LECTURE 10
 MATH 261A

LECTURE BY: PROFESSOR DAVID NADLER
NOTES BY: JACKSON VAN DYKE

1. Representations of $\mathfrak{s l}(2, \mathbb{C})$

1.1. Motivation. We might wonder if we have a presentation of an algebra as matrices, why we care about additional representations? For example, we have a standard representation of $\mathfrak{s l}(2, \mathbb{C})$, so why do we care about anything else?

The point is, this isn't all about $\mathfrak{s l}(2, \mathbb{C})$. Of course we do understand $\mathfrak{s l}(2, \mathbb{C})$, but what we really want to understand is geometric representations coming from actions of $\mathfrak{s l}(2, \mathbb{C})$. So we really want to develop Lie groups as a tool rather than something to be studied.

Example 1. Let $X \subseteq \mathbb{C P}^{n}$ be a smooth projective variety over \mathbb{C}. One of the most important invariants we can associate to X is the cohomology $H^{*}(X, \mathbb{C})$, which is a vector space which has something to do with X. Then we have the following theorem:

Theorem 1 (Hard Lefschetz). $H^{*}(X, \mathbb{C})$ is naturally an $\mathfrak{s l}(2, \mathbb{C})$ representation.
1.2. Classification. Recall we were about to prove the following last time:

Theorem 2. $\boldsymbol{R e p}_{f d}(\mathfrak{s l}(2, \mathbb{C}))$ is semisimple, and the irreducibles are

$$
V_{n}=\operatorname{Sym}^{n}\left(V_{1}\right)
$$

where V_{1} is the standard representation.
Proof. Inside $\mathfrak{s l}(2, \mathbb{C})=\mathfrak{g}$, consider the subalgebra $\mathfrak{h}=\mathbb{C}\langle H\rangle \subseteq \mathfrak{g}$. This is a onedimensional abelian subalgebra. ${ }^{1}$ Finite dimensional representations of \mathfrak{h} are the same as finite dimensional vector spaces with an endomorphism:

$$
\boldsymbol{\operatorname { R e p }}_{\mathrm{fd}}(\mathfrak{h})=\langle H \subset V \mid H \in \operatorname{Ext}(V)\rangle \simeq \mathbb{C}[H]-\operatorname{Mod}
$$

Every time you see a module over a polynomial algebra, you should think of the eigenline. So think of \mathbb{C} as the eigenline of H. Then

$$
V=\bigoplus V_{\lambda_{i}}
$$

Now what can we say about representations of \mathfrak{h} that come from \mathfrak{g} ? This is not sort of mathematically canonical, but our strategy will be to consider the real direction as special. So project the eigenline to \mathbb{R}, which is of course ordered, which will allow us to analyze this picture from right to left.

[^0]Definition 1. We will call the eigenvalues of an \mathfrak{h} representation the weights. The highest weight will be the weight with real part \geq the others. Call any vector in the eigenspace $V_{\lambda_{i}}$ of the highest weight λ_{i} a highest weight vector. A general $v \in V_{\lambda}$ is said to be of weight λ.

Now bring X and Y into the picture. We now make a fundamental observation. Suppose $v \in V$ is of weight λ. Let's apply X and Y to v. The weight of $X \cdot v$ is just the eigenvalue of $X \cdot v$ under the action of H. But we can write:

$$
H X v=X H v+[H, X] v=X H v+2 X v
$$

If $H v=\lambda v$, i.e. v is an eigenvector, then

$$
H X v=X \lambda v+2 X v=(2+\lambda) X v
$$

so it just shifted the eigenvalue by 2 . Similarly, Y shifts the eigenvalue by -2 .
Now we have to make sure nothing goes wrong when we act X and Y on the generalized eigenvectors.

Exercise 1. Show that if $(H-\lambda I)^{n} V=0$, then

$$
(H-(\lambda+2) I)^{n} X v=0
$$

and similarly for Y.
Solution. Proceed by induction. So suppose $(H-\lambda I)^{n-1} X v=0$. Then we can write:

$$
\begin{aligned}
(H-\lambda I)^{n} X v & =(H-\lambda I)^{n-1}(H X v-\lambda I X v) \\
& =(H-\lambda I)^{n-1}((2+\lambda) X v-\lambda X v) \\
& =2(H-\lambda I)^{n-1} X v=0
\end{aligned}
$$

as desired.
So in conclusion, $X: V_{\lambda} \rightarrow V_{\lambda+2}$ and $Y: V_{\lambda} \rightarrow V_{\lambda-2}$.
Now we want to use this to find the irreducibles. Suppose V is a finite dimensional irreducible $\mathfrak{s l}(2, \mathbb{C})$ representation. The first step is to find a highest weight λ_{hw}, and choose some eigenvector $v_{\mathrm{hw}} \in V_{\lambda_{\mathrm{hw}}}$.

Remark 1. This exists, because of the following. When you look at a Jordan block, the first vector is an eigenvector. So it doesn't matter if λ_{hw} yields an eigenspace or a generalized eigenspace, since there will still be an eigenvector either way.

If H was the only operator, this would be irreducible since $H v_{\mathrm{hw}}=\lambda_{\mathrm{hw}} v_{\mathrm{hw}}$. But now we have X and Y as well. Since $\lambda_{\text {hw }}$ is the highest weight ${ }^{2}, X v_{\text {hw }}=0$. Now start applying $Y v_{\text {hw }}$ to get something in $V_{\lambda_{\text {hw }}-2}$, and continue applying Y. Of course since V is finite dimensional, this will eventually terminate.

Claim 1. The vectors

$$
\mathbb{C}\left\langle v_{\mathrm{hw}}, Y v_{\mathrm{hw}}, Y^{2} v_{\mathrm{hw}}, \cdots\right\rangle \subseteq V
$$

comprise an irreducible representation. In particular, if V is irreducible, then this is an equality.

[^1]Proof. The first thing this is saying is that these vectors span a subspace of the representation which is invariant under the operators. It is clear that H and Y preserve this so we need to show X preserves it. Of course $X v_{\mathrm{hw}}=0$, and

$$
X Y v_{\mathrm{hw}}=Y X v_{\mathrm{hw}}+[X, Y] v_{\mathrm{hw}}=H v_{\mathrm{hw}}=\lambda_{\mathrm{hw}} v_{\mathrm{hw}}
$$

which is in this subspace.
Exercise 2. Iterate this process.
Solution. Proceed by induction. So suppose $X Y^{n-1} v_{\mathrm{hw}} \in\left\langle Y^{i} v_{\mathrm{hw}}\right\rangle$. Then we can write:

$$
\begin{aligned}
X Y^{n} v_{\mathrm{hw}} & =Y X Y^{n-1} v_{\mathrm{hw}}+[X, Y] Y^{n-1} v_{\mathrm{hw}} \\
& =Y X Y^{n-1} v_{\mathrm{hw}}+H Y^{n-1} v_{\mathrm{hw}} \in \mathbb{C}\left\langle Y^{i} v_{\mathrm{hw}}\right\rangle
\end{aligned}
$$

as desired.
It is clear that this is irreducible, because if you defined any sort of proper nontrivial subspace it would not be closed under the action of Y.

Next we will analyse the possible weight spaces. To do this, we will introduce universal highest weight modules. ${ }^{3}$

Definition 2. A Verma module I_{λ} of highest weight λ is

$$
I_{\lambda}=\mathcal{U}(\mathfrak{s l}(2, \mathbb{C})) \otimes_{\mathcal{U}(\mathfrak{b})} \mathbb{C}_{\lambda}
$$

Note that this is infinite dimensional.
Recall we had an adjunction where \mathcal{U} was adjoint to Forget : Lie-Alg $\rightarrow \mathbf{A l g}$. This means

$$
\operatorname{Hom}_{\mathbf{A l g}}(\mathcal{U} \mathfrak{g}, A)=\operatorname{Hom}_{\text {Lie-Alg }}(\mathfrak{g}, \text { Forget }(A))
$$

As a special case, for $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{C})$, this means n-dimensional \mathfrak{g} representations are just n-dimensional $\mathcal{U} \mathfrak{g}$-modules.

Recall that we can explicitly write the enveloping algebra as:

$$
\mathcal{U} \mathfrak{g}=\bigoplus_{n=0}^{\infty} \mathfrak{g}^{\otimes n} /(X Y-Y X=[X, Y])
$$

The idea here is that $\mathcal{U g}$ allows us to work with products of operators of \mathfrak{g}.
The subalgebra $\mathfrak{b} \subseteq \mathfrak{s l}(2, \mathbb{C})$ is a Borel subalgebra:

$$
\mathfrak{b}=\mathbb{C}\langle H, X\rangle=\left\langle\left.\left(\begin{array}{cc}
a & u \\
0 & -a
\end{array}\right) \right\rvert\, a, u \in \mathbb{C} \subseteq \mathfrak{s l}(2, \mathbb{C})\right\rangle
$$

Note that this is a maximal solvable subalgebra.
Finally \mathbb{C}_{λ} is the one dimensional complex vector space with one vector v such that H acts by multiplication by λ and X acts as 0 :

$$
H v=\lambda v \quad X v=0
$$

In other words, the \mathbb{C}_{λ} comprise the irreducible representations of \mathfrak{b}. In particular, these are all one-dimensional.

Exercise 3. Show that the \mathbb{C}_{λ} comprise the irreducible representations of \mathfrak{b}.

[^2]Solution. First notice that $[\mathfrak{b}, \mathfrak{b}]$ must be inside $\operatorname{ker} \rho$. Since $[\mathfrak{b}, \mathfrak{b}]=\mathbb{C}\langle X\rangle$, this means X must act trivially. Then we know there must be some λ eigenvalue of H, so we can decompose this space if it is not of a single dimension.

The point here, is that we take the enveloping algebra, and then every time we see an H or an X, we can act by these rules and cancel.

Claim 2. I_{λ} has basis $v, Y v, \ldots$
Remark 2. This is a special case of the Poincaré-Birkhoff-Witt (PBW) theorem.
Proof. Look at some monomial. Using the bracket, we can rewrite this as a sum of monomials of the form $Y^{a} H^{b} X^{c}$.

So I_{λ} is spanned by vectors of the form $Y^{a} H^{b} X^{c} \otimes v$. For $c \neq 0$, we can use that we are tensoring over $\mathcal{U}(\mathfrak{b})$ to move X to the other side:

$$
Y^{a} H^{b} X^{c} \otimes v=Y^{a} H^{b} X^{c-1} \otimes X v=0
$$

So we may as well assume $c=0$, and if $b \neq 0$,

$$
Y^{a} H^{b} \otimes v=Y^{a} H^{b-1} \otimes H v=\lambda\left(Y^{a} H^{b-1} \otimes v\right)
$$

We do a sample calculation in V_{λ} to see the flavor of this:

$$
\begin{aligned}
X Y^{2} v & =X Y Y v=(Y X+[X, Y]) Y v=Y X Y v+H Y v \\
& =Y(Y X+[X, Y]) v+(Y H+[H, Y]) v \\
& =Y^{2} X v+\lambda Y v+\lambda Y v-2 Y v=2(\lambda-1) Y v
\end{aligned}
$$

Lemma 1. The action of H on the basis is given by:

$$
H Y^{j} v=(\lambda-2 j) Y^{j} v
$$

Proof. Proceed by induction. So assume

$$
H Y^{j-1} v=(\lambda-2(j-1)) Y^{j-1} v
$$

and then this allows us to write:

$$
\begin{aligned}
H Y^{j} v & =(Y H+[H, Y]) Y^{j-1} v \\
& =Y H Y^{j-1} v-2 Y^{j} v \\
& =Y\left(\left(\lambda-2(j-1) Y^{j-1}\right)\right)-2 Y^{j} v \\
& =(\lambda-2(j-1)) Y^{j}-2 Y^{j} \\
& =(\lambda-2 j) Y^{j}
\end{aligned}
$$

as desired.
Lemma 2. The action of X on the basis is given by:

$$
X Y^{j} v=j(\lambda-(j-1)) Y^{j-1} v
$$

Proof. Proceed by induction. So assume

$$
X Y^{j-1} v=(j-1)(\lambda-(j-2)) Y^{j-2} v
$$

then this lets us write:

$$
\begin{aligned}
X Y^{j} v & =(Y X+[X, Y]) Y^{j-1} v \\
& =Y X Y^{j-1} v+H Y^{j-1} v
\end{aligned}
$$

now we can rewrite each of these terms. First, using the induction hypothesis we can write:

$$
\begin{aligned}
Y X Y^{j-1} v & =Y(j-1)(\lambda-(j-2)) \\
& =((j-1) \lambda-(j-2)(j-1)) Y^{j-1} v
\end{aligned}
$$

and using lemma 1 we can write:

$$
H Y^{j-1} v=(\lambda-2(j-1)) Y^{j-1} v
$$

which means

$$
\begin{aligned}
X Y^{j} v & =((j-1) \lambda-(j-2)(j-1)-\lambda+2(j-1)) Y^{j-1} v \\
& =j(\lambda-(j-1)) Y^{j-1} v
\end{aligned}
$$

as desired.
Remark 3. The basic idea of Verma modules is to somehow get a universally nonterminating object.

So for each λ there is this Verma module as defined above, but now this in fact has the universal property:

Exercise 4. Check that if λ is the highest weight:

$$
\operatorname{Hom}_{\mathbf{R e p}(\mathfrak{g})}\left(I_{\lambda}, V\right)=\lambda \text { eigenspace }
$$

Solution. Let $f \in \operatorname{Hom}_{\mathbf{R e p}_{\mathrm{fd}}(\mathfrak{g})}\left(W_{\lambda}, V\right)$. This is completely determined by where it takes the basis of W_{λ}, and in particular, since this must respect the action of \mathfrak{g}, it is completely specified by where it takes the vector v. It must take this to some element of V_{λ} in order to preserve the action of H, and therefore we can associate f to the image $f(v) \in V_{\lambda}$.

This is a kind of standard adjunction, where we ask for the Hom of V_{λ} to any V, be the same as a Hom from \mathbb{C}_{λ} as a $\mathcal{U}(\mathfrak{b})$ module. So we need to find vectors which are killed by X, and for which H acts as λ.

Now we return to representations of $\mathfrak{s l}(2, \mathbb{C})$. We have a canonical map $V_{\lambda_{\mathrm{hw}}} \rightarrow V$ which simply sends $v \rightarrow v_{\lambda_{\text {hw }}}$. There must be some kernel, since this is a map from an infinite dimensional thing to a finite dimensional thing.

Claim 3. If we similarly generate from some different $v_{\mathrm{hw}}^{\prime} \in V_{\lambda_{\mathrm{hw}}^{\prime}}^{\prime}$ in some representation V^{\prime}, we obtain isomorphic irreducible subspaces.
I.e. there is somehow no ambiguity. The isomorphism is the obvious one.

To be continued next time. . .

Figure 1. The vector fields which H, X, and Y are mapped to. The first can be thought of as being sort of hyperbolic, and the second two are shears.
1.3. Where does this come from. Recall

$$
\operatorname{Sym}^{n}(W) \subset W^{\otimes n}
$$

consists of the Σ_{n}-symmetric tensors.
How would someone come up with theorem 2? Imagine we start with $\mathrm{SL}(2, \mathbb{C}) \subset V_{1}=$ $\mathbb{C}^{2}=\mathbb{C}\langle u, v\rangle$. Then we differentiate this to give us: $\mathfrak{g} \rightarrow \operatorname{Vect}\left(\mathbb{C}^{2}\right)$. In particular, calculate

$$
\left.\frac{d}{d t}\left(e^{t H} \cdot w\right)\right|_{t=0}=\left.\frac{d}{d t}\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right)\binom{w_{1}}{w_{2}}\right|_{t=0}=\binom{w_{1}}{-w_{2}}
$$

SO

$$
H \mapsto u \partial_{u}-v \partial_{v} \quad X \mapsto u \partial_{v} \quad Y \mapsto v \partial_{u}
$$

These vector fields can be visualized in fig. 1. Now consider the polynomial functions on $\mathbb{C}^{2}, \mathbb{C}[u, v]$, then these vector fields act on this, to get

$$
\mathbb{C}[u, v]=\mathbb{C} \oplus \mathbb{C}\langle u, v\rangle \oplus \mathbb{C}\left\langle u^{2}, u v, v^{2}\right\rangle \oplus \cdots
$$

which is effectively a decomposition in the irreducibles Sym^{n}.

[^0]: Date: September 27, 2018.
 ${ }^{1}$ In particular it is maximal, which makes it a Cartan subalgebra by definition. We will be seeing these later.

[^1]: ${ }^{2}$ Professor Nadler says you should be yelling highest weight in your sleep.

[^2]: ${ }^{3}$ This might be against better judgement, but Professor Nadler says he just can't help himself.

