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1. Representations of sl (2,C)

1.1. Motivation. We might wonder if we have a presentation of an algebra as
matrices, why we care about additional representations? For example, we have a
standard representation of sl (2,C), so why do we care about anything else?

The point is, this isn’t all about sl (2,C). Of course we do understand sl (2,C),
but what we really want to understand is geometric representations coming from
actions of sl (2,C). So we really want to develop Lie groups as a tool rather than
something to be studied.

Example 1. Let X ⊆ CPn be a smooth projective variety over C. One of the most
important invariants we can associate to X is the cohomology H∗ (X,C), which
is a vector space which has something to do with X. Then we have the following
theorem:

Theorem 1 (Hard Lefschetz). H∗ (X,C) is naturally an sl (2,C) representation.

1.2. Classification. Recall we were about to prove the following last time:

Theorem 2. Repfd (sl (2,C)) is semisimple, and the irreducibles are

Vn = Symn (V1)

where V1 is the standard representation.

Proof. Inside sl (2,C) = g, consider the subalgebra h = C 〈H〉 ⊆ g. This is a one-
dimensional abelian subalgebra.1 Finite dimensional representations of h are the
same as finite dimensional vector spaces with an endomorphism:

Repfd (h) = 〈H �

V |H ∈ Ext (V )〉 ' C [H] -Mod

Every time you see a module over a polynomial algebra, you should think of the
eigenline. So think of C as the eigenline of H. Then

V =
⊕

Vλi

Now what can we say about representations of h that come from g? This is
not sort of mathematically canonical, but our strategy will be to consider the real
direction as special. So project the eigenline to R, which is of course ordered, which
will allow us to analyze this picture from right to left.

Date: September 27, 2018.
1 In particular it is maximal, which makes it a Cartan subalgebra by definition. We will be

seeing these later.
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Definition 1. We will call the eigenvalues of an h representation the weights. The
highest weight will be the weight with real part ≥ the others. Call any vector in the
eigenspace Vλi of the highest weight λi a highest weight vector. A general v ∈ Vλ is
said to be of weight λ.

Now bring X and Y into the picture. We now make a fundamental observation.
Suppose v ∈ V is of weight λ. Let’s apply X and Y to v. The weight of X · v is
just the eigenvalue of X · v under the action of H. But we can write:

HXv = XHv + [H,X] v = XHv + 2Xv

If Hv = λv, i.e. v is an eigenvector, then

HXv = Xλv + 2Xv = (2 + λ)Xv

so it just shifted the eigenvalue by 2. Similarly, Y shifts the eigenvalue by −2.
Now we have to make sure nothing goes wrong when we act X and Y on the

generalized eigenvectors.

Exercise 1. Show that if (H − λI)
n
V = 0, then

(H − (λ+ 2) I)
n
Xv = 0

and similarly for Y .

Solution. Proceed by induction. So suppose (H − λI)
n−1

Xv = 0. Then we can
write:

(H − λI)
n
Xv = (H − λI)

n−1
(HXv − λIXv)

= (H − λI)
n−1

((2 + λ)Xv − λXv)

= 2 (H − λI)
n−1

Xv = 0

as desired.

So in conclusion, X : Vλ → Vλ+2 and Y : Vλ → Vλ−2.
Now we want to use this to find the irreducibles. Suppose V is a finite dimen-

sional irreducible sl (2,C) representation. The first step is to find a highest weight
λhw, and choose some eigenvector vhw ∈ Vλhw

.

Remark 1. This exists, because of the following. When you look at a Jordan block,
the first vector is an eigenvector. So it doesn’t matter if λhw yields an eigenspace
or a generalized eigenspace, since there will still be an eigenvector either way.

If H was the only operator, this would be irreducible since Hvhw = λhwvhw.
But now we have X and Y as well. Since λhw is the highest weight2, Xvhw = 0.
Now start applying Y vhw to get something in Vλhw−2, and continue applying Y . Of
course since V is finite dimensional, this will eventually terminate.

Claim 1. The vectors

C
〈
vhw, Y vhw, Y

2vhw, · · ·
〉
⊆ V

comprise an irreducible representation. In particular, if V is irreducible, then this
is an equality.

2 Professor Nadler says you should be yelling highest weight in your sleep.
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Proof. The first thing this is saying is that these vectors span a subspace of the
representation which is invariant under the operators. It is clear that H and Y
preserve this so we need to show X preserves it. Of course Xvhw = 0, and

XY vhw =����Y Xvhw + [X,Y ] vhw = Hvhw = λhwvhw

which is in this subspace.

Exercise 2. Iterate this process.

Solution. Proceed by induction. So suppose XY n−1vhw ∈
〈
Y ivhw

〉
. Then we can

write:

XY nvhw = Y XY n−1vhw + [X,Y ]Y n−1vhw

= Y XY n−1vhw +HY n−1vhw ∈ C
〈
Y ivhw

〉
as desired.

It is clear that this is irreducible, because if you defined any sort of proper
nontrivial subspace it would not be closed under the action of Y . �

Next we will analyse the possible weight spaces. To do this, we will introduce
universal highest weight modules.3

Definition 2. A Verma module Iλ of highest weight λ is

Iλ = U (sl (2,C))⊗U(b) Cλ

Note that this is infinite dimensional.
Recall we had an adjunction where U was adjoint to Forget : Lie-Alg → Alg.

This means

HomAlg (Ug, A) = HomLie-Alg (g,Forget (A))

As a special case, for g = gl (n,C), this means n-dimensional g representations are
just n-dimensional Ug-modules.

Recall that we can explicitly write the enveloping algebra as:

Ug =

∞⊕
n=0

g⊗n/ (XY − Y X = [X,Y ])

The idea here is that Ug allows us to work with products of operators of g.
The subalgebra b ⊆ sl (2,C) is a Borel subalgebra:

b = C 〈H,X〉 =

〈(
a u
0 −a

)
| a, u ∈ C ⊆ sl (2,C)

〉
Note that this is a maximal solvable subalgebra.

Finally Cλ is the one dimensional complex vector space with one vector v such
that H acts by multiplication by λ and X acts as 0:

Hv = λv Xv = 0

In other words, the Cλ comprise the irreducible representations of b. In particular,
these are all one-dimensional.

Exercise 3. Show that the Cλ comprise the irreducible representations of b.

3 This might be against better judgement, but Professor Nadler says he just can’t help himself.
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Solution. First notice that [b, b] must be inside ker ρ. Since [b, b] = C 〈X〉, this
means X must act trivially. Then we know there must be some λ eigenvalue of H,
so we can decompose this space if it is not of a single dimension.

The point here, is that we take the enveloping algebra, and then every time we
see an H or an X, we can act by these rules and cancel.

Claim 2. Iλ has basis v, Y v, . . .

Remark 2. This is a special case of the Poincaré-Birkhoff-Witt (PBW) theorem.

Proof. Look at some monomial. Using the bracket, we can rewrite this as a sum of
monomials of the form Y aHbXc.

So Iλ is spanned by vectors of the form Y aHbXc⊗v. For c 6= 0, we can use that
we are tensoring over U (b) to move X to the other side:

Y aHbXc ⊗ v = Y aHbXc−1 ⊗Xv = 0

So we may as well assume c = 0, and if b 6= 0,

Y aHb ⊗ v = Y aHb−1 ⊗Hv = λ
(
Y aHb−1 ⊗ v

)
�

We do a sample calculation in Vλ to see the flavor of this:

XY 2v = XY Y v = (Y X + [X,Y ])Y v = Y XY v +HY v

= Y (Y X + [X,Y ]) v + (Y H + [H,Y ]) v

=���
Y 2Xv + λY v + λY v − 2Y v = 2 (λ− 1)Y v

Lemma 1. The action of H on the basis is given by:

HY jv = (λ− 2j)Y jv

Proof. Proceed by induction. So assume

HY j−1v = (λ− 2 (j − 1))Y j−1v

and then this allows us to write:

HY jv = (Y H + [H,Y ])Y j−1v

= Y HY j−1v − 2Y jv

= Y
((
λ− 2 (j − 1)Y j−1

))
− 2Y jv

= (λ− 2 (j − 1))Y j − 2Y j

= (λ− 2j)Y j

as desired. �

Lemma 2. The action of X on the basis is given by:

XY jv = j (λ− (j − 1))Y j−1v



LECTURE 10 MATH 261A 5

Proof. Proceed by induction. So assume

XY j−1v = (j − 1) (λ− (j − 2))Y j−2v

then this lets us write:

XY jv = (Y X + [X,Y ])Y j−1v

= Y XY j−1v +HY j−1v

now we can rewrite each of these terms. First, using the induction hypothesis we
can write:

Y XY j−1v = Y (j − 1) (λ− (j − 2))

= ((j − 1)λ− (j − 2) (j − 1))Y j−1v

and using lemma 1 we can write:

HY j−1v = (λ− 2 (j − 1))Y j−1v

which means

XY jv = ((j − 1)λ− (j − 2) (j − 1)− λ+ 2 (j − 1))Y j−1v

= j (λ− (j − 1))Y j−1v

as desired. �

Remark 3. The basic idea of Verma modules is to somehow get a universally non-
terminating object.

So for each λ there is this Verma module as defined above, but now this in fact
has the universal property:

Exercise 4. Check that if λ is the highest weight:

HomRep(g) (Iλ, V ) = λ eigenspace

Solution. Let f ∈ HomRepfd(g)
(Wλ, V ). This is completely determined by where

it takes the basis of Wλ, and in particular, since this must respect the action of g,
it is completely specified by where it takes the vector v. It must take this to some
element of Vλ in order to preserve the action of H, and therefore we can associate
f to the image f (v) ∈ Vλ.

This is a kind of standard adjunction, where we ask for the Hom of Vλ to any
V , be the same as a Hom from Cλ as a U (b) module. So we need to find vectors
which are killed by X, and for which H acts as λ.

Now we return to representations of sl (2,C). We have a canonical map Vλhw
→ V

which simply sends v → vλhw
. There must be some kernel, since this is a map from

an infinite dimensional thing to a finite dimensional thing.

Claim 3. If we similarly generate from some different v′hw ∈ V ′λ′
hw

in some repre-

sentation V ′, we obtain isomorphic irreducible subspaces.

I.e. there is somehow no ambiguity. The isomorphism is the obvious one.

To be continued next time. . .

�
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H X Y

Figure 1. The vector fields which H, X, and Y are mapped to.
The first can be thought of as being sort of hyperbolic, and the
second two are shears.

1.3. Where does this come from. Recall

Symn (W ) ⊂W⊗n

consists of the Σn-symmetric tensors.
How would someone come up with theorem 2? Imagine we start with SL (2,C)

�

V1 =
C2 = C 〈u, v〉. Then we differentiate this to give us: g→ Vect

(
C2
)
. In particular,

calculate
d

dt

(
etH · w

)
|t=0 =

d

dt

(
et 0
0 e−t

)(
w1

w2

)
|t=0 =

(
w1

−w2

)
so

H 7→ u∂u − v∂v X 7→ u∂v Y 7→ v∂u

These vector fields can be visualized in fig. 1. Now consider the polynomial functions
on C2, C [u, v], then these vector fields act on this, to get

C [u, v] = C⊕ C 〈u, v〉 ⊕ C
〈
u2, uv, v2

〉
⊕ · · ·

which is effectively a decomposition in the irreducibles Symn.
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