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The text is Varadarajan’s Lie groups, Lie algebras and their representations. We
won’t follow this closely. Office hours haven’t been specified yet.

1. Manifolds

1.1. Preliminaries. We will start with a review of smooth manifolds.

Definition 1. A manifold is a pair
(
M, {Uα, ϕα}α∈A

)
where M is a topological

space, and {Uα, ϕα} is an atlas. This means the Uα are open subsets and

ϕα : Uα
∼−→ Vα ⊂ Rn

are homeomorphisms. These must satisfy the properties:

(1) The Uα cover M .
(2) Compatibility in the sense that ϕβ ◦ ϕ−1α : ϕα (Uα ∩ Uβ)→ ϕβ (Uα ∩ Uβ) is

smooth.
(3) Maximality.

Example 1. Consider the n-sphere

Sn =
{
x ∈ Rn | |x|2 = 1

}
We have effectively glued two copies of Rn according to open embeddings.

If we go about making spaces by gluing things together, we get two sort of
pathologies. The first is that the resulting space will not always be Hausdorff.

Example 2. Consider M = R qR× R. That is we take the disjoint union of two
copies of R glued along the nonzero values in R. This can be imagined as R with two
zeros. The basic problem here is that continuous functions can’t tell the difference
between these two points.

Remark 1. Note that we can perform this gluing in two different ways. If we embed
R× with the identity, we get this pathological non-Hausdorff space. If we however
take one embedding to be the identity, and the other embedding to be the inverse
function, then you get a different space. In fact this second space turns out to be
S1.

This motivates some typical additional assumptions:

(1) M is Hausdorff.
(2) M is paracompact.
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Paracompactness just means that every time we have an open cover, we can find
a refinement of this cover such that the resulting open cover is locally finite. A
typical example of what this condition restricts us from considering, i.e. something
which is not paracompact, is the long line. The main reason that we like these
conditions, is that we want well-behaved function theory. For example we want
partitions of unity subordinate to covers.

For this class, all n-manifolds will be closed submanifolds of RN for some n� N .

1.2. Categorical point of view. There is a category Mfd where the objects are
manifolds, and between any two manifolds, we have the set HomMfd (M,N) which
consists of the smooth maps M → N . Note that we have compositions

Hom (M,N)×Hom (N,P )→ Hom (M,P )

given by the set-theoretic composition.
Note that there are many flavors:

(1) Smooth manifolds (smooth)
(2) Complex manifolds (holomorphic)
(3) Smooth algebraic varieties (polynomial maps)
(4) Banach manifolds (smooth)

The point is, there are lots of contexts where it makes sense to talk about a manifold,
and these contexts are characterized by a particular notion of a “good” function.

2. Lie groups

Definition 2. A Lie group G is a group object in Mfd.

This means the following:

(1) G is a manifold
(2) G is a group

(3) These structures are compatible in the sense that multiplicationG×G m−→ G

and inverse G
i−→ G are smooth.

Recall that this means

(1) m is associative
(2) There is a unit e ∈ G such that

m (g, e) = m (e, g) = g m (g, i (g)) = e = m (i (g) , g)

Exercise 1. Derive that i is smooth from the fact that m is smooth.

Example 3. S1 is a Lie group in the sense that

S1 = R/Z
where the multiplication is just addition. Via an exponential map we can also write
this as

R/Z = {z ∈ Z | |z| = 1}
We can also regard S1 ↪→ C× as a subset of the nonzero complex numbers, which
is also a Lie group. We say S1 is a Lie subgroup.

Example 4. Now consider S3 ⊂ R4 where we think of R4 = H as the quaternions.
Recall that these are

H = {a+ ib+ jc+ kd | a, b, c, d ∈ R}
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with the rules that:

i2 = j2 = k2 = −1 ij = k jk = i ki = j

Note that the unit is just 1 and the inverse of a+ bi+ cj + dk is

a− bi− cj − dk
a2 + b2 + c2 + d2

Now if we look at S3 ↪→ H, it turns out that we have the following:

Exercise 2. Check that S3 is closed under quaternionic multiplication.

So S3 is a Lie group because of the quaternions.

Example 5. As a Lie group, C× ' S1 × R>0 where we send reiθ to (θ, r) and
similarly, H× ' S3 × R>0. Note that C× and H× are noncompact. Note that this
has nothing to do with the group theory, but rather the geometry. Similarly, we can
talk about abelian Lie groups, but this is independent of the manifold structure.

Remark 2. None of the other spheres besides S0, S1, and S3 are Lie groups. We
might expect S7 to be a Lie group on account of the so-called octonions, but the
octonions do not form an associative algebra.

Example 6. S2 is not a Lie group. Recall that χ
(
S2
)

= 2. But we also have the
following:

Claim 1. If G is a connected Lie group, χ (G) = 0. If G is finite, χ (G) = |G|.
Example 7. Vector spaces and their automorphisms provide some nice1 examples.
Let V be a finite dimensional vector space, then the general linear group:

GL (V ) = GL (n,R) = Aut (V )

is the set of n× n invertible matrices.
Now recall that GL (V ) also acts on ΛdimV V ' R, and we get the following

GL (V ) V

GL
(
ΛdimV V

)
ΛdimV V ' R

det

�
�

so we get a short exact sequence:

1→ SL (V )→ GL (V )→ GL
(
ΛdimV V

)
→ 1

So the reason some people “don’t like” GL (V ) is that it has a normal subgroup, so
it is not simple. Note that it splits as a manifold, but not as a group. But is SL (V )
simple? If a group has a nontrivial center, then it certainly isn’t simple. And the
center of SL (V ) has the diagonal matrices a · · · 0

· · · a · · ·
0 · · · a


where an = 1 as its center.

Exercise 3. Show that [SL (V ) ,SL (V )] = SL (V ).

Fact 1. All normal subgroups of SL (V ) are finite, and in fact are contained in the
center.

1 According to Professor Nadler, humans understand linear things and basically nothing else.
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2.1. Group actions. Group actions are the main reason Lie was interested in such
things to begin with.

Definition 3. Given a Lie group G and a manifold X, an action of G on X is a
smooth map a : G×X → X such that

(1) a is associative:

a (g1, a (g2, x)) = a (m (g1, g2) , x)

(2) This is unital, so a (e, x) = x.

The two examples to think about are the following:

Example 8. Suppose X is a vector space, and every element of G acts by not only
a smooth map, but a linear map. Then this action is called a representation and
we think of this as a homomorphism G→ GL (X).

Exercise 4. Understand the natural action of SL (2,C) on CP1.
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