),
is a semi-simple category. The irreducible representations are all of the form Vn =
Symn (V1) for n 2 N.

Note that V0 is trivial, V1 is standard, V2 is adjoint, and the rest don’t have
names.

Lemma 1 (Schur). Let V1 and V2 be irreducible representations of some Lie alge-
bras g, then

HomRep(g) (V1, V2) =

(
h0i V1 6⇠= V2

C V1
⇠= V2
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Exercise 5. Prove this. This doesn’t have much to do with Lie algebras and is
more related to abelian categories.

Remark 3. Some aspects of this theorem generalize, for example Repfd (g) is a
semisimple category i↵ g is semisimple.

We now explain some structure we will use in the proof next time. Our strategy
for understanding all representations, is to first hope and pray it is abelian, and if
not we can just look at the diagonals and build up from there. Accordingly we first
focus on a subalgebra h = C hHi ✓ sl (2,C). This is a 1-dimensional abelian Lie
algebra, and

Repfd (h) = C [H] -Modfd

so every such representation is just a choice of a vector space, and a choice of
endomorphism H

�

V .
Recall the classification of such things uses Jordan forms, so block matrices with

a generalized eigenvalue along the diagonal, and 1 along the super diagonal. We can
picture this as a complex plane, where we have attached a generalized eigenspace
at each �i:

V =
M

�i

V�i

Next time, we will take sl (2,C) and see how the other operators interact with this
picture.
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1. Representations of sl (2,C)

1.1. Motivation. We might wonder if we have a presentation of an algebra as
matrices, why we care about additional representations? For example, we have a
standard representation of sl (2,C), so why do we care about anything else?

The point is, this isn’t all about sl (2,C). Of course we do understand sl (2,C),
but what we really want to understand is geometric representations coming from
actions of sl (2,C). So we really want to develop Lie groups as a tool rather than
something to be studied.

Example 1. Let X ✓ CPn be a smooth projective variety over C. One of the most
important invariants we can associate to X is the cohomology H

⇤ (X,C), which
is a vector space which has something to do with X. Then we have the following
theorem:

Theorem 1 (Hard Lefschetz). H
⇤ (X,C) is naturally an sl (2,C) representation.

1.2. Classification. Recall we were about to prove the following last time:

Theorem 2. Repfd (sl (2,C)) is semisimple, and the irreducibles are

Vn = Symn (V1)

where V1 is the standard representation.

Proof. Inside sl (2,C) = g, consider the subalgebra h = C hHi ✓ g. This is a one-
dimensional abelian subalgebra.1 Finite dimensional representations of h are the
same as finite dimensional vector spaces with an endomorphism:

Repfd (h) = hH �

V |H 2 Ext (V )i ' C [H] -Mod

Every time you see a module over a polynomial algebra, you should think of the
eigenline. So think of C as the eigenline of H. Then

V =
M

V�i

Now what can we say about representations of h that come from g? This is
not sort of mathematically canonical, but our strategy will be to consider the real
direction as special. So project the eigenline to R, which is of course ordered, which
will allow us to analyze this picture from right to left.

Date: September 27, 2018.

1
In particular it is maximal, which makes it a Cartan subalgebra by definition. We will be

seeing these later.

1
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Definition 1. We will call the eigenvalues of an h representation the weights. The
highest weight will be the weight with real part � the others. Call any vector in the
eigenspace V�i of the highest weight �i a highest weight vector. A general v 2 V� is
said to be of weight �.

Now bring X and Y into the picture. We now make a fundamental observation.
Suppose v 2 V is of weight �. Let’s apply X and Y to v. The weight of X · v is
just the eigenvalue of X · v under the action of H. But we can write:

HXv = XHv + [H,X] v = XHv + 2Xv

If Hv = �v, i.e. v is an eigenvector, then

HXv = X�v + 2Xv = (2 + �)Xv

so it just shifted the eigenvalue by 2. Similarly, Y shifts the eigenvalue by �2.
Now we have to make sure nothing goes wrong when we act X and Y on the

generalized eigenvectors.

Exercise 1. Show that if (H � �I)n V = 0, then

(H � (�+ 2) I)n Xv = 0

and similarly for Y .

Solution. Proceed by induction. So suppose (H � �I)n�1
Xv = 0. Then we can

write:

(H � �I)n Xv = (H � �I)n�1 (HXv � �IXv)

= (H � �I)n�1 ((2 + �)Xv � �Xv)

= 2 (H � �I)n�1
Xv = 0

as desired.

So in conclusion, X : V� ! V�+2 and Y : V� ! V��2.
Now we want to use this to find the irreducibles. Suppose V is a finite dimen-

sional irreducible sl (2,C) representation. The first step is to find a highest weight
�hw, and choose some eigenvector vhw 2 V�hw .

Remark 1. This exists, because of the following. When you look at a Jordan block,
the first vector is an eigenvector. So it doesn’t matter if �hw yields an eigenspace
or a generalized eigenspace, since there will still be an eigenvector either way.

If H was the only operator, this would be irreducible since Hvhw = �hwvhw.
But now we have X and Y as well. Since �hw is the highest weight2, Xvhw = 0.
Now start applying Y vhw to get something in V�hw�2, and continue applying Y . Of
course since V is finite dimensional, this will eventually terminate.

Claim 1. The vectors

C
⌦
vhw, Y vhw, Y

2
vhw, · · ·

↵
✓ V

comprise an irreducible representation. In particular, if V is irreducible, then this
is an equality.

2
Professor Nadler says you should be yelling highest weight in your sleep.
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Proof. The first thing this is saying is that these vectors span a subspace of the
representation which is invariant under the operators. It is clear that H and Y

preserve this so we need to show X preserves it. Of course Xvhw = 0, and

XY vhw =⇠⇠⇠⇠Y Xvhw + [X,Y ] vhw = Hvhw = �hwvhw

which is in this subspace.

Exercise 2. Iterate this process.

Solution. Proceed by induction. So suppose XY
n�1

vhw 2
⌦
Y

i
vhw

↵
. Then we can

write:

XY
n
vhw = Y XY

n�1
vhw + [X,Y ]Y n�1

vhw

= Y XY
n�1

vhw +HY
n�1

vhw 2 C
⌦
Y

i
vhw

↵

as desired.

It is clear that this is irreducible, because if you defined any sort of proper
nontrivial subspace it would not be closed under the action of Y . ⇤

Next we will analyse the possible weight spaces. To do this, we will introduce
universal highest weight modules.3

Definition 2. A Verma module I� of highest weight � is

I� = U (sl (2,C))⌦U(b) C�

Note that this is infinite dimensional.
Recall we had an adjunction where U was adjoint to Forget : Lie-Alg ! Alg.

This means
HomAlg (Ug, A) = HomLie-Alg (g,Forget (A))

As a special case, for g = gl (n,C), this means n-dimensional g representations are
just n-dimensional Ug-modules.

Recall that we can explicitly write the enveloping algebra as:

Ug =
1M

n=0

g⌦n
/ (XY � Y X = [X,Y ])

The idea here is that Ug allows us to work with products of operators of g.
The subalgebra b ✓ sl (2,C) is a Borel subalgebra:

b = C hH,Xi =
⌧✓

a u

0 �a

◆
| a, u 2 C ✓ sl (2,C)

�

Note that this is a maximal solvable subalgebra.
Finally C� is the one dimensional complex vector space with one vector v such

that H acts by multiplication by � and X acts as 0:

Hv = �v Xv = 0

In other words, the C� comprise the irreducible representations of b. In particular,
these are all one-dimensional.

Exercise 3. Show that the C� comprise the irreducible representations of b.

3
This might be against better judgement, but Professor Nadler says he just can’t help himself.
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Solution. First notice that [b, b] must be inside ker ⇢. Since [b, b] = C hXi, this
means X must act trivially. Then we know there must be some � eigenvalue of H,
so we can decompose this space if it is not of a single dimension.

The point here, is that we take the enveloping algebra, and then every time we
see an H or an X, we can act by these rules and cancel.

Claim 2. I� has basis v, Y v, . . .

Remark 2. This is a special case of the Poincaré-Birkho↵-Witt (PBW) theorem.

Proof. Look at some monomial. Using the bracket, we can rewrite this as a sum of
monomials of the form Y

a
H

b
X

c.
So I� is spanned by vectors of the form Y

a
H

b
X

c⌦v. For c 6= 0, we can use that
we are tensoring over U (b) to move X to the other side:

Y
a
H

b
X

c ⌦ v = Y
a
H

b
X

c�1 ⌦Xv = 0

So we may as well assume c = 0, and if b 6= 0,

Y
a
H

b ⌦ v = Y
a
H

b�1 ⌦Hv = �
�
Y

a
H

b�1 ⌦ v
�

⇤

We do a sample calculation in V� to see the flavor of this:

XY
2
v = XY Y v = (Y X + [X,Y ])Y v = Y XY v +HY v

= Y (Y X + [X,Y ]) v + (Y H + [H,Y ]) v

=⇠⇠⇠
Y

2
Xv + �Y v + �Y v � 2Y v = 2 (�� 1)Y v

Lemma 1. The action of H on the basis is given by:

HY
j
v = (�� 2j)Y j

v

Proof. Proceed by induction. So assume

HY
j�1

v = (�� 2 (j � 1))Y j�1
v

and then this allows us to write:

HY
j
v = (Y H + [H,Y ])Y j�1

v

= Y HY
j�1

v � 2Y j
v

= Y
��
�� 2 (j � 1)Y j�1

��
� 2Y j

v

= (�� 2 (j � 1))Y j � 2Y j

= (�� 2j)Y j

as desired. ⇤

Lemma 2. The action of X on the basis is given by:

XY
j
v = j (�� (j � 1))Y j�1

v
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Proof. Proceed by induction. So assume

XY
j�1

v = (j � 1) (�� (j � 2))Y j�2
v

then this lets us write:

XY
j
v = (Y X + [X,Y ])Y j�1

v

= Y XY
j�1

v +HY
j�1

v

now we can rewrite each of these terms. First, using the induction hypothesis we
can write:

Y XY
j�1

v = Y (j � 1) (�� (j � 2))

= ((j � 1)�� (j � 2) (j � 1))Y j�1
v

and using lemma 1 we can write:

HY
j�1

v = (�� 2 (j � 1))Y j�1
v

which means

XY
j
v = ((j � 1)�� (j � 2) (j � 1)� �+ 2 (j � 1))Y j�1

v

= j (�� (j � 1))Y j�1
v

as desired. ⇤

Remark 3. The basic idea of Verma modules is to somehow get a universally non-
terminating object.

So for each � there is this Verma module as defined above, but now this in fact
has the universal property:

Exercise 4. Check that if � is the highest weight:

HomRep(g) (I�, V ) = � eigenspace

Solution. Let f 2 HomRepfd(g) (W�, V ). This is completely determined by where
it takes the basis of W�, and in particular, since this must respect the action of g,
it is completely specified by where it takes the vector v. It must take this to some
element of V� in order to preserve the action of H, and therefore we can associate
f to the image f (v) 2 V�.

This is a kind of standard adjunction, where we ask for the Hom of V� to any
V , be the same as a Hom from C� as a U (b) module. So we need to find vectors
which are killed by X, and for which H acts as �.

Now we return to representations of sl (2,C). We have a canonical map V�hw ! V

which simply sends v ! v�hw . There must be some kernel, since this is a map from
an infinite dimensional thing to a finite dimensional thing.

Claim 3. If we similarly generate from some di↵erent v
0
hw 2 V

0
�
0
hw

in some repre-

sentation V
0, we obtain isomorphic irreducible subspaces.

I.e. there is somehow no ambiguity. The isomorphism is the obvious one.

To be continued next time. . .

⌅
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H X Y

Figure 1. The vector fields which H, X, and Y are mapped to.
The first can be thought of as being sort of hyperbolic, and the
second two are shears.

1.3. Where does this come from. Recall

Symn (W ) ⇢ W
⌦n

consists of the ⌃n-symmetric tensors.
How would someone come up with theorem 2? Imagine we start with SL (2,C) �

V1 =
C2 = C hu, vi. Then we di↵erentiate this to give us: g ! Vect

�
C2

�
. In particular,

calculate
d

dt

�
e
tH · w

�
|t=0 =

d

dt

✓
e
t 0
0 e

�t

◆✓
w1

w2

◆
|t=0 =

✓
w1

�w2

◆

so

H 7! u@u � v@v X 7! u@v Y 7! v@u

These vector fields can be visualized in fig. 1. Now consider the polynomial functions
on C2, C [u, v], then these vector fields act on this, to get

C [u, v] = C� C hu, vi � C
⌦
u
2
, uv, v

2
↵
� · · ·

which is e↵ectively a decomposition in the irreducibles Symn.
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1. Continued proof from last time

Recall we were in the middle of proving the following theorem:

Theorem 1. Repfd (sl (2,C)) is semisimple, and the irreducibles are

Vn = Symn (V1)

where V1 is the standard representation.

Continued proof. Recall we’re trying to use this weight picture to show this. Let’s
do some examples to get a feeling for this.

Example 1. The standard representation C hu, vi. This has eigenvalue �1 with
eigenvector v, and 1 with eigenvector u.

Example 2. For V3 = Sym3
�
C2

�
, we have the following eigen-vectors/values:

� = �3, v� = v
3

� = �1, v� = uv
2

� = 1, v� = u
2
v � = 3, v� = u

3

Recall the Verma module is:

I� = Usl (2,C)⌦Ub C�

for b = C hH,Xi. Also recall that we saw:

I� ' C
⌦
v�, Y v�, Y

2
v�, · · ·

↵

The Verma module also has the following universal property:

Homg (I�, V ) = hv 2 V |Xv = 0, Hv = �vi
since v� has to go to something that is killed by X, and is an eigenvector of H
with eigenvalue �. The set on the RHS consists of highest weight vectors, and
� eigenvectors. In particular, if V is irreducible then there is a nonzero map p :
I�hw ! V . This must be surjective because V is irreducible, and now we just need
to figure out what the kernel is.

Proposition 1. (1) If � 62 {0, 1, 2, · · · } ⇢ C, then I� is irreducible.
(2) For n = 0, 1, · · · , there exists a short exact sequence:

0 I�n�2 In Vn 0
p

The first part implies that V irreducible must have �hw 2 {0, 1, 2, · · · }. The
second implies that once you get to �n� 2, we see I�n�2 is sitting inside, so now
we can quotient In/I�n�2 to get the finite dimensional representation Vn.

Date: October 2, 2018.

1
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Warning 1. The sequence in the above proposition does not split.

Example 3. For � = 0, we have: I�2 ⇢ I0, now let’s imagine if there’s a comple-
ment of I�2 in I0, but this can’t be, since if we have v0 and act by Y we immediately
are moved out of this subspace.

Exercise 1. Prove the above proposition. The idea is to remember that I� =
hv�, Y v�, · · ·i, and then just apply X to see if there is any invariant subspace. So
see if there’s any way to come back.

Example 4. Let � = 0. Then the basis of I0 is v0, Y v0, · · · and Xv0 = 0, so we
can calculate the following:

XY v0 =⇠⇠⇠
Y Xv0 + [X,Y ] v0 = Hv0 = 0v0 = 0

However, as we saw last time:

XY
2
v0 = (2�� 2)Y v0 = �2Y v0

So once we have applied Y enough times, we reach the I�n�2 subspace, which in
this case is I�2. Then the quotient I0/I�2 is the trivial representation.

Example 5. If � = 1, we can calculate that:

XY v1 =⇠⇠⇠
Y Xv1 + [X,Y ] v1 = Hv1 = v1

and similarly,

XY
2
v1 = (2�� 2)Y v1 = 0

XY
3
v1 = 3 (�� 2)Y 2

v1 = �3Y 2
v1

So again, if we apply Y enough times we reach I�n�2 = I�3, and then we can’t get
out. Then quotienting I1/I�3 gives us the standard representation.

Exercise 2. Generalize these formulas.

Now we just need to prove the representations are semisimple. There are two
approaches, one is kind of algebraic, and one is kind of geometric.1 We will prove
it the second way.

Recall we have an equivalence between simply connected, connected Lie groups
over C and finite dimensional Lie algebras over C. In particular, this means for any
complex vector space V ,

Aut (V ) = GL (V ) 7! gl (V ) = End (V )

This means, for our arbitrary g, we have

HomLie-Alg (g, gl (V )) HomLie-Gp (G,GL (V ))

Vect

'

i.e.
Repfd (G) ⇠= Repfd (g)

and this preserves the natural forgetful map to Vect. Actually to see this, we
technically need the following:

1
According to Professor Nadler, some sort of higher intelligence might prefer the algebraic

approach, but he is not a higher intelligence, so we will take the sort of geometric approach. Also

because we will see some interesting important math along the way.
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Exercise 3. Show that since G is simply-connected, the map Hom (G,GL (V )) !
Hom

⇣
G, fGL (V )

⌘
is the inverse of the projection in the following diagram:

HomLie-Alg (g, gl (V )) HomLie-Gp

⇣
G, fGL (V )

⌘

HomLie-Gp (G,GL (V ))

so these things are all equal. I.e. show that if we have a homomorphism of a simply
connected group, it naturally lifts to the universal cover. So we have the following
diagram:

fGL (V )

G GL (V )

Remark 1. The previous exercise holds for any group, not just GL (V ).

Now to finish the proof of the theorem, it is su�cient to prove the following:

Proposition 2. Repfd (SL (2,C)) is semisimple.

We will first reduce this to an even easier statement.
Consider SU (2) ✓ SL (2,C). Recall SU (2) are the matrices

⌧✓
↵ �

�� ↵

◆
| |↵|2 + |�|2 = 1

�

which also preserve the standard hermitian inner product:

ha1e1 + a2e2, b1e1 + b2e2i = a1b1 + a2b2

Exercise 4. Show this is true.

Solution. Let A 2 SU (2). Then

hAv,Awi = Av
T
Awv

T
A

T
Aw = vw = hv, wi

where the last equality uses the fact that A
T
A = I.

Notice the following good properties of SU (2) ⇢ SL (2,C):
(1) SU (2) is compact and isomorphic to S

3

(2) su (2)⌦ C ' sl (2,C)
so the first says it is small, and the seccond says it’s big in the sense that it doesn’t
miss any of the structure of sl (2,C).

Remark 2. Subgroups of GC with these properties are called “maximal compact”.
I.e. this doesn’t really have anything to do with sl (2,C).

Lemma 1. The restriction

Repfd (SL (2,C)) ⇠�! Repfd (SU (2))

is an isomorphism.

Proof. Since SU (2) is simply connected, Repfd (SU (2)) ' Repfd (su (2)).
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Exercise 5. Show the restriction:

Repfd (su (2)⌦R C) ⇠�! Repfd (su (2))

is an isomorphism.

This is e↵ectively a tautology. So we are done. ⇤
Proposition 3. Repfd (SU (2)) is semisimple.

Proof. Let V be a finite dimensional representation of SU (2). Then we will con-
struct a hermitian inner product on V invariant under SU (2).

First choose any hermitian inner product hv, wi0. Now to make this invariant
under the group action, we define:

hv, wi =
Z

SU(2)
hgv, gwi0 dg

Here, dg is a nonzero invariant measure2 on SU (2). Suppose W ✓ V is a sub-
representation, then we can consider

W
? := {x 2 V | 8y 2 W, hx, yi = 0}

Exercise 6. Show that W? ✓ V is also a sub-representation, and in particular:

V ' W �W
?

⇤
So the strategy was to go from a simple Lie algebra over C, to a simply connected

Lie group over C, to maximal compact Lie group:

g ; G ; Gc

which all have the same representations. ⌅
1.1. Invariant measure. At the end of the proof of the above theorem we just
asserted there was an invariant measure on SU (2). We now construct this. At
every point of SU (2), we will define a volume form, i.e. a nondegenerate 3-form,
and then this will give us a measure.

First pick an inner product on the tangent space at the identity. In particular,
choose an Ad-invariant volume m on su (2). One such example is the killing form.
Now translate this by left multiplication to any Tg SU (2). Finally, observe that this
is also right invariant. This is since the initial form was Ad invariant.

2. Playing with the representations

2.1. Tensor products. Take Vn ⌦ Vm. This may or may not be irreducible, but
it certainly will be a sum of irreducibles:

Vn ⌦ Vm =
1M

k=0

V
dk
k .

Then the challenge is to determined the dk.

Example 6. V0 ⌦ Vn = Vn, so dn = 1, and all other di = 0.

2
See section 1.1.
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Example 7. V1 ⌦ V1 = V2 � V0, so d0 = d2 = 1 and all other di = 0.

The past two examples were somehow easy to do without thinking too hard.
The next example e↵ectively generalizes to any case:

Example 8. Let’s try to calculate V2 ⌦ V3. The weights of V2 are 2, 0, and �2.
The weights of V3 are 3, 1, �1, and �3. Then we observe that the restriction of a
representation of Lie algebra to a Lie subalgebra, the tensor product is preserved.
In particular, h = C hHi ✓ g = sl (2,C) preserves ⌦.

Therefore the weights of V2 ⌦ V3 are the pairwise sums of weights of V2 and V3

independently. Therefore the weights are:

�5 -3 -1 1 3 5

where we have circled the weights as many times as their multiplicity. Then the
multiplicity is how many ways these weights summed to give the new weights.
Therefore the multiplicity of 5 is 1, the multiplicity of 3 is 2, the multiplicity of 1
is 3, and the same multiplicities for the negative weights.

Now we can understand the irreducibles just from this. Find the highest weight
5, then this means we must have a copy of V5 inside, so we can cancel the weights
associated with 5, so we have 1 left on ±1, and 2 left on ±1, so we have a V3, and
we cancel again, to get only 1 left on ±1 so we get a V1 and our answer is:

V2 ⌦ V3 = V5 � V3 � V1

Exercise 7. Write this down in general.

Solution. The basic idea is starting at the sum m+n and then just counting down
by 2 until you hit their di↵erence. Let m � n, then:

Vm ⌦ Vn =
M

i22Z
m�nim+n

Vi

Next time we will generalize to all simple Lie algebras. In particular, we will write
down a list of all such Lie algebras, and then see that the general story references
sl (2,C), so this is really an important thing to understand.
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We will meet 4 games people play with representations.

1. Tensor products

Recall last time we were playing some games with representations of sl (2,C). In
particular, we saw that for m � n,

Vm ⌦ Vn =

M

l=m�n+2k
0kn

Vl

2. Characters

Consider C [Z], the collection of compactly supported C-valued functions
1
on Z.

Definition 1 (Character). A formal character is an element of C [Z]. We write en

for the characteristic function of n 2 Z.

The en form a basis for C [Z] as a complex vector space. This can be considered

a ring with the operation given by convolution. This e↵ectively just depends on

the group structure on Z.

(f ⇤ g) (n) =
X

k+l=n

f (k) g (l)

Exercise 1. Check that en ⇤ em = en+m.

This is somehow a linear extension of the group structure on Z.

2.1. More invariant origin. Return to representation theory. We want to think

about Z as integer weights in the H eigenline C.

Definition 2 (Character of a representation). The formal character of a finite

dimensional representation V is V 7! �V 2 C [Z] where
�V (n) = dimC V�=n

where V�=n is the eigenspace at � = n.

Example 1. The irreducibles from before have characters:

�Vn =

X

l=�n+2k
0kn

el

Date: October 4, 2018.

1
Or maybe distributions. Or maybe not compactly supported. The mathematics is smart and

will tell us what’s right.

1
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Exercise 2. Check the following:

�V�W = �V + �W �V⌦W = �V ⇤ �W

So characters somehow take a representation and return an element of C [Z]. But
this statement isn’t formal, since this is somehow mixing levels - representations

are objects in a category, and C [Z] is just a ring. One way to formalize this is to

instead consider this as a map from the Grothendieck group to the ring of formal

characters:

K0 (Repfd (sl (2,C)))⌦ C ! C [Z]
RecallRep is an abelian category. The Grothendieck group is what you get when

you ask for a group whose elements are the objects of your category, and direct sum

becomes addition. It’s somehow the universal version of a group resulting from only

insisting that exact sequences make sense.

We can think of elements of this as being some sort of formal di↵erence V �W

of two objects of the original category.

Proposition 1. � is injective, and in particular,

� : K0

�
Repfdsl (2,C)

�
⌦ C ⇠�! C [Z]⌃2

is an isomorphism, where ⌃2 ' Z/2 acts by � (n) = �n.

Proof. Injectivity follows from the fact that up to isomorphism, representations are

determined by their characters. To see this is surjective, we just have to check that

en + e�n is in the image, which is

� (Vn � Vn�2)

so we are done. ⇤

3. Character formulas

The game is the following. Put n 2 N into the machine, and the machine is

supposed to give you �Vn

N 3 n ; �Vn 2 C [Z]⌃2

The answer for sl (2,C) is just the sum of the weights as above in example 1, but

in general it won’t be this easy. So we will consider in a complicated but beautiful

way to do it for sl (2,C) which will turn out to generalize.

We know we can take Vn which has a surjective map In ! Vn from the Verma

module, and in particular, we have the exact sequence:

0 ! I�n�2 ! In ! Vn ! 0

Remark 1. This is a special case of the Bernstein-Gelfand-Gelfand (BGG) resolu-

tion.

This sequence implies that the character
2
of Vn is the character of In minus the

character of I�n�2:

�Vn = �In � �I�n�2

2
This isn’t really a character because the dimension of each eigenspace to the infinite negative

side has dimension 1 for these Verma modules. Therefore the associated character is not compactly

supported.
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But taking inspiration from:

1

1� x
= 1 + x+ x

2
+ · · ·

we can write this is a more clever way:

�Vn =
en

1� e�2
� e�n�2

1� e�2
=

en � e�n�2

1� e�2

Now rewriting this, we get:

�Vn =
en+1 � e�n�1

e1 � e�1

4. Tannakian formalism

Suppose C is a C-linear abelian ⌦-category. Suppose

F : C ! Vect

is a “forgetful functor.” This means this is a ⌦-functor which is exact, faithful, and

maybe a few more things that the actual forgetful functor is.

To this, we can associate a group

G = GC,F = Aut
⌦
(F )

which is the group of tensor automorphisms of F . For g 2 G, we get an automor-

phism

gV : F (V )
⇠�! F (V )

for every V 2 C, which respects the tensor structure in the sense that:

gV⌦W = gV ⌦ gW

This is called the Tannakian group of C with respect to the fiber functor F .

Exercise 3. For C = Repfd (sl (2,C)), and F = Forget, then this says for every

representation of sl (2,C), forget it down to a vector space, then everything in

Aut
⌦
(F ) is a choice of automorphisms of these vector spaces. Show that GC,F '

SL (2,C).

Solution. First start with an element A 2 sl (2,C), then we want to get an element

g 2 G, i.e. a collection of automorphisms

gV

�

V 2 Repfd (sl (2,C))

It is enough to specify this on the irreducibles Vn = Sym
n
V1 = Sym

n C2
.

Remark 2. If you have an abelian category you’re trying to learn something about,

try calculating the Tannakian group. By the above discussion, the category will

then be the representations of this group, though the new group might be something

terrible you’ve never seen before.

5. Classification of simple Lie algebras over C

This is somehow the general answer over algebraically closed fields, but we will

just do it over C. This is called the Cartan classification.
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5.1. Classical Lie algebras. The first type is An for n � 1, and these are

sl (n+ 1,C) = htrA = 0i

The next series is Bn for n � 2, and these are the odd orthogonal Lie algebras

so (2n+ 1,C) =
⌦
�A = A

T
↵

This one starts at so (5) because so (3) is already on the list since:

Proposition 2. sl (2) ' so (3)

The next is Cn for n � 3, which are sp (2n,C). These preserve the standard

symplectic inner product:

sp (2n,C) =
⌦
!A = �A

T
!
↵

for ! some nondegenerate skew-symmetric matrix/inner product. So these are

linear automorphisms of a symplectic vector space.

Remark 3. We got this condition on elements of sp by di↵erentiating

(gv1)
T
!gv2 = v

T
1 !v2

with respect to g which gives:

0 = (Av1)
T
!v2 + v

T
1 !Av2 = A

T
! + !A

For n = 1 we get sp (2), which just consists of area preserving matrices, but this

is sl (2) so this is already on the list. And for n = 2 we have:

Exercise 4. Show that sp (4) ' so (5).

Solution. Proof. Take (V,!) to be a four-dimensional symplectic vector space.

Then we have an action of Sp (4) on ^2
V , which is 6-dimensional and preserves the

symmetric pairing

^2
V ⇥ ^2

V ! ^4
V = C

So we have a map

Sp (V ) ! SO
�
^2

V
�

The element ! is fixed and its norm ! ^ ! 6= 0, so Sp (V ) fixes the 5-dimensional

orthogonal complement I
?

and we have an induced map Sp (4,C) ! SO (5,C).
Check it is surjective and at the level of Lie algebras induces the required isomor-

phism. ⇤

Next we have Dn for n � 4 which corresponds to so (2n,C). This indexing starts

here because:

Proposition 3.

so (4,C) ' sl (2,C)� sl (2,C) so (6,C) ' sl (4,C)

and

Proposition 4. so (2,C) is one-dimensional and commutative, and therefore it is
not semisimple.
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Note that the Bn and Dn are both so (n) for odd/even n. So we could hypothet-

ically lump these in the same list, but as we have seen, these algebras have di↵erent

behaviours. In particular, the simply connected Lie groups corresponding to these

Lie algebras have di↵erent centers. One has Z/4, and one has Z/2⇥ Z/2.
This is the full list of classical Lie algebras. Looking at this we can sort of ask

what kinds of geometries we can do. And this tells us we can do classical euclidean

geometry, which has to do with the orthogonal matrices, or you can do symplectic

geometry, which of course has to do with the symplectic matrices.

5.2. Exceptional Lie algebras. Now we have the exceptional E6, E7, E8, F4,

and finally G2, and now this is everything.

Remark 4. In a certain sense, if you’re a usual algebraist that likes to understand

simple things and view them as atoms, these are somehow the atoms that things

will be built out of.

5.3. Dynkin diagrams. We will come back to these later, but for now we will

just see them as “hieroglyphics” which will help us remember this classification.

g Diagram Z (G) ⇡1 (G)

An (n � 1) sl (n+ 1,C) Z/ (n+ 1)Z 0

Bn (n � 2) so (2n+ 1,C) 0 Z/2Z
Cn (n � 3) sp (2n,C) Z/2Z 0

Dn (n � 4) so (2n,C) Z/2Z Z/2Z

E6 � Z/3Z �

E7 � Z/2Z �

E8 � 0 �
F4 � 0 �
G2 � 0 �

These appear all over mathematics.

Remark 5. One of the last things Grothendieck did before “leaving” mathematics

to become a farmer, is that he found these Dynkin diagrams in resolutions of surface

singularities. One can look at algebraic surfaces, and there are these nice classical

du Val singularities, and they have natural resolutions, and then these diagrams

show up in the geometry of their resolutions.
3

These pictures bring to light a clear duality called Langlands duality, that isn’t

made apparent from the list itself. If we reverse the direction of the bar, then An,

Dn, and En are self dual. The diagrams An, Dn, and En are called simply-laced.
These are somehow the most basic ones. Then Bn and Cn are dual to one another.

Then F4 and G2 are said to be twisted self-dual.

3
We won’t talk about this, but one can ask Professor Nadler some other time if one is interested.
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One might want to play a game where we start with An, Dn, and En and recover

Bn, Cn, F4, and G2 form some operations. There’s a whole “game” called folding

Lie algebras which allows you to take Dn, and sort of collapse the end together to

get these double bars in Bn and Cn. Similarly, we can take D5 and sort of collapse

it down to F4, and collapse D4 into G2.

5.4. Associated groups. In the table above we have written the centers of the

associated Lie groups. Note however that these centers are of the “usual” group

associated with the algebra. This is however not the unique simply connected one

in the case of so (2n+ 1) and so (2n). In this case the unique simply connected one

is Spin (2n+ 1) and Spin (2n) respectively. We list the centers so we can determine

all of the groups which can be associated to these algebras since we just have to

quotient out by subgroups of the center to get these.

In the case of An we can quotient out by any subgroup of Z/ (n+ 1)Z, which
is of course just any divisor of n + 1. In the case of Bn we can take the universal

cover, and then these are the only two: SO (2n+ 1) and Spin (2n+ 1). For Cn,

we just get Sp (2n,C) and Sp (2n,C) /Z/2. Finally, for Dn we get SO (2n,C) and

SO (2n,C) /Z/2, and Spin (2n). Only now Spin (2n) has center Z/2Z ⇥ Z/2Z if n

is even and center Z/4Z if n is odd.

Remark 6. One might wonder what Lie groups give rise to the exceptional Lie

algebras. We can play the usual game, and take the adjoint representation, then

since the algebras are simple, they have no center, so the adjoint representation

puts it inside endomorphisms of some vector space, then we can exponentiate these

matrices and get a group.

G2 is the smallest, so it’s sort of easiest to get our hands on. If we look at

the unit octonions, we can then consider the automorphisms of the non-associative

algebra of unit octonions, and this is G2. In fact all of them arise as automorphisms

of something. E8 is probably the most important one in all of Math, it’s somehow

the biggest.

6. Finite dimensional representations of sl (3,C)

It’s somehow the case that once one understands sl (2,C), and then how to

generalize this to sl (3,C), there isn’t much left to do to understand simple Lie

algebras.

We want a similarly natural set of operators to act as a basis like we had for

sl (2,C). First we define:

H12 =

0

@
1 0 0

0 �1 0

0 0 0

1

A H23

0

@
0 0 0

0 1 0

0 0 �1

1

A

These will again generate a subalgebra:

h = C hH12, H23i ✓ sl (3,C)
which is a 2-dimensional abelian subalgebra. Now we can consider all of the fol-

lowing matrices:

X12

0

@
0 1 0

0 0 0

0 0 0

1

A X13 =

0

@
0 0 1

0 0 0

0 0 0

1

A X23 =

0

@
0 0 0

0 0 1

0 0 0

1

A
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Y21 =

0

@
0 0 0

1 0 0

0 0 0

1

A Y31 =

0

@
0 0 0

0 0 0

1 0 0

1

A Y32 =

0

@
0 0 0

0 0 0

0 1 0

1

A

We choose these since it’s a basis of eigenvectors for h acting on g with the adjoint

action.
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The second midterm will be Tuesday October 30th.

1. Root systems

1.1. Cartan subalgebras. The “biggest” abelian thing inside sl (3,C) is generated
by:

H12 =

0

@
1 0 0
0 �1 0
0 0 0

1

A H23

0

@
0 0 0
0 1 0
0 0 �1

1

A

In particular, set h = hH12, H23i.

Fact 1. h is a maximal abelian subalgebra. It also has the property that it is
diagonalizable under the adjoint action ad.

The fact that this is abelian means we can simultaneously diagonalize them.
Such subalgebras are called Cartan subalgebras.

Warning 1. Though this is a convenient Cartan subalgebra it is not unique. How-
ever, as we will eventually see, this is actually unique up to conjugation.

1.2. Roots. We want to generalize the notion of an eigenvector/eigenvalue for one
operator to an algebra. Write h⇤ for the dual of h. This is the space of possible
eigenvalues of h. Explicitly:

h⇤ = {� : h ! C linear}

i.e. in higher dimensions, we should think of eigenvalues as being elements of the
dual space.

Define L1 to be a complex valued function on h as follows:

L1 (H) = (1, 1) entry of H

for example L1 (H12) = 1, and L1 (H23) = 0. Define L2 and L3 similarly. Note that
L1 + L2 + L3 = 0.

If we consider h ✓ C3, then

h⇤ =
�
C3

�⇤
/C h(1, 1, 1)i

where we have quotiented out by the diagonal. We can sort of think of this like
looking at the corner of a room as in fig. 1. We will use L1, L2, and L3 as a basis
of the dual space.

Date: October 9, 2018.

1
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Now we restrict the adjoint representation to h. For H 2 h, consider the operator
adH : g ! g. First let’s fix a basis of eigenvectors.

X12

0

@
0 1 0
0 0 0
0 0 0

1

A X13 =

0

@
0 0 1
0 0 0
0 0 0

1

A X23 =

0

@
0 0 0
0 0 1
0 0 0

1

A

Y21 =

0

@
0 0 0
1 0 0
0 0 0

1

A Y31 =

0

@
0 0 0
0 0 0
1 0 0

1

A Y32 =

0

@
0 0 0
0 0 0
0 1 0

1

A

Definition 1. The nonzero eigenvalues of ad|h
�

g are called roots.

Exercise 1. Check these are eigenvectors.

Solution. We check X12 first. Since we are taking H12, H23 as our basis for h, and
since adH = [H,�], we need to calculate:

[H12, X12] =

0

@
0 1 0
0 0 0
0 0 0

1

A�

0

@
0 �1 0
0 0 0
0 0 0

1

A = 2X12

[H23, X12] = 0�

0

@
0 1 0
0 0 0
0 0 0

1

A = �X12

so we need to find an element of h⇤ which maps H12 7! 2, and H23 7! �1. In
particular, L1 � L2 is the root. We write this as ↵12. The picture here is as in
fig. 1.

For X13 we have:

[H12, X13] =

0

@
0 0 1
0 0 0
0 0 0

1

A� 0 = X13

[H23, X13] = 0�

0

@
0 0 �1
0 0 0
0 0 0

1

A = �X13

so this has root L1�L3. A similar calculation holds for the remaining Xij and Yij .

So from either brute force or cleverness we get that the roots are all ↵ij = Li�Lj

for i 6= j. These form a hexagon as in fig. 1.

1.3. Fundamental calculation. The following lemma plays the role of the “fun-
damental calculation” that we saw in the sl (2,C) case.

Lemma 1. Suppose V is a representation of sl (3,C), and v 2 V is an h eigenvector
with eigenvalue � 2 h⇤. Then Xijv is again an h eigenvector with eigenvalue �+↵ij

for i < j. Similarly, Yijv is again an eigenvector with eigenvalue �+↵ij = ��↵ji.
for i > j

According to this lemma, the Xijs and Yijs have sort of “preferred” directions.
There is a sort of X-cone which sweeps clockwise between ↵23 and ↵12, and there
is a Y -cone which sweeps clockwise between ↵32 and ↵21.
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• • L1

•L2

•L3 • ↵12

• ↵13

• ↵32

•↵31

•↵21

• ↵23

Figure 1. The real projection of h⇤. The roots (in red) form a hexagon.

1.4. Borel subalgebra and positive roots. Now consider the subalgebra:

b := h+ C hXiji

Note b is a maximal solvable subalgebra. This makes sense since we somehow know
solvable algebras to be upper triangular, and this is upper triangular. This is an
example of a Borel subalgebra.1 We will call the roots inside b the positive roots.
These are ↵23, ↵13, and ↵12. We will write the collection of these as R+.

1.5. Simple roots. Notice that ↵13 = ↵23+↵12. This somehow indicates that the
roots ↵23 and ↵12 are more special. We will call these roots the simple roots. We
will write the collection of simple roots as �+. We will eventually see the following
fact:

Fact 2. All of the roots can be recovered from the simple roots.

2. Representations of sl (3,C)

Now we’re finally ready to meet some representations. Recall in the sl (2) case
the irreducibles were indexed by the natural numbers. We now meet the analogous
object.

Definition 2. The dominant (integral) weights are:

⇤+ = Z�0 hL1,�L3i

This is an integer lattice of L1 and �L3 as in fig. 2.
Then the theorem is as follows:

1 Professor Nadler says that often times in mathematics, when one does something important,
ones name becomes a noun forever, however when alive, people typically don’t call these objects
their own name. For example Hitchin himself never referred to a Hitchin system as such. A more
relevant example is that Borel always just called this a “maximal solvable subalgebra” rather than
use his own name. Since a choice of such a subalgebra is often accompanied by the choice of a
Cartan subgroup, which has something to do with a torus, it is sometimes said that choosing such
an h and b is a choice of a “borus”. Professor Nadler wonders if Borel would have preferred this. . .
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L1

•

•�L3

Figure 2. Dominant weights for sl (3,C).

Theorem 1. The finite dimensional representations of sl (3,C) form a semisimple
category Repfd (sl (3,C)), and the irreducibles are indexed by ⇤+:

⇤+ 3 � ; V� 2 Repfd (sl (3,C))
where V� is some irreducible representation. We can reverse this construction by
taking the highest weights with respect to b.

3. Constructing irreducible representations

Example 1. First we have V0 = C is the trivial representation. The picture is just
a single weight at 0.

Example 2. VL1 = C3 will be the standard representation.

H =

0

@
a

b

c

1

A � C3

for a+ b+ c = 0. The eigenvectors are e1, e2, and e3 which go to ae1, be2, and ce3.
The eigenvalues are L1 (H) = a, L2 (H) = b, and L3 (H) = c. The weights are just
the L1, L2, L3 that we have seen. Since Xije1 = 0 for i < j we see that L1 is the
highest weight.

Example 3. The representation V�L3 = C3 is dual to the standard representation.
The weights are as in fig. 3.

Example 4. Now consider the representation VL1�L3 = V↵13 . We might guess
that this is the tensor product VL1 ⌦ V�L3 . Just like for sl (2,R), the eigenvectors
of the tensor product are tensors of the eigenvectors, so the weights just add as in
fig. 4. Note that this is a nine-dimensional representation. Since V�L3 is the dual
of VL1 , we have:

VL1 ⌦ V�L3 = VL1 ⌦ V
⇤
L1

= Hom(VL1 , VL1)

which in particular contains an invariant subspace C
⌦
idVL1

↵
. From this point of

view the identity is:

idVL1
= e1 ⌦ e

⇤
1 + e2 ⌦ e

⇤
2 + e3 ⌦ e

⇤
3
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•
�L1

•�L2

•�L3

Figure 3. The roots of V�L3 .

•

•

•

•

•

•

•

Figure 4. Roots of VL1 ⌦ V�L3 .

This is like the diagonal matrices. Now we can decompose this the tensor into the
invariant portion and whatever is left, which we are guaranteed to be a subspace
since this is semisimple. The invariant portion just has one weight at 0, and then we
are left with an eight-dimensional representation with the same weights, only one
less multiplicity at 0. But we can recognize this eight-dimensional representation
as the adjoint one, which means VL1�L3 = sl (3,C) is the adjoint representation.

Now the story continues as it did in the case of sl (2,C). We can keep tensoring
the standard and adjoint representations until we get one that has a desired highest
weight, and then we just have to decompose it to find the desired representation.

Example 5. Consider V2L1 . Our first guess might be VL1 ⌦ VL1 . The weights for
this representation will be as in fig. 5. This is not irreducible, since as usual we can
write:

VL1 ⌦ VL1 = Sym2 (VL1)� ^2 (VL1)

Then Sym2 has the weights
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•2L1

•2L2

•2L3

• L1 + L2

• L1 + L3

•
L2 + L3

Figure 5. Roots of V2L1 .

•

•

•

•

•

•

and ^ has these

•

•

•

One way to see these pictures is that since order “doesn’t matter” in Sym2, the
double multiplicity won’t show up, and therefore the remaining three are left to ^2.
Another way to see this is that the third exterior power is trivial, so

V
⇤
L1

' ^2
VL1
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In the end we get:
V2L1 = Sym2 (VL1)

4. A step back

Now we want to generalize this story. To move towards this, we compile a list
of “theoretical ingredients” which will be a part of the general story:

(1) g/C simple Lie algebra (could generalize to semi-simple, reductive)
(2) h ✓ g Cartan subalgebra (not unique)
(3) h⇤ is a quotient of g⇤, which is the dual space of eigenvalues/weights.
(4) The non-zero eigenvalues of the adjoint representation of g form the roots

R ⇢ h⇤.
(5) b ✓ g a Borel subalgebra (not unique) (contains h)
(6) R

+ ⇢ R positive roots (roots inside Borel)
(7) �+ ⇢ R

+ simple roots (R+ ⇢ Z�0�+, R ⇢ Z�+, �+ linearly indepen-
dent)

(8) ⇤+ ⇢ h⇤ is the cone of integral dominant weights. (Also the highest weights
with respect to b for irreducible representations)

Schur functors next time and PBW for sl (3,C). We will also discuss how to
generalize this whole story, but will likely not prove it in detail.
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1. Recall

Recall we have the space of all weights h⇤ which contains the dominant integral
weights Z�0 hL1,�L3i. This consists of non-negative integral multiples of the fun-
damental weights. Recall the fundamental weights are the highest weights for the
standard representation and the standard dual representation.

Also recall we had the theorem:

Theorem 1. Irreducible representations are in bijection with the dominant weights.
In particular, we send an irreducible representation to its b highest weight.

Date: October 11, 2018.

•
L1

•
2L1

•
· · ·

L1 � L3

•�L3 •

�2L3•

· · ·

Figure 1. Dominant weights for sl (3,C) if we take b to be gen-
erated by the Hij and Xij .

1
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2. What choices have we made so far

Professor Nadler says it’s relatively fair to say that representation theory is the
study of choices. So we now review some of the choices we have made so far in our
discussion of sl (3,C).

2.1. Cartan subalgebra. Recall we chose a Cartan subalgebra h to be some max-
imal abelian subalgebra. This is not a unique choice, but we do have the following:

Proposition 1. Let G have Lie algebra g.

(1) All Cartan subalgebras h ✓ g are conjugate by G under Ad : G ! GL (g).
(2) The Weyl group

Wg = NG (h) /ZG (h) = NG (h) /H

is a finite, where H ✓ G is the subgroup with Lie algebra h.

Remark 1. We don’t need to take the unique simply-connected G since whether
or not we quotient out by the center Z (G) won’t a↵ect the action Ad, so it won’t
change whether or not these things are related by conjugation.

Remark 2. It is very beautiful when the action of a group is transitive, since it is
somehow enough to only understand the action on one element. But then we have
to ask another very important question, which is what the stabilizer of this one is,
and that’s what led us to the second half of this proposition.

Remark 3. The ambiguity of making a certain choice of Cartan subalgebra is some-
how recorded by the Wg action on g by conjugation.

Example 1. We now calculate the Weyl group for g = sl (n,C). In this case

Wg = ⌃n

The action of this on h ✓ g, i.e. the traceless diagonal matrices, is called the
standard representation of Wg.

The action is explicitly given by permutation matrices. For example under � =
(12),
0

@
�1

�2

�3

1

A 7!

0

@
0 1
�1 0

1

1

A

0

@
�1

�2

�3

1

A

0

@
0 �1
1 0

1

1

A =

0

@
�2

�1

�3

1

A

So this acts on the space of eigenvalues by permuting them as expected.

In the language of the diagrams we have been drawing, the three lines that we
were just sort of using to orient ourselves are really representing the hyperplanes
over which the elements of Wg are reflecting. For example, � = (12) is reflecting
across the �L3 line.

2.2. Borel subalgebra. We also saw that we have to choose a Borel subalgebra
inside of g which contains h. We have a similar proposition for this choice:

Proposition 2. Let G have Lie algebra g.

(1) All Borel subalgebras are related by conjugation under Ad : G ! GL (g).
(2) The stabilizer of any b is the subgroup B ✓ G with Lie algebra b.

Definition 1. The flag variety B of g is the space of Borel subalgebras.
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The proposition tells us that the flag variety is just G/B since G acts transitively
on this space, and the stabilizer is B.

Remark 4. The flag variety is the space of choices for Borel subalgebras.

Example 2. For g = sl (n,C), we calculate the flag variety. So consider all of
the Borel subalgebras inside g. This is just an ambient vector space, and each
Borel subalgebra is a subspace, so we should think of this flag variety as being a
submanifold of the Grassmannian of subspaces of g i.e.

B ✓ Gr (dim b, dim g)

This all seems a bit abstract, but we’re just looking for like k planes in l space, and
then some of these are Borel subalgebras and that’s what we want.

So let G = SL (n,C), and B be the upper triangular matrices in SL (n,C).

Claim 1. G/B is naturally isomorphic to flags

h0i = E0 ⇢ E1 ⇢ E2 ⇢ · · · ⇢ En = Cn

where dimEi = i.

Exercise 1. Prove this claim. That is, show that sl (n) acts transitively on flags,
and that b is the stabilizer of the standard flag where Ei = Span he1, · · · , eii.

Solution. This is somehow a standard exercise in linear algebra. Show every flag
can be split into a basis, and then sl (n) acts transitively on the basis.

Example 3. For n = 1 the flag variety is a point. For n = 2, we are studying flags
in C2. Since the ends are fixed, every flag is just a choice of lines, which is just
CP1.

For n = 3, this consists of lines E1 inside planes E2, inside C3. The collection
of these isn’t anything special we have seen before, but it is inside the collection of
choices of lines crossed with choices of planes:

CP2 ⇥
�
CP2�⇤

The line is represented by a vector v, and the plane is represented by a covector w.
The condition is just that the line must be inside the plane. In particular, E1 is the
span of v and E2 is orthogonal to w, the kernel of w. So the flag variety is cut out
by the equation w (v) = 0. So we start with four dimensions, and insisting on this
equation gives us three dimensions, which is good since sl (3) is eight-dimensional,
and B is 5-dimensional.

There are many beautiful things to be said about flag varieties, but we just state
one more thing. Recall we really liked CP1 since it was just projective space. But as
it turns out, we can think of this flag variety as a sort of iterated projective space.
So let’s say we forget the line and remember the hyperplane, so we’re projecting:

SL (n,C) /B (n)

�
CPn�1�⇤

and then the rest of the data for this fixed hyperplane is just a flag in this hyper-
plane, so the fiber is SL (n� 1,C) /B (n� 1).
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The n = 2 example was literally CP1, the n = 2 example was just sort of roughly
a CP1 and a CP2, and the next one is put together as a CP1, CP2, and a CP3. This
is however not to say that these aren’t somehow put together in an interesting way,
because they are.

2.3. Borus. The two choices of a Cartan and Borel subalgebra together make
the choice of a Borus, and now we have the following proposition bringing them
together:

Proposition 3. Let G be a Lie group with Lie algebra g, then

(1) All “boruses” are conjugate by G.
(2) The stabilizer is isomorphic to ZG (h) ' H.

2.4. Back to representation theory. Now we have the following as a result of
these propositions:

Corollary 1. The Weyl group acts simply transitively on the Borel subalgebras
containing h.

Exercise 2. Prove that the above three propositions imply this corollary.

So note that the choice of a borus that we made last time determined which
chamber was the dominant one. There are actually four other choices of chambers
that are just as good. We illustrate this with some examples. For all of them fix
h ✓ sl (n,C) the usual diagonal Cartan subalgebra.

Example 4. Let n = 2. Then ⌃2

� hb containing hi acts simply transitively.

b =

⌧✓
⇤ ⇤
0 ⇤

◆�
7!

✓
0 1
�1 0

◆
b

✓
0 �1
1 0

◆
=

⌧✓
⇤ 0
⇤ ⇤

◆�
= bop

Example 5. Let n = 3. Then ⌃3 · hb containing hi. We know b upper tri-
angular matrices works. Now we can conjugate to find the others. We know
⌃2 = h(12) , (23)i. first we lift these to matrices:

(12) =

0

@
0 1 0
�1 0 0
0 0 1

1

A (23) =

0

@
1 0 0
0 0 1
0 �1 0

1

A
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Figure 2. These are two distinct tangles which represent products
of transpositions which are the same in ⌃3.

Now we conjugate to get:

he1i ⇢ he1, e2i he2i ⇢ he1, e2i he3i ⇢ he1, e3i he2i ⇢ he1, e2i

0

@
⇤ 0 ⇤
⇤ ⇤ ⇤
0 0 ⇤

1

A

0

@
⇤ ⇤ 0
0 ⇤ 0
⇤ ⇤ ⇤

1

A

0

@
⇤ ⇤ ⇤
0 ⇤ ⇤
0 0 ⇤

1

A

0

@
⇤ 0 0
⇤ ⇤ 0
⇤ ⇤ ⇤

1

A

0

@
⇤ ⇤ ⇤
0 ⇤ 0
0 ⇤ ⇤

1

A

0

@
⇤ 0 0
⇤ ⇤ ⇤
⇤ 0 ⇤

1

A

he1i ⇢ he1, e2i he1i ⇢ he1, e3i he2i ⇢ he2, e3i he2i ⇢ he1, e2i

(23)

(12)(12)

(23)

(12)

(23)

Exercise 3. Show that this is the case by explicitly conjugating.

We write the flags stabilized by these choices of Borels above and below the
diagram. The fact that these paths give the same final result is a result of the fact
in fig. 2.

Now fix a Cartan subalgebra h. Inside of h⇤ we want to talk about the b-dominant
integral weights ⇤+ ✓ h⇤. All integral weights form a lattice inside h⇤, and now
we can ask how we chose this cone. We chose those which were “positive” with
respect to b. The cone ⇤+ consisted of the possible highest weights for b. So if we
conjugate b by a permutation matrix, this is just acting this permutation on this
cone by reflecting over the Li, so it gives us the alternative cones.

3. Construction of irreducible representations

Fix a borus h ⇢ b. We want to construct the irreducible representation with a
given highest weight. Recall in the sl (2,C) case we saw

Vn = Sym2
V1
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and
1M

n=0

Vn = C [u, v]

so since we’re trying to construct polynomials we might have guessed that.
So now in the sl (3,C) case, we have V0 = C is trivial, VL1 ' C3 is the standard

representation, and V�L3 ' C3 is the dual standard representation. Then we claim
the following:

Claim 2. Symn (VL1) is irreducible with highest weight nL1, and Symn (V�L3) is
irreducible with highest weight �nL3.

So we have the same sl (2,C) picture along the �L3 and L1 lines. Just as before
we have the following decomposition:

M

n

Symn
VL1 ' C [u, v, w]

M

n

Symn
V�L3 ' C [u⇤

, v
⇤
, w

⇤]
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1. Clarifications

We will continue our discussion of representations of sl (3,C). But first some

clarifications. We saw ⇤ = Z hL1, L2, L3i and ⇤
+
= Z�0 hL1,�L3i concretely, but

now we o↵er a sort of invariant definition.

1.1. Weight lattice. Any time we have g/C a Lie algebra, we can associate to

this a simply-connected complex Lie group G/C. For example, for g = sl (n,C) we
get G = SL (n,C). Now if we choose a borus in g, we will get subgroups of G that

play a similar role. So choosing h ✓ b ✓ g we will get subgroups H ✓ B ✓ G.

Now we want to compare h⇤ = HomVect (h,C) to ⇤ = HomAb (H,C⇥
). We

know h⇤ consists of the eigenvalues of the (irreducible) h representations, and ⇤

consists of the eigenvalues of the irreducible H-representations. This tells us that

h⇤ ' Cdim h
and ⇤ ' ZdimH

. Note also that h ' Cdim h
and H ' (C⇥

)
dimH

.

In fact, we naturally have that the weight lattice ⇤ is contained in h⇤. This map

is di↵erentiation, since ⇤ consists of maps of Lie groups, and h⇤ consists of maps

of Lie algebras. But this is not equality, since there are plenty such maps of Lie

algebras that don’t come from maps of Lie groups.

Warning 1. This inclusion is proper since H is not simply-connected.

1.2. Dominant weight lattice. Recall the roots R are the nonzero eigenvalues of

the adjoint representation ad. Half of these will be in our choice of Borel subalgebra.

We call these roots the positive roots �
+
✓ R. Equivalently these are the roots in

the adjoint representation of b. Then there are the simple roots ⌃
+

✓ �
+

which

form a basis. Now write R
+
for the positive root cone R

+
= Z�0�

+
.

Recall the killing form is an inner product on g.

Exercise 1. Show that g is semisimple i↵ the killing form is nondegenerate. This

is called Cartan’s criterion.

This means it induces an inner product on g⇤, and in particular on h⇤ by restric-

tion. Then the dominant cone consists of the lattice points which are non-negative

when paired with the positive root cone. Explicitly:

⇤
+
=
�
� 2 ⇤ ✓ h⇤ | 8↵ 2 �

+
, h�,↵i � 0

 

Date: October 16, 2018.
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•
L1 + L2 + L3

•
3L1

•3L2

•3L3

• 2L1 + L2

• 2L1 + L3

• 2L3 + L1

•2L2 + L3

•2L3 + L2

• 2L2 + L1

Figure 1. Roots of V3L1 = Sym
3
VL1 .

2. Constructing irreducible representations of sl (3,C)

We want to construct irreducible representations V� for � 2 ⇤
+

for sl (3,C).
Recall we have already seen VL1 = C3

is the standard representation and V�L3 =

VL1+L2 . When this is written in the first way it is supposed to be dual to the

standard, and the second way suggests it is ^
2C3

. We also saw that V↵13 was the

adjoint representation. Finally we saw that we have Sym
n
VL1 has highest weight

nL1 and the other weights are as in the following example.

Example 1. Consider Sym
3
VL1 . This has weights as in fig. 1.

A similar story holds for �L3.

Example 2. Consider Sym
2
V�L3 = V�2L3 . This has weights as in fig. 2.

The question that remains, is what if we want a representation which is a linear

combination of L1 and L2 such as mL1 � nL3. The idea here is that this highest

lives in h⇤ as in fig. 3 and then we claim the following:

Claim 1. The non-zero weights of V� lie in the convex hull of W · � as in fig. 3.

Remark 1. Notice that in the case of VnL1 and V�mL3 we have a sort of degenerate

hexagon.
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•

•

•

•

•

•

Figure 2. Weights of V�2L3 .

�

Figure 3. The convex hull W · �.

The idea of this proof will be to restrict to the copies of sl (2,C) inside sl (3,C).
In particular the block diagonal matrices:

l12 =

0

@
⇤ ⇤

⇤ ⇤

1

A l23 =

0

@ ⇤ ⇤

⇤ ⇤

1

A l13 =

0

@
⇤ ⇤

⇤ ⇤

1

A

These are examples of Levi subalgebras. The roots in l12 are as in fig. 4.

We want to think of these subalgebras as moving along the line spanned by their

roots in the same sense that sl (2,C) moved along the real line
1
. For example if we

restrict a representation of sl (3,C) to (say) l12. We get these lines running diagonal

all parallel to the line connected ↵12 and ↵21.

1
Professor Nadler says the secrets to the universe come from understanding the Cartan sub-

algebra, and understanding sl (2).
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• •
L1

•L2

•L3 • ↵12

• ↵13

• ↵32

•↵31

•↵21

• ↵23

Figure 4. In red we have the roots of l12, in green we have the

roots of l13, and in blue we have the roots of l23.

�

Figure 5. Because � is the highest weight, and because all of the

weights are given by acting Y on the highest weight, we know that

every weight must be contained in this hull.

Proof. Say we have some highest weight, then the Xs all bring it to zero. We

haven’t shown that repeatedly acting Y on the highest weight gives us everything,

but taking that for granted, nothing is nonzero outside of the hull pictured in fig. 5.

But now it must be symmetric about the lines which W reflects over since all of

these parallel lines are sl (2,C) representations. This is exactly the convex hull in

fig. 3. ⇤

3. Constructing irreducible representations of sl (3,C)

Recall we saw:

sl (2,C) � C2 ;

1M

n=0

Sym
n
�
C2

�
= O

�
C2

�

where O
�
C2

�
consists of polynomial functions. Now we have sl (3,C) � C3

stan-

dard, as well as the dual to this and we want to build a similar picture.
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3.1. Fundamental a�ne space. The fundamental a�ne space is:

Xsl(3,C) =
n
(v,�) 2 C3

⇥ (C⇤
)
3
|� (v) = 0

o

Another, more general, way of thinking about this is:

Xsl(3,C) =
�
(v, w1 ^ w2) 2 C3

⇥ ^
2C3

| v ^ (w1 ^ w2) = 0
 

this is nice since it looks like a version of a flag.

Claim 2.

O
�
Xsl(3,C)

�
=

M

�2⇤+

V�

where every irreducible appears exactly once.

So every simple Lie algebra has such a fundamental a�ne space, so this should

give some hint as to how we should generalize this.

Remark 2. The proof next time will follow from the Peter-Weyl theorem.

Let’s find some of our favorite representations in this.

Example 3. Write v and � in coordinates:

v =

0

@
x1

x2

x3

1

A � = (y1, y2, y3)

The trivial representation is given by constant functions, VL1 = C3
= C hx1, x2, x3i,

and similarly V�L3 =
�
C3

�⇤
= C hy1, y2, y3i. The adjoint representation is given

by:

VL1�L3 = sl (3,C) = C hxiyji

where these satisfy:

x1y1 + x2y2 + x3y3 = 0

so this object is 8-dimensional.
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1. Fundamental affine space

Definition 1. The fundamental a�ne space Xn of sl (n,C) is contained in

Xn ⇢ Cn
⇥ ^

2Cn
⇥ · · ·⇥ ^

n�1Cn

In particular, it comprises collections of the following form:

(a1, b1 ^ b2, c1 ^ c2 ^ c3, · · · )

These are elementary forms in the sense that they aren’t sums of such elements.

We also insist on the “inclusions” a1 ^ (b1 ^ b2) = 0 and the higher-dimensional

analogues
1
i.e. a1 ^ (c1 ^ c2 ^ c3) etc. I.e. the spans are included in the larger if

nonzero.

This is supposed to look like the flag variety.

To see that this isn’t so mysterious, consider the open subset X0
n ⇢ Xn where

all terms are nonzero. This space has a natural projection

X0
n

B

to the flag variety of flags in n-space, B, where we map these primitive forms to

their span. This makes sense since we required them to be nonzero.

This is surjective, and in fact a fibration with fiber as follows. Each time we

sort of introduce a new vector, all we care about is preserving the “volume” of the

parallelepiped, there’s sort of C⇥
many choices. So the fibers are (C⇥

)
n�1

.

Note the following:

dimBn =
n (n� 1)

2
dimX0

n =
n (n� 1)

2
+ n� 1 =

(n+ 2) (n� 1)

2

Now we have the following lemma:

Lemma 1. Xn
0
' G/N where N = [B,B] =

⌦
b1b2b

�1

1
b�1

2
2 B

↵
consists of upper

diagonal matrices with 1 on the diagonal.

Proof. We need to show G acts transitively, and the stabilizer is N . I.e. we take

any list of such forms to any other list of forms using G. So we write down our

favorite element of Xn
0
:

(e1, e1 ^ e2, · · · , e1 ^ · · · ^ en�1)

Date: October 18, 2018.

1
These are called Plücker equations.

1
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and then any other one is:

(a1, b1 ^ b2, c1 ^ c2 ^ c3, · · · )

and we need a matrix in SL (n) which takes us there. The first column should just

be a1. Now because of the inclusion equations, we can write b1 ^ b2 as a1 ^ b0
2
for

some b0
2
. Explicitly, we can write a matrix with columns:

( a1 b0
2
· · · )

this is basically just a change of basis matrix.

Now what group elements fix this nested sequence? We better have 1, 0, · · · , 0
in the first column, and we have to maintain the span of b1 and b2, so we have to

have 0 after the second coordinate, so we get (⇤, 1, 0, · · · , 0) in the second column,

since we have 1 on the diagonal. All together we get:

0

BBBB@

1 ⇤ · · · · · ·

0 1 · · · · · ·

0 0 · · · · · ·

· · · · · · · · · · · ·

0 0 0 1

1

CCCCA

which is of course N . ⇤

Corollary 1. Recall we already saw Bn = G/B, so this is a fibration for B/N ' T .

Example 1. The fundamental a�ne space of sl (2,C) is X2 = Cn
and X0

2
=

C2
\ {0}. The projection maps v 7! l 2 Bn ' P1

where l ' C hvi.

Remark 1 (For algebraic geometers). We have these two creatures X0
n and Xn and

we might sort of wonder why we’re considering both of them. Dealing with just

G/N is very nice, but it is not an a�ne variety, as we saw in the previous example:

C2
\ 0 is not a�ne (though it is quasi-a�ne). The a�ne closure of X0

n is Xn.

Example 2. We know the dimension of sl (3,C) is 8, and then the dimension of

X0
3
is 8 � 3 = 5. T is two dimensions so when we divide by this we get down to

the three-dimensional flag variety. We start with a1 = ae1 then b0
2
= be2, and all

together 0

@
a 0 0

0 b 0

0 0 a�1b�1

1

A

since we need determinant one. So this is a map from points above to determinant

one diagonal matrices.

The fiber living above the standard flag:

E1 = C he1i E2 = C he1, e2i

is (C⇥
)
2
, so it is somehow missing the axes. Then the closure is T ' C2

, but

we got this only from paying attention to a and b, but we really want something

which pays equal attention to all coordinates. More democratically, T is naturally

a subset of (C⇥
)
3
cut out by det = 1. The quotient picture was like a photograph

of the corner of the room, and this is like the slice of the corner of the room.
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1.1. Relationship with fundamental representations. We now return to the

following proposition:

Proposition 1.

O (Xn) =

M

�2⇤+

V�

where V� is a representation of highest weight �, and each V� appears exactly once.

Proof. We need to calculate the highest weights in O (Xn). Recall these are the

invariants under N , so they are in O (Xn)
N

where N = [B,B] consists of the

strictly upper triangular matrices as usual. Recall the Lie algebra of N is C hXiji.

Claim 1. There exists an open B orbit in Xn isomorphic to B.

Proof. Take the opposite standard flag,

eop = {en, en ^ en�1, · · · }

and then we claim B acts on this with an open orbit. Start with e3, then take

e3 ^ e2.

Exercise 1. Show that B ·eop consists of all configurations with nonzero terms with

spans transverse to the standard configuration e. Also check that if b · eop = eop

then b = 1.

and we are done. ⇤
This means B ' B · eop ✓ Xn is an open dense subset. Now take the functions

O (Xn) and restrict them to O (B · eop) = O (B), and since B is dense this must

be an inclusion. Now we can also restrict:

O (Xn)
N ,! O (B · eop)N ' O (N\B) ' O (T )

So N invariant functions give us functions on T . In conclusion we have an injection:

O (Xn)
N ,! O (T )

But we know the weight lattice ⇤ is just monomial functions on T , ⇤ = HomAb (T,C⇥
),

so O (T ) is just the C-span of the weight lattice C h⇤i.

Example 3. The idea here is

O
�
C⇥�

=

(
NX

i=�N

ciz
i

)

and in this case ⇤ ' Z =
�
zi | i 2 Z

 
.

So to everyN -invariant function we have assigned a linear combination of weights.

But we know N -invariants are highest weights, so the actual function we get can’t

be arbitrary, it has to be highest weight. I.e. the image of any particular highest

weight must be a monomial. I.e. the injection above is T -equivariant.
There is a G action G

�

O (Xn) where (g · f) (x) = f
�
g�1x

�
. Now look at

O (Xn)
N
. Then claim that this still has a T action given by the same formula. So

(t · f) (x) = f
�
t�1x

�
. So now we want to check the following. Look at n (tf) and

we want to show that this is just tf :

n (tf) = tt�1
(ntf) = t (n0f) = tf
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so there’s still a T action.

Since the construction is T -equivariant we have the map

O (Xn)
N ,! O (T )

and a left T -action on both. This is just since restriction “commuted” with the

T -action. A highest weight vector of highest-weight � must get mapped to some

scale of the highest weight monomial z�. Therefore we can conclude that the

highest weight vectors inject into the possible weights. I.e. there exists at most one

dimension of highest weight vector for any given weight.

Now conversely we claim that

Vstd,^
2Vstd, · · · ,^

n�1Vstd = V ⇤
std

are all inside O (Xn). Recall the highest weights of these representations are a basis

for the dominant weights. Now let f1, · · · , fn�1 be highest weight vectors in each

of the ^
iVstd inside O (Xn). Products of these will be nonzero, and this product

will still be N invariant. Therefore it has to contain at least one irreducible of

every highest weight. I.e. f i1
1
f i2
2
· · · f in�1

n�1
is a nonzero N -invariant vector of weight

i1�1+· · ·+in�1�n�1 i.e. a highest weight of this eigenvalue. This is in ⇤
+
, therefore

for every � 2 ⇤
+
there exists highest weight representation V� inside O (Xn). ⌅
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Today we will finish discussion representation of sl (3,C) and then talk about
representations of sp (4).

1. Representations of sl (3,C)

1.1. Recall. Recall we have the following theorem:

Theorem 1. Repfd (sl (3,C)) is semisimple and the irreducibles are in bijection
with � 2 ⇤+.

So far we have done the following:

1. Constructed V� ⇢ O (X3) for � 2 ⇤+.
2. Some analysis of possible weights. For � 2 ⇤+ we discussed that the possi-

ble weights for any irreducible representation with this highest weight will
live in some sort of generalize hexagon.

3. Semi-simplicity of this category. This is done in the exact same way as it
was done for sl (2,C). Recall we said that representations of sl (2,C) are
the same as representations of SL (2,C), which are the same as represen-
tations of SU (2), and then we put metrics on everything and decomposed.
Similarly, we have:

Repfd (sl (3,C)) ' Repfd (SL (3,C)) ' Repfd (SU (3))

and these all have invariant inner products, so subrepresentations have
orthogonal complements. This technique generalizes even further to all
simple Lie algebras. All we’re really doing here is bring it to its unique
simply connected Lie group, then go to the maximal compact subgroup,
and then construct an invariant metric.

What we haven’t shown is that any two irreducibles with the same highest-
weight must be isomorphic. Once we do this, we will be done with the proof of the
theorem. Recall for sl (2,C) this was accomplished using Verma modules, which we
will use in this case as well.

1.2. Verma modules. Let g be a simple Lie algebra, and h ✓ b ✓ g be a
choice of Borus. Recall b is maximal solvable, and h is maximal abelian, and
ad-diagonalizable.

Note that h ,! b ⇣ b/ [b, b], and in fact this composition is an isomorphism.1

I.e. h lives in b as a subalgebra and a quotient. This tells us that b ' hn [b, b].

Date: October 23, 2018.

1
It makes sense that the quotient b/ [b, b] is abelian since b is solvable.

1
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�

•Y1

• Y2

•Y3

Figure 1. The ordering of the negative roots used in the calculations.

Fix a character (i.e. a linear map) � : h ! C of h. In other words think of � 2 h⇤

as a weight. We want to view � as a 1-dimensional representation C� of h, i.e. C�

is a complex line where H 2 h acts as: H · v = � (H) v.

Definition 1. The Verma module I� is

I� := Ug⌦Ub C�

Note that C� is a representation of b via b ! h, so it can of course be a repre-
sentation of Ub. In other words, X · v = 0 and H · v = � (H) v for X 2 [b, b], and
H 2 h.

One might wonder why anyone would bother defining this in the first place. As
it turns out, this is the standard way to construct a module which has the following
universal property. If you find a vector in your representation such that X kills it,
and H acts by �, then there exists a unique map from I� to your representation.
I.e.

Homg (I�, V ) ' Homg (C�, V )

which consists of the [b, b]-invariants and h eigenvectors of weight �.
Now the following gives us a basis for the Verma module:

Theorem 2 (PBW). Choose an ordering of the positive roots R
+, which gives us

an ordering of the negative roots. Then a basis of Ug is given by ordered monomials
Y

a
H

b
X

c.

This immediately implies that a basis for I� is given by the ordered monomials
Y

a. This implies that we understand the weights of I�. Order the negative roots as
in fig. 1. Then we can calculate the dimension of the weight spaces of these weights
as in fig. 2. The weight spaces which are given by successive actions of Y1 or Y2

are all of dimension 1. However if we act by Y1Y2, this is the same as just acting
Y3, so this space has dimension 2. As it turns out, each shell consists exactly of
spaces with the same dimension, and every time you venture one shell deeper the
dimension increases by 1.

Example 1. The corner of the third shell can be reached by monomials Y 2
3 , Y

2
1 Y

2
2 ,

and Y1Y2Y3.
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Y2

Y2Y2

Y1

Y1Y1

Y1Y2 = Y3

Figure 2. The di↵erent potential ways of reaching a given weight
with ordered monomials gives the dimension of the weight space
by PBW.

Exercise 1. Recall the pattern for sl (2,C) was somehow linear with slope 0, then
this is linear of slope 1. Find the pattern for sl (4,C).

Now we want to write a closed formula for the character of I�. Well we know
that it will somehow be e� ⇤ (· · · ) for something inside. In particular:

ch (I�) = e� ⇤

0

@
Y

↵i2�R+

1

1� e↵i

1

A

We would love this to be a function with compact support on ⇤, i.e. an element of

C [⇤] for � 2 ⇤, but we end up taking the completion [C [⇤].

1.3. Back to finite dimensional representations. Suppose V is an irreducible
finite dimensional representation of highest weight � 2 ⇤+. Now we will try to
state some facts and arguments which will hopefully show that V is unique up to
isomorphism.

Proposition 1. The natural map I� ! V given by the highest-weight vector is
surjective.

Proof. This is somehow a tautology, because if it wasn’t surjective then the image
would be a subspace of V , which is of course impossible since V is irreducible. ⇤

Remark 1. This is saying that we can get to anything in V by applying the Y s.

Now we construct a resolution of V in terms of the Verma modules. Return
to sl (3,C). We will discuss how it generalizes later. Recall we already know the
nonzero weights of some representation with highest-weight � lie in this sort of
generalized hexagon. Then we can consider the first points where the Y s act as 0.
To do this we define the following:
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�

s23s13

s12

s23̃·�

s12s23̃·�

s12̃·�

s23s13̃·�

s23s12s23̃·�

Figure 3. The images of � under the sij ·̃ action.

Definition 2. Let 2⇢ = ↵12 +↵23 +↵13. Then define s̃·� for s 2 W and � 2 h⇤ to
be the “reflection” with respect to hyperplanes translated by �⇢.

Remark 2. The point here is somehow that �⇢ was supposed to be the center of
the universe all along rather than 0.

Example 2. We write the twisted product explicitly for single group actions:

s12̃·� = s12�� ↵12 s23̃·� = s23�� ↵23 s13̃·� = s13�� ↵13

This explicitly tells us that s12̃·� and s23̃·� are the first time we escape the gener-
alized hexagon from applying Y s as is evident in fig. 3.

This means that we have the following exact sequence:

Is12 ·̃� � Is23 ·̃� I� V

but this isn’t short exact since we still haven’t somehow killed everything. So we
keep considering the kernels to get the full resolution:

0 Is12s23s12 ·̃� Is12s23 ·̃� � Is23s12 ·̃� Is12 ·̃� � Is23 ·̃� I� V

Example 3. For sl (2,C) the eigenvalue for upper-triangular matrices was 2, so
⇢ = 1, and then reflection about �1 is what gave us the term I�n�2 as the kernel
in the SES.

Now we are somehow done, because here we just learned that for any irreducible,
we are able to resolve it in terms of Verma modules. I.e. the part of the sequence
without V has nothing to do with V . This is somehow just taking the maximal
proper submodule of an object and repeating the process until we get 0.

1.4. Weyl character formula. The resolution from above also gives us the Weyl
character formula since the character of V is the alternating sum of the preceding
objects in the sequence.
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Corollary 1 (Weyl character formula).

ch (V ) =
X

ch (I�)� (ch (Is12 ·̃�) + ch (Is23 ·̃�)) + · · ·

=
X

w2W

(�1)l(w)

0

@ew·̃� ⇤

Y

↵i2R+

1

1� e↵i

1

A

where l is the length of w.

Example 4. The length l (w) in the case of sl (3) is the number of these simple
transpositions to get to w.

We will return to this next time when we will learn why this resolution is true, and
that we can view it as some sort of algebraic realization of Schubert decomposition
of the flag variety.
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We will continue our discussion of Bernstein-Gelfand-Gelfand (BGG) resolution,

and discuss sl (4,C) and sp (4,C) as generalizations of sl (3,C).

1. BGG resolution

Informally speaking this is a resolution of a finite dimensional representation

theory by Verma modules. More specifically, if we fix some highest-weight � 2 ⇤
+
,

then we define:

⇢ =
1

2

X

↵i2R+

↵i

and modify the action of the Weyl group to act as:

s̃·� = s (�+ ⇢)� ⇢

for s 2 W . So ⇢ is now the center of the universe. Now we choose some simple

reflections, e.g. for sl (3,C), s12 and s23 generate the group so we set these to be

our simple reflections. Then the last ingredient is a length function l : W ! Z�0

where l (s) is the minimum word length of s in terms of simple reflections. Then

this gives us the resolution:

0 V�  I�  
M

l(s)=1

Is̃·�  · · · Iw0 ·̃�  0

At each stage if we ask if it’s injective the answer is no
1
since there will be a kernel,

and in particular it will be the maximal submodule.

One might be worried about the choice of these reflections depending on the fact

that the Weyl group is Sn for sl (n,C), but the point is, for every simple root, there

will be a Levi sl (2,C) living inside the Lie algebra, with that simple root as its

positive root, and the reflection for sl (2,C) will be a simple reflection for the Lie

algebra.

2. Weights and roots of sl (4,C)

Consider the Lie algebra sl (4,C). We proceed the same way as we did for sl (3,C)
and consider the weights of the standard representation on C4

as in fig. 1. Now

just as ↵12 and ↵23 were simple roots for sl (3,C), we now have three simple roots

↵12, ↵23, and ↵34 as in fig. 1. Then the other roots are all of the edges of the bigger

Date: October 25, 2018.

1
Of course until the last one. . .

1
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L1

L2

L3

L4

↵12

↵23

↵34

↵24

↵14

Figure 1. (Left) The weights of the standard representation of

sl (4,C). (Right) The weights of the adjoint representation of

sl (4,C).

cube on the right of fig. 1. The point here is that if we consider a matrix with a 1

in the spot: 0

BB@

↵12 ↵13 ↵14

↵23 ↵24

↵34

1

CCA

it will be an eigenvector with eigenvalue as in the right of fig. 1. Then there are six

more on the other edges of the cube.

The cone of elements which pair positively with the positive roots can be seen

in fig. 2. This is somehow a triangle on the back face coned o↵ to the origin. Note

that it takes 24 such triangles to cover the face of the cube, which is of course

what we would expect since |S4| = 24, which makes sense since these cones should

correspond to the Borel subalgebras which are acted on simply freely by the Weyl

group.

We can view this cone as coming from three copies of sl (3,C) as being the sort

of intersections of the three figure in fig. 3. Reflections over these planes are the

simple reflections for sl (4,C).

3. Representations of sp (4,C)

3.1. Definition. Recall the Lie algebra sp (2n,C) ✓ sl (2n,C), is the Lie algebra

of the Lie group Sp (2n,C) ✓ SL (2n,C) which is the group of 2n ⇥ 2n matrices

which preserve the standard symplectic form in the sense that

Sp (2n,C) =
�
A 2 SL (2n,C) |AT

JA = J
 

where we have fixed a symplectic form

! =

X

i

e2i�1 ^ e2i
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Figure 2. The cone of dominant weights in sl (4,C).

0

BB@

⇤ ⇤
⇤ ⇤

1

CCA

0

BB@
⇤ ⇤
⇤ ⇤

1

CCA

0

BB@ ⇤ ⇤
⇤ ⇤

1

CCA

Figure 3. The three Levi sl (2,C)s living inside of sl (4,C) give

us reflections over these three planes.

which, as a matrix, looks like

J =

0

BB@

0 �1
1 0

0 �1
1 0

1

CCA

But it doesn’t really matter, as long as we take something skew-symmetric and

non-degenerate, since we have the following.

Exercise 1. Show that all symplectic forms are equivalent.

Then the Lie algebra is

sp (2n,C) =
�
X 2 sl (n,C) | JX = �XT

J
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•
L1 •

2L1

•L3 • L1 + L3

• 2L3

•

•L3 � L1

•

• •

•

•

Figure 4. The dual space h⇤ of our Cartan subalgebra with

weights L1, L3, and the eight roots.

Exercise 2. Show that Sp (2n,C) is simply connected, so this is indeed the unique

simply connected Lie group associated to this Lie algebra. Also show Z (Sp (2n,C)) =
Z/2.

3.2. Roots. We can take our Cartan subgroup to be

H =

*
0

BB@

a

a
�1

b

b
�1

1

CCA

+

The idea is that if we are going to preserve the area, we need to spin neighbouring

coordinates by opposite amounts. Technically we should check that this is not only

abelian but actually maximal abelian, but we know this is rank 2, and we’ve already

seen the classification so we already know this is maximal.

This means our Cartan subalgebra h is

h =

*
0

BB@

r

�r
s

�s

1

CCA

+

Again we have h⇤ ' C2
, so we have an analogous picture in fig. 4.

Life is a little better here than it was in sl (3,C), because we have two favorite

functionals. We can take the functional which returns out the first diagonal entry,

L1, and the functional which returns the third, L3. Now we can generate the roots

by calculating commutators, and draw them as in fig. 4. The Weyl group here is

S2 ⇥ Z/2 = Z/2⇥ Z/2 which is of course the dihedral group D2. Now we want to

find positive and simple roots. To do this we pick the Borel:

B = Sp (2n,C) \ { upper triangular matrices }
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•

•L3

•

•

• L1 + L3

••

•••

Figure 5. The dominant weight lattice of sp (4,C).

•

•

••

Figure 6. Weights of the standard representation of sp (4,C).

Then the positive roots are L3 � L1, 2L3, L1 + L3, and 2L1, and out of these the

two simple roots are 2L1 and L3�L1. The dominant weights are then Z multiples

of L1 + L3 and L3 as in fig. 5.

3.3. Constructing representations. Now we want to construct some representa-

tions of this by hand. Recall in sl (3,C), we constructed the standard representation

and the dual standard representation, and then we could just get everything from

tensoring these. Analogously, the two most important constructions here have

highest-weights L3 and L1 + L3. The representation corresponding to L3 is the

standard representation C4
. The weights of this are as in fig. 6.

Now for L1 + L3, we should first notice that the weights should likely lie in

some sort of convex hull that looks like a square, where we have just reflected this
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•

••

••

Figure 7. The weights of the representation with highest-weight

L1 + L3.

highest weight across these hyperplanes. Then we might wonder if 0 is a weight of

this representation. To find out, we can just act with the “lowering” operators and

see if we land in it. Applying the root �L1 �L3, we do land at 0, so it is possible.

The answer turns out to be as in fig. 7. So now we know the weights, and we want

to find the actual representation. We learned from sl (n,C), that once we know the

standard representation, the smaller ones are just exterior powers. This inspires us

to look at:

^2
�
C4

�
= C · ! �W

which is a 6-dimensional representation, where W is some five-dimensional irre-

ducible representation. The weights of this exterior power are pairwise sums of

weights from the standard where we don’t add any weight to itself, so we get a

weight of multiplicity 2 at 0, and one at each of the four corners. Then the weights

of the decompositions are as follows:

•

••

••

= •

••

••

+ •

Note that sp (4,C) is born as a subalgebra of sl (4,C). This means we can project

the dual space of the Cartan subalgebras

h⇤sl(4,C)

h⇤sp(4,C)

according to the dual of the inclusion sp ,! sl. Then if we would have picked our

basis correctly, the eigenvalues would map exactly to eigenvalues Li 7! Li.

Exercise 3. Draw G2. This is the other distinct rank two simple Lie algebra.
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4. Flag variety and fundamental affine space for sp (4,C)

In general, the flag variety X should be the moduli of Borel subalgebras b ⇢ g.
For SL (n,C) we saw that X ' G/B since G

�

X transitively by conjugation with

stabilizer B. In this setting we have the following:

Proposition 1. The flag variety for sp (4,C) is
X '

�
{0} ✓ E1 ✓ E2 ✓ · · · ✓ En ✓ C2n

 

where Ei is isotropic2, i.e. !|Ei
= 0 and En is Lagrangian.

Exercise 4. Show that the symplectic group acts transitively on these isotropic

flags, and that the stabilizer of the standard isotropic flag is exactly a Borel sub-

group.

Example 1. For sp (2,C), the flag variety is just CP1
, which is good since sp (2,C) '

sl (2,C), so they should agree.

Example 2. For sp (4), the choices of E1 are just CP3
, i.e. forgetting E1 is a map

X ! CP3
. Then the fiber is CP1

, which is the choice of E2 for a fixed E1. The

idea is that once we fix E1, we are looking for lines symplectically orthogonal to it.

So they have to somehow live in sp (2) /B ' CP1
.

2
Note that all lines are isotropic, so it’s really only a relevant condition for i � 1.
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Today we will talk a bit more about the classification of semisimple Lie algebras,
root systems, and Dynkin diagrams. Going forward, we will take a more geometric
approach via D-modules.

1. Classification of simple Lie algebras

Recall we saw the following classification of Lie algebras according to their rank.1

g Diagram Z (G) ⇡1 (G)

An (n � 1) sl (n+ 1,C) Z/ (n+ 1)Z 0

Bn (n � 2) so (2n+ 1,C) 0 Z/2Z
Cn (n � 3) sp (2n,C) Z/2Z 0

Dn (n � 4) so (2n,C) Z/2Z Z/2Z

E6 � Z/3Z �

E7 � Z/2Z �

E8 � 0 �
F4 � 0 �
G2 � 0 �

We will now see what these cartoons mean mathematically. The strategy will be
to go from simple Lie algebras, extract root systems, and get a list of Lie algebras
out of that.

1.1. Root systems.

Definition 1. A root system is a real euclidean2 vector space (V, h·, ·i) equipped
with some subset of roots R which satisfy the following properties:

(1) The roots span V .
(2) If ↵ 2 R then �↵ 2 R.
(3) ↵ and �↵ are the only roots on R · ↵.

Date: November 6, 2018.

1
Recall the rank of a Lie algebra is just the dimension of a Cartan subalgebra. These of

course all have to be the same since they’re related by conjugation by the unique connected,

simply-connected Lie group.

2
Non-degenerate inner product.

1



2 LECTURES BY: DAVID NADLER NOTES BY: JACKSON VAN DYKE

••

• •

• •

•

•

••

• •

•
#

Figure 1. The root system G2. Note that the projection of the
red root onto the horizontal axis is 1.5 times the blue root. The
projection is pictured in gray.

(4) Reflection across ↵? for ↵ 2 R preserves the set of roots.
(5) Orthogonal projection to R · ↵ takes R to {±↵,±↵/2, 3↵/2}.

Example 1. The roots of sl (3,C) and sp (4,C) comprise root systems.

Proposition 1. If g is a semisimple complex Lie algebra, and h ✓ g is a Cartan
subalgebra, then the roots R ⇢ h⇤ satisfy all the axioms of a Root system in V =
SpanR (R) ✓ h⇤ with respect to the Killing inner product.

Remark 1. If axiom 1 fails for the roots of some Lie algebra, then this means g
must have a nontrivial center, so it can’t be semisimple. Motivation from the second
axiom is meant to come from the fact that for every root which somehow comes
from an upper triangular location, there should be a corresponding root which came
from a lower triangular location. This is again because we are semisimple here. If
we were talking about solvable Lie algebras, we would somehow only have roots on
one side. For axiom 4, recall we have the Weyl group action. For any root, we have
a copy of sl (2,C) with that root as its root. Then we can reflect according to the
this particular sl (2,C). To see the last axiom 5, consider any root �, and reflect it
with respect to ↵. Then we need the di↵erence between � and its reflections to be
in the Z-linear span of the roots.

Example 2. So far we have only ever seen root systems where we only need ±↵
and ±↵/2 in the list in axiom 5. An example that illustrates the fact that we need
the 3↵/2 which can be seen in fig. 1.

As it turns out, the arrow between semi-simple Lie algebras and root systems is
really an equivalence.

Lemma 1. There is a map from based root systems3 to root systems. I.e. we can
construct everything from the simple roots.

3
These just consist of a basis of roots satisfying some properties.
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L1

L2

L3

L4

↵12

↵23

↵34

↵24

↵14

Figure 2. (Left) The weights of the standard representation of
sl (4,C). (Right) The roots of sl (4,C), i.e. the weights of the
adjoint representation of sl (4,C). One choice of simple roots is in
red.

1.2. Dynkin diagrams. A Dynkin diagram is a graph with a vertex for every
↵ 2 �. Then there is a single edge edge for an angle between the roots of 2⇡/3, a
double edge for 3⇡/4, and a triple edge for 5⇡/6. The direction of the double and
triple edges point from longer to shorter roots.

Example 3. Recall sl (4,C) has a picture as in fig. 2. One choice of simple roots
consists of ↵12, ↵23, and ↵34. The angle between ↵12 and ↵34 is ⇡/2 so they don’t
get connected, but the angle between ↵12 and ↵23 is 2⇡/3, and similarly for ↵23

and ↵34, so we indeed get

which is the A3 diagram.

Example 4. First consider sp (6,C) which has root system B3 as in fig. 3. so (7,C)
has the root system C3 as in fig. 3. Both of these systems have roots on all edges
of the square. The B3 root system has roots on all surfaces of the cube, whereas
the C3 system has roots above all surfaces of the cube. Therefore they have the
same angular relationship, which is that two of the simple roots have an angle of
⇡/2, two have an angle 2⇡/3, and two have an angle of 3⇡/4. But the relationship
between the lengths of the roots is di↵erent which is why the direction of the arrow
is di↵erent for B3 versus C3:

B3 C3

Example 5. For so (4,C) the roots are as in fig. 4. which means the angle between
all roots is ⇡/2, so the Dynkin diagram is just two unconnected points. This is a
reflection of the fact that

so (4,C) = sl (2,C)⇥ sl (2,C)
Exercise 1. Come up with a creative way to think about/draw F4.
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Figure 3. (Left) The root system B3 for sp (6,C). The simple
roots are the roots of multiplicity 2. (Right) The root system C3

for so (7,C). The simple roots are the roots of multiplicity 2.

•

•

••

Figure 4. The roots of so (4,C).

1.3. Simply-laced Dynkin diagrams. The An, Dn, and En Dynkin diagrams
are called simply-laced because they only have single bars in their Dynkin diagram.
One sample connection to another part of mathematics is as follows.4 The ADE
diagrams are in bijection with rational/du Val surface singularities.

Example 6. The diagrams An correspond to

V
�
x2 + y2 + z1+n

�
✓ C3

For n = 1, so sl (2,C), we get a nice cone. As n increases this gets worse and worse.
Now we might ask how far this is from being a manifold. One way to measure this
is to find a minimal resolution X̃n ! Xn. The idea is that X̃n will be a smooth
surface, and this map will be an isomorphism away from the singular point which
is also proper everywhere.5 Then the preimage of the singular point is n copies of

4
This is typically attributed to to Grothendieck but Professor Nadler says the way it goes is

that the rich get richer.

5
This just means the inverse image of compact sets is compact.
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CP1 which intersect in a chain which is the An diagram. The same story holds for
types Dn and En, only in those cases the singularities look a bit di↵erent.

2. Harish Chandra center

Let g be a simple Lie algebra over C, and letG be the connected simply-connected
group with Lie algebra g. Since g is simple, the center z (g) = h0i. This means Z (G)
must be finite.6 This seems like we can’t attack it with much since it’s sort of atomic,
but as it turns out the enveloping algebra Ug has a somehow large center. This is
an amazing fact, because if we have a G action, we have a g action, so we have a
Ug action, and this object actually has this large useful center.

Theorem 1 (Harish Chandra). The center of the enveloping algebra z (Ug) is iso-

morphic to (Ug)(W,̃·) where W acts around ⇢ rather than the origin.

6
It is immediate that the center must be discrete, but after a bit of work we could see that it

does indeed have to be finite.
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1. Harish Chandra center

We will continue our discussion of the Harish-Chandra center. The setup will be
g a semi-simple complex Lie algebra, and G the unique connected, simply-connected
Lie group. Inside g we have a Cartan subalgebra h, and on this we have this Weyl
group action. Then we have the following theorem:

Theorem 1.
z (Ug) ' (Uh)W,̃·

2. The RHS

The first thing to notice is that we have a canonical isomorphism Uh ' Sym (h).
Recall

Uh :=
M

n�0

h⌦n
/ (H1 ⌦H2 �H2 ⌦H1 � [H1, H2] = 0) .

Since h is abelian, we are actually just killing transpositions, so we get a symmetric
algebra.

2.1. A useful point of view. A useful point of view is to think of Sym h as
polynomial functions on h⇤, written C [h⇤]. Now we have a W action1 only we want
to re-center at �⇢ to get the this ·̃ action.

To get this action we had to choose a Borel subalgebra, which told us the positive
roots, and then we write down half the sum of the positive roots, and this is ⇢. More
specifically,

w·̃� = w · (�+ ⇢)� ⇢ .

The reason this point of view is useful, is that we have

(Uh)W,̃· = Sym (h)W,̃· = C [h⇤]W,̃·

so we should think of this as consisting of the polynomials invariant under this
twisted W action.

Remark 1. This C [h⇤]W,̃· is what we would write in algebraic geometry as

C [h⇤//W, ·̃]
Note that this space, which we now write as

c⇤ := h⇤//W ,

Date: November 8, 2018.

1
Professor Nadler’s polarity changed after his week away and now he gets shocked by the

blackboard.

1
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is again an a�ne space.

Fact 1 (Fantastic fact). (Uh)W,̃· is again a polynomial algebra.

Example 1. In sl (n,C), W = ⌃n is the symmetric group. We will ignore the
·̃ part for now just to get a feeling for this. Here h⇤ just consists of n-tuples of
eigenvalues of trace 0. Now we can ask for all of the polynomial functions of the
eigenvalues that are invariant under their permutations. As it turns out, these are
the polynomials in the elementary symmetric functions:

C [h⇤//W ] ' C [�2, · · · ,�n] .

So we should think of this guy as another a�ne space.

2.2. Motivation/what this is telling us. Let’s stop for a second and enjoy what
this theorem is telling us. It is saying that any time you write down a module over
this algebra Ug, i.e. a representation of g, finite or infinite dimensional, you have
an action of the center on the module. So the entire representation theory of this
algebra lives over functions on an a�ne space. So we can talk about when a module
is supported at a point of an a�ne space, based on acting on it by functions.

The upshot of all this is that the category Ug-Mod is linear over the polynomial
algebra C [c⇤]. So if we are given some Ug module M , we can take some2 �̄ 2 c⇤,
and then consider functions which vanish exactly at this point, and multiply the
module by them. Now we can ask if the action is, say, always an isomorphism. And
if it is, that means the module would somehow live only here.

Remark 2. What professor Nadler is trying to convey here in basic terms is the
following. If you’ve ever taken Spec of a module in algebraic geometry you know
you get a sheaf on this thing. So it tells us that all modules have some expansion
over this a�ne space.

In particular, if you’re irreducible, we already know what the irreducible modules
are for a polynomial algebra. They’re just given by the maximal ideals, i.e. just
the points. So the upshot is that all of the irreducible modules live over points of
c⇤. If a module “spreads out” then we can just multiply it by a function x� �̄ and
get a submodule.

So again, the representation theory of this lives over an a�ne space, whose points
are somehow sets of eigenvalues. So what remains for us, as representation theorists
trying to understand all Ug modules, is to fix any single point in c⇤ and just study
all of the modules that live above this.

For fixed �̄ 2 c⇤ we set the following notation:

U�̄g = Ug/I�̄
where I�̄ is the ideal of C [c⇤] which consists of functions vanishing at �̄. So the
only nonzero things are what’s happening here.

Example 2. This is supposed to be like taking k� ' k [t] / (t� �) to get the sky
scraper (copy of scalars) at �.

So now we have the following observation: U�̄g-Mod just consists of Ug-Mod
on which the center acts by the character. I.e. we map

z ! z/I�̄ ' k�̄

2
We call this �̄ to convey that it somehow comes as the image of some set of eigenvalues.

Points of h⇤ are like ordered eigenvalues, and points of c⇤ are like unordered eigenvalues.
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Remark 3. What do we mean by acts by the character? If we take any Ug module
we can ask how the center acts. Remember we want to think of this as functions
on c⇤. So now we’re just doing algebraic geometry. We have a polynomial algebra,
and we’re asking how it acts on a module. One of our favorite ways is to take a
polynomial, restrict it to �̄ to get its value, and then scale the module by that value.
But this is mathematically the same as saying the polynomial algebra maps to its
quotient by the ideal of functions vanishing at �̄ which is just the values at �̄.

The whole representation theory of the enveloping algebra, which is to say the
representation theory of g, has this giant center in it, and we can somehow talk
about those representations that live over any point in Spec of the center. We define
this algebra to be the quotient of the entire algebra which is given by just looking
at the point �̄. The whole representation theory is then somehow an “integral”
over the representation theory at these �̄.

Remark 4. This is somehow the reason one likes centers. If g was commutative, it
would just be its own center, and we would be back in algebraic geometry where
we know how to classify irreducibles (given by maximal ideals) so there’s a whole
structure there. And the next best thing is the (very big) center of Ug. So in this
part things are just algebraic geometry, and then for each �̄ you have to do the
algebraic geometry of this new particular algebra which has center just consisting
of scalars.

Remark 5. This is somehow a general paradigm. Any time someone gives you a
mathematical object, you should ask what its endomorphisms are, and then find the
center of the endomorphisms. Then spread it out over Spec of the center. Professor
Nadler says you can understand almost everything in mathematics by asking that
question.

2.3. Calculation for sl (2,C).
Example 3. Let g = sl (2,C). Then h = C ·H and h⇤ = C ·L1 where La (aH) = a.
We want to think about L1 as a point, and then functions on this line h⇤ are
polynomials in H, C [h⇤] ' C [H]. Recall the usual W = Z/2 = {1,�} action is just

reflection wrt 0, so C [H]W is all polynomials invariant under H 7! �H, which is
of course C

⇥
H

2
⇤
. This is again a polynomial algebra, and we should think of this

as being like a double cover by the square map. Here ⇢ = L1, so �⇢ = �L1, so the
action of W = Z/2 by ·̃ is really reflection over �1:

�·̃ (aL1) = � (aL1 + L1)� L1 = (�a� 2)L1 .

Now the invariant functions under this action are:

C [h⇤]W,̃· = C
h
(H + 1)2

i

Remark 6. One might be annoyed by this ·̃ action because it’s an extra thing to
keep track of. Professor Nadler says that often times in mathematics it is best to
respect structures like this and be their friends so they can guide us.

3. The LHS

Now we want to think about the LHS of the theorem. Recall again that:

Ug =

 1M

n=0

g⌦n

!
/ (X ⌦ Y � Y ⌦X � [X,Y ])
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But this quotient doesn’t respect the grading of the tensor algebra since it e↵ectively
sets degree 2 things equal to degree 1 things. We do however maintain the filtration:

F
0Ug ⇢ F

1Ug ⇢ · · ·

where F
iUg somehow consists of tensors of degree i and lower. We can canonically

write that

F
0Ug = C F

1Ug = C� g

are tensors of degree 0 and degree 1, but after this there is no canonical splitting
of the filtration. PBW does however give us a non-canonical splitting.

Recall that this PBW story was that Ug has a basis of ordered monomials of the
form X

↵1H
↵2Y

↵3 which gives us a splitting of this filtration. This tells us that we
can set

F
2Ug = C� g� {degree two s.t. linear combination of PBW basis} .

Now if we pass to the associated graded algebra:

GrF (Ug) =
1M

n=0

F
nUg/Fn�1Ug ' Sym (g)

we get a symmetric algebra on g.

3.1. Organizing Ug and Sym (g). What we did above doesn’t really have anything
to do with PBW. Any time we have a filtered algebra like this we can do what’s
called the Rees construction, which builds a new algebra which depends on both
the initial algebra and the filtration. Explicitly we define the algebra:

Rg =
1M

n=0

F
nUg · ~n

where the multiplication is given by:

(⌧n · ~n) · (⌧ 0m · ~m) := ⌧n⌧
0
m · ~n+m

Note that ~ is central, which means this algebra lives over the ~ line. Now we can
ask about the fibers of this algebra at di↵erent points. When ~ = 0, we recover the
associated graded algebra GrF (Ug), and at ~ = 1 we recover Ug. In general we
get:

Rg|a = Rg/ (~� a)

Exercise 1. Show that with this definition Rg|0 = GrF (Ug) and Rg|1 = Ug.

Solution. For ~ = 0 we can look at the inclusion of something in the ideal (h) into
F

n+1Ug · ~ and this will be exactly GrF (Ug).

Remark 7. The whole point here is that what we did above is completely general
and doesn’t have anything to do with PBW.

Remark 8. So we start with a symmetric algebra, the functions on g, and then one
can view this as quantizing those functions. A useful point of view is that Rg is
the deformation quantization3 of the algebra of symmetric functions with respect
to the Poisson structure given by [·, ·].

3
This is just a word for deforming a commutative algebra to be something noncommutative.
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Remark 9. The general point of view here is that when we’re studying Ug, we’re
really looking at g⇤ as a vector space, which has a ring of functions with a Poisson
bracket, and we’re quantizing the Poisson bracket to get Ug.
3.2. Key observation. Now we want to determine the center of Ug. What is the
center of the special fiber? This is commutative, so it is the whole thing. So passing
between them something strange happens since the center gets much smaller. We
now have the following key observation:

z (Ug) ' (Ug)G

under the adjoint action. So if we take a tensor ⌧ such that Adg ⌧ = ⌧ , then
di↵erentiating with respect to g = exp (tX) we get adX (⌧) = 0 which means
[X, ⌧ ] = 0 where this extends by the Jacobi identity. Therefore, being an invariant
means you’re certainly in the center. Now conversely, if something is in the center
we can just exponentiate it, which generates a neighborhood of the identity, and
therefore this thing is invariant under the adjoint action of G as well. So we just
reinterpreted being in the center as a quality which only concerns invariants of this
vector space.

Now the PBW splitting gives the isomorphism of vector spaces Ug ' Sym (g) so
the subspaces of invariants are the same as vector spaces:

(Ug)G ' Sym (g)G .

Warning 1. The LHS is commutative and the RHS is not, so these are cer-
tainly not isomorphic as algebras, and in fact they’re not even isomorphic as G-
representations. We will see an example of this soon.

Now there is a theorem of Chevalley4 which says:

(Sym g)G ' (Sym h)W

Example 4. In g = sl (n,C), this isn’t so surprising. In this case Sym (g)G consists
of all polynomial functions on traceless n ⇥ n matrices which are invariant under
change of basis, i.e. they are conjugation invariant. On the other hand, Sym (h)W

consists of symmetric functions on traceless n-tuples of eigenvalues. There is a
natural map Sym (g)G ! Sym (h)W where we just restrict to the diagonal matrices.
In the other direction, one needs to convince oneself that any function of n ⇥ n

matrices that are conjugation invariant is just going to be a symmetric function on
the eigenvalues.

Exercise 2. Show this.

All together we have shown that:

z (Ug) ' (Sym h)W

as vector spaces, which shows us they are somehow the same size, which is what
Harish-Chandra said was true. But there is no ·̃ in sight, so we need to go back and
somehow correct the fact that this was not an isomorphism of algebras, or even of
representations. We will see what this looks like for sl (2,C), and the main point
will be that we need to go and symmetrize the PBW basis. This changes the W

action, which finishes the picture. In the process we will calculate the first casimir,
which is to say the first interesting invariant.

4
This is often referred to as Chevalley’s restriction theorem.
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1. Harish Chandra center

Recall we are exploring the Harish Chandra center, and the isomorphism given
by the theorem:

Theorem 1. For g a reductive complex Lie algebra,

z (Ug) ' C [h⇤](W,̃·)

Recall that one way to think of the RHS is as C [h⇤/ (W, ·̃)]. And then one of
the main results of geometric representation theory is Chevalley’s theorem which
tells us that C [h⇤](W,̃·) is a polynomial algebra which implies this quotient c⇤ is an
a�ne space. The point is, the center is functions on unordered eigenvalues.

Remark 1. The LHS is important because any time we want to study modules over
something, we can ask what its center is and how it acts. The Algebraic geometers
will succinctly say that Spec (z (Ug)) ' h⇤/ (W, ·̃).

Recall the key idea is that we have the following isomorphism as vector spaces:

z (Ug) ' (Ug)G .

This was because if we write

Adg (v1 ⌦ · · · vk) = Adg (v1)⌦ · · ·⌦Adg (vk)

then di↵erentiating this gives us that the ad action is trivial on such elements. Then
using PBW we saw (Ug) ' (Sym g) as vector spaces which means we have

(Ug)G ' (Sym g)G

as vector spaces. Then Chevalley tells us that this is a polynomial algebra, and in
fact:

(Ug)G ' Sym (h)W

so they have sort of the same size.

Example 1. We will see why this is true for sl (2,C). As usual sl (2,C) =

C hX,H, Y i. First we look for invariants in Sym (g)G. We know C is an invari-
ant, and the adjoint representation g is irreducible. Next we take the tensor:

g⌦ g = V4 � V2 � V0 ' V4 � g� C

Date: November 13, 2018.

1
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and the interesting thing is that this C is a new invariant. Inside of g⌦2 ' Sym2 (g)�
^2g, the first thing to notice is that

g⌦2 ' Sym2 (g)� ^2g ' (V0 � V4)� V2

so this C actually lives in Sym2 g. Now we have a favorite element of Sym2 g '
Sym2 g⇤, which is the Killing form.

Exercise 1. Show that V0 = C hi where  is the Killing form.

Solution. We can explicitly write the Killing form as  = H
2 + 4XY . Now we

want to see if this is invariant. It is in the zero weight space so we just need to
calculate:

[X,] =
⇥
X,H

2
⇤
+ [X, 4XY ]

= [X,H]⌦H +H ⌦ [X,H] +
4

2
(X ⌦ [X,Y ] + [X,Y ]⌦X)

= �2X ⌦H � 2H ⌦X + 2H ⌦X + 2H ⌦X

= 0

This is the unique invariant vector in Sym2 (g).

We might keep searching for invariants, but Chevalley tells us that this is a
polynomial algebra, so

Sym (g)G = C� C · � C · 2 � · · · ' C []

Now we need to lift this element into the enveloping algebra. So we seek a central
element ̃ 2 Ug such that under the PBW isomorphism:

z (Ug) ' (Ug)G ' C []

we have that ̃ 7! . But now the ambiguity here is that we don’t know where XY

lifts, i.e. this depends on our choices in the PBW setup. But we can just choose
̃ = H

2 + 2 (XY + Y X), and we already checked this is a good lift.

2. The ⇢ shift

Now let’s find the ⇢ shift in this picture. Our goal is a more explicit isomorphism
in the example of sl (2,C). As usual, consider G

�

G/N where N is the fundamental
a�ne space. From this we get a map g ! Vect (G/N), and now we naturally get
a map Ug ! Di↵ (G/N) where Di↵ (G/N) denotes the di↵erential operators on
G/N . We also have a commuting right H-action on G/N . All together, we have
G/N with a left G action, and a right H-action, and these actions commute. So
we get a map Ug⌦ Uh ! Di↵ (G/N).

Exercise 2. Prove that H is exactly the symmetries of G/N that commute with
G.

Now if we take the center zg ✓ Ug, then we have the following diagram:

zg

Ug Di↵ (G/N) Uh

'

This factorization ' results from the facts:
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(1) zg commutes with Ug
(2) Uh is exactly what commutes with Ug.
Then the Harish Chandra isomorphism is the map

' : zg ! (Uh)W,̃·

Example 2. We will do this explicitly for sl (2,C). In this case G/N ' C2 \ {0}
with coordinates u and v, and with the left action, we get

H 7! �u@u + v@v X 7! �v@u Y 7! �u@v

Now let’s calculate this Casimir K = H
2 + 2 (XY + Y X):

K = (u@u � v@v)
2 + 2 (v@uu@v + u@vv@u)

= (u@u)
2 + (v@v)

2 � u@uv@v � v@vu@u + 2 (v@uu@v + u@vv@u)

= (u@u)
2 + (v@v)

2 � uv@u@v � vu@v@u + 2 (vu@u@v + v@v + uv@v@u + u@u)

= (u@u)
2 + (v@v)

2 + 2uv@u@v + 2 (u@u + v@v)

Now for the right action,

H 7! u@u + v@v

and we want to write K as a polynomial in H, and indeed:

K = H
2 + 2H = (H + 1)2 � 1

which is of course ⇢-shifted.
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1. sl (3,C)

Recall for g = sl (3,C) we have the Cartan subalgebra h = C hH12, H23, H31i
where H12 + H23 + H13 = 0. Then h⇤ = hL1, L2, L3i, and we want to describe

invariant functions on h⇤. We can regard the Hij as linear functions on h⇤. For

example, H12 is the function which is +1 at L1, �1 at L2, and zero on the span of

L3. Now to find functions invariant under the Weyl group action we want a basis

of h⇤ for which the Weyl group permutes the elements. Unfortunately the usual

basis is not such a basis since, for example, (12) takes H12 to �H12.

We need to take di↵erent coordinates in order for this to be a permutation action.

The idea is that we don’t want functions which are vanishing on the these particular

hyperplanes. Instead we will set:

a = H12 �H31 b = H23 �H12 c = H31 �H23 .

Now these functions take values as in fig. 1.

Claim 1. W = ⌃2 permutes the functions a, b, and c.

“Proof” by example. Take � = (12), then this takes a 7! b, b 7! a, and c 7! c. ⇤

As a result of this observation, we can write:

Sym (h)W ' C [a, b, c]
W ' C [�2,�3]

where

�2 = ab+ bc+ ca �3 = abc

Now we want to find the image of the hyperplanes under taking W invariants.

First notice that L1, L2, and L3 all map to a point. The hyperplanes are the

vanishing locus of theHij , but in the a, b, c basis, the hyperplanes are instead where

a = b or b = c or c = a. Then the claim is that the image of these hyperplanes

is given by some equation of order 3 in �2 and order 2 in �3, i.e.
�
c2�

3
2 + c3�

2
3

 

for some c2 and c3. In particular for h = (a� b) (b� c) (c� a) we have that h
2
is

exactly the equation cutting out this cusp.

Date: November 15, 2018.

1
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• 2

•�1

•�1

a

• �1

•2

•�1

b

• �1

•�1

•2

c

Figure 1. The values taken by our new basis a, b, and c. The

functions vanish along the dotted hyperplanes now rather than the

hyperplanes that the Weyl group reflects over.

2. Isomorphism of Ug and Sym g as vector spaces but NOT
representations

If we choose a PBW basis, we can get an identification Ug ' Sym (g) as vector
spaces, but certainly not as G-representations. The following example shows this.

Example 1. Take g = sl (2,C) with the usual PBW basis. If we look at XY 2 Ug,
then under this isomorphism with Sym g this element XY 7! XY 2 Sym g. But if
we instead take Y X 2 Ug, the prescription is to rewrite this as Y X = XY +[Y,X] =

XY �H which is in “PBW form” so this gets mapped to XY �H 2 Sym g. This
is exactly the point of PBW, it is somehow telling you how to break symmetry.

Consider

g =

✓
0 1

�1 0

◆
2 SL (2,C) .

Then we’re hoping that if we conjugate Y X and map it to Sym g, this is the same

as mapping it and then conjugating it. We can calculate the action of Adg to be

✓
0 1

�1 0

◆✓
a b

c �a

◆✓
0 �1

1 0

◆
=

✓
�a �c

�b a

◆

which means

H 7! �H X 7! �Y Y 7! �X

and therefore we have

Adg (Y X) = Adg (Y )Adg (X) = (�X) (�Y ) = XY .



LECTURE 22 MATH 261A 3

Therefore we have seen that if we first conjugate and then map to Sym g versus

mapping to Sym g and then conjugating, we don’t get the same result:

Y X XY �H

XY XY Y X +H

Adg

PBW 6=
Therefore these things are not isomorphic as G representations in this way.

3. Isomorphism of Ug and Sym g as adjoint G representations

The goal is now to construct an isomorphism of these as representations. We

will not be using PBW at all. We know Ug is filtered, and Sym g is even graded,

so it’s certainly filtered.

Claim 2 (Good news). There exists an isomorphism of adjoint G representations

so that in particular, for any piece of our filtration of Ug we have the following

isomorphism:

Ug Sym g

F
kUg

kL
i=0

Sym
i g

⇠

⇠

Proof. We will prove this by induction on the filtration. The base case is just:

F
0Ug ' C ' Sym

0
(g)

So now suppose we have

F
k�1Ug '

k�1M

i=0

Sym
i
(g)

as G representations. Consider the following SESs:

0 F
k�1Ug F

kUg Grk Ug 0

0

k�1L
i=0

Sym
i
(g)

kL
i=0

Sym
i
(g) Sym

k
(g) 0

⇠ ? ⇠

where the bottom sequence naturally splits. Then since the category is semi-simple,

the top SES splits. ⇤

4. More discussion of Harish Chandra

We won’t be explicitly proving the HC isomorphism, but we will discuss it more

so we at least feel comfortable with it. Recall the content of the theorem is that

z (Ug) ' (Uh)W,̃·
.

Geometrically, we can think of G/N as having a left action of G by left multi-

plication, and a right action of H which commutes with this action since

(gN)h = gh
�
h
�1

Nh
�
= ghN

since H normalizes N .
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Example 2. Let g = sl (2,C). Then G/N = C2 \ {0} and

gN 7! g

✓
1

0

◆
.

Recall that N =

⌧✓
1 n

0 1

◆�
is exactly the stabilizer of this vector (1, 0). Now we

can think about what this action does to vectors in C2 \ {0}. Take h =

✓
z 0

0 z
�1

◆

inside the Cartan, and now we want to see what gNh = ghN goes to:

ghN 7! gh

✓
1

0

◆
= g

✓
z

0

◆

so H ' C⇥
acts by dilation, and SL (2,C) acts as usual by linear transformations.

So we have these two commuting actions on C2 \ {0}.

Exercise 1. Show than when we have these two commuting actions G

�

G/N  H,

then G-equivariant automorphisms of G/N are exactly just H acting on the right.

Solution. Since B = NG (N), we have H ' B/N . This is just a general fact

that in any subgroup if you ask what are the G-equivariant automorphisms of the

homogeneous space, the answer will be the normalizer modulo the stabilizer which

in this case is H.

The point is that one only needs to know where one point goes since it is G

equivariant.

Remark 1. This is very similar to when we were talking about highest weights.

Corollary 1. G invariant vector fields on G/N are given by vector fields coming
from h.

Corollary 2 (More generally). The collection of G invariant di↵erential operators
on G/N is isomorphic to di↵erential operators coming from Uh.

Example 3. Let’s return to G = SL (2,C) to see what’s going on here. In this

context this is saying that:

Aut
G
�
C2 \ {0}

�
' C⇥

where C⇥
acts by dilation. So if you need to map a vector to another vector in

a way that is G-compatible, i.e. it commutes with linear tranformations, then the

only way to do it is by dilation.

4.1. Application. The reason this abstract discussion is useful, is the following

application. We can map

z (Ug) ! Di↵
G
(G/N)

but these must come from Uh. In other words we have a factorization

zUg Di↵
G
(G/N)

Uh

and this is the Harish Chandra homomorphism. In this language the theorem is

saying that the image is actually (Uh)(W,̃·)
.
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To be continued. . .
1

1
A fire alarm went o↵ at this point. Probably because the large amount of smoke in the air

from the forest fires leaked into the building and set the alarms o↵.
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We will have lecture this week and Tuesday of next week. There will be o�ce

hours this week and next week as usual. The final will be posted this week, and it

will be due on Monday December 10. The topic for the remaining lectures will be

D-modules and Beilinson-Bernstein localization.

1. Harish-Chandra

For any complex simple Lie group G, we have the actions G

�

G/N  B/N ' H

where G/N is the fundamental a�ne space.

Example 1. For G = SL (2,C), the fundamental a�ne space is C2
\ {0}, where

SL (2,C) acts by fractional linear transformations, and C⇥
' H acts on the right

by dilations.

We know we can map g ! (G/N)  h and extend this to Ug ! Di↵ (G/B)  

Uh.

Theorem 1. z (Ug) ,! Di↵ (G/N) with image

Di↵ (G/N) - (Uh)(W,̃·)
' (Sym h)(W,̃·)

' C [h⇤](W,̃·)

so
z (Ug)

⇠
�! C

⇥
h⇥

⇤(W,̃·)

Example 2. z (Usl (2,C)) ' C [K] where K = H
2
+ 2 (XY + Y X) is the Casimir.

We should then think of its image under this isomorphism, (H + 1)
2
2 C [h⇥]

(W,̃·)
,

as the quadratic function that vanishes to order 2 at �1.

2. Beilinson-Bernstein localization

Let G

�

G/B be a simple complex Lie group acting on this flag variety. As usual

we can map g! Vect (G/B) and Ug! Di↵ (G/B).

2.1. Algebraic vector fields and di↵erential operators. We want to restrict

our attention to algebraic vector fields and algebraic di↵erential operators. So

let’s see what those things are. G/B can be covered by a�ne spaces Cd
where

d = dim (G/B). We can do this by taking a coordinate flag E
•
w
for w 2W . Recall

the standard flag is:

E
•
std = {h0i ⇢ he1i ⇢ he1, e2i ⇢ · · ·Cn

}

and then

E
•
2 = w (E

•
std) =

�
h0i ⇢

⌦
ew(1)

↵
⇢
⌦
ew(1), ew(2)

↵
⇢ · · ·

 
.

Date: November 27, 2018.

1
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So given any coordinate flag we can define the a�ne space

Aw = {E
• t E

•
w
}

which means E
k t E

n�k

w
for all k.

Exercise 1. Show that each of these Aw ' Cd
.

Now “algebraic” means that we only allow polynomial functions on the coordi-

nate patches. So algebraic vector fields are vector fields such that on any coordinate

patch, it will look like a polynomial function times @/@xi rather than a generic com-

plex analytic function times these @/@xi. Explicitly they are of the form:

x =

dX

i=1

pi (x) @xi

where the pi are polynomials. We will write Vect
alg

(G/B) and Di↵
alg

(G/B) for

the algebraic vector fields and algebraic di↵erential operators respectively.

Exercise 2. Show that the maps g ! Vect (G/B) and Ug ! Di↵ (G/B) land in

algebraic vector fields and algebraic di↵erential operators.

Example 3. For g = sl (2,C), in one of the coordinate patches we saw thatX 7! @x,

H 7! �2x@x, and Y 7! �x
2
@x which are of course algebraic.

2.2. A fundamental theorem.

Theorem 2. The map U0g! Di↵
alg

(G/B) is an isomorphism, where we define

U0g = Ug/z0 (Ug)

where z0 (Ug) is the augmentation ideal, i.e. the ideal of z (Ug) ' C [h⇥]
(W,̃·)

van-
ishing at 0 2 h⇥.

This is compatible with the HC isomorphism in the following sense. Recall that

when discussing HC we mapped g! Vect
alg

(G/N) h and Ug! Di↵
alg

(G/N) 

Uh. But now we can obtain Di↵
alg

(G/B) from Di↵
alg

(G/N) by doing “quantum

Hamiltonian reduction.” In particular we following the steps:

(1) Take H invariant di↵erential operations on G/N , Di↵
alg

(G/N)
H
.

(2) Quotient by U
0h, which is the H-invariant di↵erential operators along the

fibers. Note that U
0h is the kernel of the map U

0h! Uh ' C [h⇥]
ev0
��! C.

So in the end we get:

Di↵
alg

(G/B) = Di↵
alg

(G/N)
H
/U

0h

So the map Ug! Di↵
alg

(G/B) certainly must send the ideal z0 (Ug) ✓ U
0h to 0.

Remark 1. Similarly we can prove that U�g
⇠
�! Di↵

alg
�

(G/B) where U�g = Ug/z� (Ug),
and

Di↵
alg
�

(G/B) = Di↵
alg

(G/N)
H
/U

�h .

This new object consists of what are called “twisted di↵erential operators.” We

can think of this as taking the fiber of the moment map at � rather than at 0. The

most general version of this theorem that one might consider is:

Theorem 3. Ug⌦zg Uh
⇠
�! Di↵

alg
(G/N)

H



LECTURE 23 MATH 261A 3

So in this case we somehow skip the second step of the Hamiltonian reduction

above.

The point is that if we want to understand Ug modules, or in particular irre-

ducible Ug modules, each of them will have a fixed central character, so each of

them will come with some U�g. And this theorem is telling us that the theory of

U�g modules is the same as the theory of modules over the di↵erential operators, so

something very geometric. We will spend the next week or so talking about what

it means to be a module over di↵erential operators.

3. Modules over differential operators

We could tell this whole story for twisted di↵erential operators, which is neces-

sary to understand all Ug modules, since studying di↵erential operators only tells

us about U0g. But we will keep it simple and just study Di↵
alg

(G/B). Now we

have the following key idea:

Key idea: To obtain modules over global di↵erential operators from

local modules over di↵erential operators by taking global sections.

The point here is that we will construct modules by gluing together “local”

modules. We couldn’t do this in U0g itself, but in G/B we can since

G/B =

[

w2W

Aw

is just the union of a�ne pieces which are each Cd
for d = dimG/B. In particular,

we will study di↵erential operators on these pieces Aw and then glue them all

together.

3.1. Local story: algebraic di↵erential operators and their modules on

Cd
.

Exercise 3. Show that the algebraic di↵erential operators are exactly the Weyl

algebra:

Di↵
alg �Cd

�
' C hx1, · · · , xd, @x1 , · · · , @xdi

where the xi all commute, the @xi commute, and then

[@xi , xj ] = @xixj � xj@xi =

(
0 i 6= j

1 + xi@xi � xi@xi = 1 i = j
.

Now we will think about what modules are like over this algebra. First we will

focus on the case d = 1 and do some examples. So in this case, Di↵
alg

(C) '
C hx, @xi.

Example 4. The free module C hx, @xi�n
is of course a module.

Example 5. Polynomial functions O
alg

(C) ' C [x] is a module over Di↵
alg

(C)
where x acts as x and @x di↵erentiates x. Note that C hx, @xi / (@x)

⇠
�! C [x] where

1 7! 1. This isn’t free, but it’s still nice. This is a somehow small module since it’s

the quotient of a rank-one free module.

Example 6. We can also consider the rational functions

K
alg

(C) ' C (x) =

⇢
p

q
| q 6⌘ 0

�
.
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This is also a module, but it is not finitely generated, because whenever you think

you’ve finitely generated it, some function walks into the room with a deeper pole.

Example 7. We can consider

O
alg

(C) hexi = {p · e
x
| p polynomial}

but we have to check that

@x (pe
x
) = p

0
e
x
+ pe

x
= (p

0
+ p) e

x
.

This is somehow a small module, so we expect it to be somehow surjected upon by

a rank 1 free module. Indeed, C hx, @xi / (@x � 1)
⇠
�! O

alg
(C) hexi where we map

1 7! e
x
.

Example 8. We can also consider any su�ciently di↵erentiable function space on

C, but these are somehow huge and not so algebraic.

Now we might wonder if there is a module M with dimC M < 1. Certainly

none of them so far have satisfied this. An easier question to ask might be to forget

about @x, and think of finite dimensional C [x] modules.

Exercise 4. Show that any finite dimensional C [x] module is a finite dimensional

vector spaces equipped with an endomorphism. Show that

V =

kM

i=1

C [x] / (x� �i)
di

.

Note that each of these is a Jordan block.

So now we need to ask ourselves how to add @x into the picture and act on such

a V .

Claim 1. Finite dimensional C hx, @xi-modules M are all trivial.

First we need to check how @x must act on an eigenvector, then we just need to

notice what happens when we keep applying @x.

Remark 2. We can also show it more algebraically. If we have some finite dimen-

sional module M , then we can represent x and @x as two matrices A and B which

act as linear operators on M . Then since [x, @x] = 1, [A,B] = I, but if M is finite

dimensional we have a well defined Tr, so

n = Tr (I) = Tr (AB �BA) = 0

so M must be zero dimensional, or Tr is not well defined.
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Recall from last time we stated the following theorem:

Theorem 1. For g a semisimple complex Lie algebra, we have an isomorphism:

U0g
⇠
�! Di↵alg (G/B)

Remark 1. The G action on G/B leads to a map g ! Vectalg (G/B), which leads
to a map Ug ! Di↵alg (G/B). Last time we discussed why this factors through Ug

to U0g = Ug/z0g, where z0g is the ideal I0 under the identification zg ' C [h⇥]
(W,̃·)

.
And from the same argument, is then injective.

1. Why is this map surjective

We will now try to see why we should expect this map to be surjective.

Remark 2. If this is indeed surjective, we might wonder what hits the functions on
the right, but the answer is that they’re all constant, since G/B is compact. The
example to keep in mind is P1.

Remark 3. If we’re somehow only concerned with representation theory of g, we
don’t really need this to be surjective, but we will make this comment anyway.

First note that the above maps are actually maps of filtered algebras. I.e.

Ug ! U0g ! Di↵alg (G/B)

respect the natural filtrations on these objects. The first has the tensor algebra
filtration, the second has the tensor algebra filtration modulo some filtered ideal,
and the filtration on Di↵alg (G/B) is given by the order of a given di↵erential
operator. These all somehow look like

X

↵

p↵ (x) @↵
x

where p↵ (x) are polynomials where for big enough ↵, they’re all zero. Then the
filtration is given by the order of ↵.

Date: November 29, 2018.
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Now we can pass to the associated graded algebras:

Sym (g) Sym (g) /
⇣
Sym (g)G

⌘0
' C [g�=0] GrDi↵alg (G/B)

C [g⇤]
⇣
C [g⇤]G

⌘0

⇣
C [h⇤]W

⌘0
= I0

' '

'

where
⇣
Sym (g)G

⌘0
is as follows. Recall we wrote down an isomorphism of G-

representations between Ug and Sym g. And under this isomorphism, the center
goes to the G-invariant piece. Then we take the ideal of zero inside of this, i.e.
the ideal of things which vanish when we just look at their constant piece. More
precisely,

Sym (g) ' C� g� Sym2 g� · · ·

Sym (g)G ' C� h0i � Sym2 g� · · ·

⇣
Sym (g)G

⌘0
' h0i � h0i � Sym2 g� · · ·

We can think of this quotient by
⇣
Sym (g)G

⌘0
as being functions C [g�=0] where

� : g⇤ ! h⇤ is the characteristic polynomial map, and N = g⇤�=0 consists of the
matrices whose eigenvalues are all 0. The sort of geometric picture is:

g⇤ g⇤�=0 = N

h⇤/W 0

�

3

Note that this diagram is the fiber in this category.
So on associated graded algebras, Ug becomes functions on g⇤, and U

0g becomes
functions on N . In other words, if we pass to algebraic functions, we get

C [g⇤] C [N ]

Sym (g) Sym (g) /
⇣
Sym (g)G

⌘0

C [h⇤]W C

�⇤

res0

So on the level of associated graded algebras, when we restrict to U0g, instead of
looking at functions on all of g⇤, we’re just looking at functions on N . Now if we
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quantize, we get

Ug U0g

zg C

Remark 4. We have seen that when we pass to associated graded, U0g goes to
functions on N . For U�g, this goes to functions on the fiber above � as in the
above diagram.

Now finally, the associated graded algebra of Di↵alg (G/B) is

GrDi↵alg (G/B) ' O
alg (T ⇤G/B) .

This somehow has nothing to do with G/B, this is just a general fact. This is a
canonical construction.

Remark 5. In a kind of naive way, we can say that any time we have @x, we replace
it by the functions linear along the fiber, which to a covector, pairs with @x.

Remark 6. Certinaly every vector field gives you a function on the cotangent bundle
where you just pair with the vector field. Now if all of those commute, then you
get all functions on the cotangent bundle, and if they don’t, then you’re back to
thinking about di↵erential operators.

To convince ourselves of this, we can consider the following local picture. Recall
that locally, di↵erential operators on some Cd, are Di↵alg �Cd

�
= C [x1, .., xd, @x1 , · · · , @xd ].

Then the filtration is given by the order of ↵. In particular,

Di↵0 �Cd
�
= O

�
Cd

�
⇢ Di↵1 �Cd

�
= O

�
Cd

�
h@x1 , · · · , @xdi ⇢ · · ·

and in general

Di↵n �Cd
�
= Di↵(n�1) �Cd

�
h@x1 , · · · , @xdi

Now when we pass to associated graded, we get

Gr0 ' O
�
Cd

�

Gr1 ' O
�
Cd

�
h⇠1, · · · , ⇠di

Gr2 ⇠= O
�
Cd

�
h⇠i⇠j8i, ji

where the ⇠i are fiber-wise linear functions on the cotangent bundle which act as
⇠i (x, ⌘) = ⌘i and the ⇠i⇠j are fiber-wise quadratic functions which act as ⇠i⇠j (x, ⌘) =
⌘i⌘j . Now we can just glue this local picture together.

Now we want to understand the last map U0g ! Di↵alg (G/B) on the level
of associated graded algebras. Recall we’ve identified these with O

alg (N ) and
O

alg (T ⇤G/B) respectively. Then the claim is that the map U0g ! Di↵alg (G/B)
is an isomorphism. In particular, we claim that this is an isomorphism i↵ it is
an isomorphism on the level of the associated graded algebras, and that this is an
isomorphism.

Exercise 1. The G action on G/B gives you a moment map µ : T ⇤G/B ! g⇤.
Show:

(1) im (µ) is N ✓ g⇤

(2) µ⇤ is Oalg (N ) ! O
alg (T ⇤G/B).
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(3) µ is a resolution, in particular proper and surjective, and conclude µ⇤ is an
isomorphism.

In summary, we have the following:1

g⇤ N T ⇤G/B

Ug U0g Di↵alg (G/B)

quantize

⇠

This is a very nice picture, because we have these geometric spaces, and then con-
sider functions on them, and then we deform these functions to be non-commutative
and we get this picture.

2. Local modules

Now we return to the question of modules over di↵erential algebraic operators
on Cd. Recall

Di↵alg �Cd
�
' C [x1, · · · , xd, @x1 , · · · , @xd ]

In particular, we were wondering if there are any finite dimensional representations
over this. Suppose M is a finite dimensional representation, then xi and @xi are
just matrices and then there is a well defined trace, so tr ([xi, @xi ]) = 0 = tr (I) = n.
So the “smallest” modules are the size of the examples from last time which were
all somehow like O

�
Cd

�
' C [x1, · · · , xd] and O

�
Cd

�
eax ' eaxC [x1, · · · , xd].

There are more of this sort when we consider the xi and the @xi on the same foot-
ing. In particular, we have some Fourier transform symmetries FTi : Di↵alg �Cd

�
!

Di↵alg �Cd
�
which map xj 7! xj and @xj ! @xj for j 6= i and xi 7! @xi and @xi 7! xi.

So another example is:

� (0) ' C [@x1 , · · · , @xd ] ' Di↵alg �Cd
�
/ (x1, · · · , xd) .

This is like O
�
Cd

�
' Di↵alg �Cd

�
/ (@x1 , · · · , @xd) except we instead quotient out

by the xi. We also have

� (p) ' C [@x1 , · · · , @xd ] ' Di↵alg �Cd
�
/ (x1 � p1, · · · , xd � pd) .

These are called the “delta functions” and can be thought of as distributions.

3. D-modules

Definition 1. A D-module M on G/B is a compatible collection of Di↵alg (Aw)-
modules.

More precisely we want

Mw|Aw\Aw0 ' Mw0 |Aw\Aw0

given by 'w0

w and then there’s a cocycle condition.
By restriction we mean the following. Given a Di↵alg �Cd

�
-module M and an

open U = {p1 6= 0, · · · , pl 6= 0} ✓ Cd then set

M |U = M


1

p1
, · · · ,

1

pl

�

1 Professor Nadler says we should be screaming this in the middle of the night. He also says
this is potentially tattoo worthy mathematics.



LECTURE 24 MATH 261A 5

Theorem 2 (Beilinson-Bernstein localization). U0-Mod is equivalent to D-modules
on G/B where we send a D-module M to its global sections � (G/B,M).

Note that we define the global sections to be the equalizer of the following dia-
gram:

� (G/B,M)
Q

w2W Mw
Q

w,w0 Mw|Aw0

3.1. D-modules on P1
. We will focus on g = sl (2,C), so G/B ' P1

' A1 [A� '

C [ C where W ' Z/2 ' {1,�}. Recall that since E•
std = he1i, A1 is the subset of

lines l in P1 where l transverse to e1, and then E•
� = he2i, so A� is the subset of

lines l in P1 which are transverse to e2. A1 has coordinate t = s�1, and A� has
coordinate s, where s is the slope of the line, i.e. the intersection with the line at
x = 1.

Therefore a D-module M has two parts, it is a pair M1 and M� which are mod-
ules over C [t, @t] and C [s, @s] respectively. They also come with an isomorphism

M1

⇥
t�1

⇤
' M�

⇥
s�1

⇤
=: M1,�

as modules over C
⇥
t, t�1, @t

⇤
' C

⇥
s, s�1, @s

⇤
.

The global sections are:

�
�
P1,M

�
= ker [M1 ⇥M� ! M1,�]

so these are pairs which map to m1,m� 7! m1�m�. Recall sl (2,C) ! Vectalg
�
P1

�
.

Example 1. O
alg

�
P1

�
= �

�
P1,O

�
for some D-module O, defined by O (A1) =

C [t] and O (A�) = C [s]. So this is saying all polynomials on a compact space
are constant. This is a complicated way of telling you the trivial representation of
sl (2,C).

Example 2. The D-module �s=0 at s = 0 is given by the pieces �s=0 (A1) = h0i,
and �s=0 (A�) = C [s, @s] / (s).

Exercise 2. What representation of sl (2,C) does this correspond to?

The BGG resolution will come from the Schubert cells which we will see on
Tuesday.
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Today we will pick up where we left o↵ with sl (2,C) and return to the BGG
resolution.

1. D-modules

Recall we were considering G = SL (2,C) � P1
' B ' G/B. This is the usual

action by fractional linear transformations. So we get a map g ! Vect
�
P1

�
. Then

we have our favorite elements X, H, and Y , which go to

X =

✓
0 1
0 0

◆
7! s

2
@s H =

✓
1 0
0 �1

◆
7! 2s@s Y =

✓
0 0
1 0

◆
7! �@s

in the chart A� = {l t he2i}. Recall a D-module M on P1 is a compatible pair M1

and M� where M1 is a module over the Weyl algebra C hs, @si and M2 is a module
over C ht, @ti where t := s

�1. Then these have to agree on the overlap. Equivalently,
the following diagram commutes:

C hs, @si

Ug C
⌦
s, s

�1
, @s

↵
= C

⌦
t, t

�1
, @t

↵

C ht, @ti

The global sections of this pair, �
�
P1

,M
�
, comprise the kernel of the map:

M1 ⇥M�
res1 � res�
�������! M1|A� = M�|A1

Now because of the above compatibility, this is naturally a Ug module. Now we
want to match D-modules and Ug-modules.

One thing we could do is write down some D-modules and see what we get when
we take global sections. We could also pick a representation and see some D-module
that hits it. There are plenty of ways to play this game.

Example 1. Let’s start with our favorite D-module O, which consists of algebraic
functions on P1. In the charts this is O1 = C [t] and O� = C [s]. Then the global
sections �

�
P1

,O
�
are given by the kernel of C [t] ⇥ C [s] ! C

⇥
t, t

�1
⇤
which takes

(f (t) , g (s)) 7! f (t) � g
�
t
�1

�
. But if this is 0, then f = g is a constant, and this

is indeed the trivial representation.
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Example 2. Fix l = he1i, and define � (l) to be the algebraic delta function at
l. On charts, � (l)1 = h0i, and � (l)� = C [s, @s] / (s) = C [@s]. Note that we can
write this as C [@s] = C�C@s �C@2

s � · · · so 1 is playing the role of a distribution
which takes a function and tells you the value at a point. Then @s is playing the
roll of the distribution which eats a functions, takes the derivative, and tells you
the value of the derivative at a point, and so on. The global sections are

�
�
P1

,� (l)
�
= C hs, @si / hsi .

Now to find which representation this is, we look at the image of the basis in
Vect

�
P1

�
, and act it on this. First notice that

X · 1 = s
2
@s · 1 = s (@ss� 1) · 1

since we quotiented out by (s). Therefore 1 is an X highest-weight vector.
Now we want to see what the weight of the highest weight vector is by calculating:

H · 1 = 2s@s · 1 = 2 (@ss� 1) · 1 = �2 · 1

so 1 is a highest weight vector of highest weight �2. We already saw Y generates
this, so we have that @s has weight �4, @2

s has weight �6, etc. This shows us that
this is the Verma module V�2 = Usl (2,C)⌦Ub C�2.

Remark 1. If we change the pole of the delta function, i.e. we consider � (l) for
some l 2 P1, then the representation is a Verma module, but for a di↵erent choice
of Borel.

Now let’s pick a representation and try to construct a D-module M such that
when we take the global sections �

�
P1

,M
�
we get this representation. Our fa-

vorite Ug module with trivial central character, is U0 = Usl (2,C) /z0sl (2,C) where
z0sl (2,C) is generated by the Casimir. As it turns out, if we take the D-module
of di↵erential operators M = D, where D1 = C ht, @ti and D� = C hs, @si, then the
global sections are indeed U0g.

Remark 2. The collection of global sections of a D-module is the same as

�
�
P1

,M
�
= HomD-Mod (D,M)

where D is the free module. This is supposed to be like the story in algebra where
we have some ring A and a module over A, then if we want to uncover the underlying
abelian group structure of the module, we can just take Hom from the free rank 1
A-module to the module in question.

There is always a left adjoint to such a construction. If we have a representation
V , we can tensor D ⌦U0sl(2,C) V where D is a D-module. We can form this tensor
since U0 (sl (2,C)) maps to D. This is what’s called localization. This is the usual
adjunction between Hom and tensor, which in this case is an equality.

2. BGG Resolution

2.1. sl (2,C). We first do this for sl (2,C) and trivial central character. There is
only one finite-dimensional representation with trivial central character, which is
the trivial representation. Then we saw that V0 ⇣ C, and in particular

0 ! V�2 ,! V0 ⇣ C ! 0
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is exact. Now we want to try to understand what is going on with the D-modules.
So we will localize to obtain a SES of D-modules:

0 ! � (l) ,!?? ⇣ O ! 0

where l = he1i. As it turns out, “??” is:

� (Ul) = D ⌦U0sl(2,C) V0

which we will specify in each coordinate chart. On the chart A1, this is just
O = C [t]. On A�, this is C hs, @si / (s@s). We say this consists of the algebraic
distributions on P1

\ {l}. Now we would need to check that when we invert s and
t, these become the same.

On the A� chart the SES looks like

0 ! C hs, @si / (s) ,! C hs, @si / (s@s) ⇣ C hs, @si / (@s) ! 0

where 1 7! @s under the injection, and 1 7! 1 under the surjection. On A1 the SES
looks like

0 ! h0i ,! C [t] ⇣ C [t] ! 0

So to l we have assigned � (l), and to the rest, Ul, we assigned this � (Ul). So we
cut P1 up into a point and its complement, and to each of these we have assigned
a canonical module, which is the Verma module. And then the fact that the flag
variety is a union of these pieces is manifested by functions on the flag variety being
built up in a short exact sequence like this.

2.2. General story. In general, we have the Schubert stratification of the flag
variety:

B = G/B =
[

w2W

Bw

where Bw consists of the Borels b ✓ g such that the relative position1 of b w.r.t.
fixed b0 is w. Then to each Bw we can assign theD-module of algebraic distributions
on Bw, � (Bw), and then the collection of global sections is a Verma for this Borel
and for some character. And so the BGG resolution is the obvious fact that the
D-module of functions can be cut up into distributions/functions on each of the
Schubert pieces.

1
Up to linear algebra, if one flag is standard, then the other can be made to be some coordinate

flag, and w is which one.


