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1. Continued proof from last time

Recall we were in the middle of proving the following theorem:

Theorem 1. Repfd (sl (2,C)) is semisimple, and the irreducibles are

Vn = Symn (V1)

where V1 is the standard representation.

Continued proof. Recall we’re trying to use this weight picture to show this. Let’s
do some examples to get a feeling for this.

Example 1. The standard representation C 〈u, v〉. This has eigenvalue −1 with
eigenvector v, and 1 with eigenvector u.

Example 2. For V3 = Sym3
(
C2
)
, we have the following eigen-vectors/values:

λ = −3, vλ = v3 λ = −1, vλ = uv2 λ = 1, vλ = u2v λ = 3, vλ = u3

Recall the Verma module is:

Iλ = Usl (2,C)⊗Ub Cλ
for b = C 〈H,X〉. Also recall that we saw:

Iλ ' C
〈
vλ, Y vλ, Y

2vλ, · · ·
〉

The Verma module also has the following universal property:

Homg (Iλ, V ) = 〈v ∈ V |Xv = 0, Hv = λv〉
since vλ has to go to something that is killed by X, and is an eigenvector of H
with eigenvalue λ. The set on the RHS consists of highest weight vectors, and
λ eigenvectors. In particular, if V is irreducible then there is a nonzero map p :
Iλhw

→ V . This must be surjective because V is irreducible, and now we just need
to figure out what the kernel is.

Proposition 1. (1) If λ 6∈ {0, 1, 2, · · · } ⊂ C, then Iλ is irreducible.
(2) For n = 0, 1, · · · , there exists a short exact sequence:

0 I−n−2 In Vn 0
p

The first part implies that V irreducible must have λhw ∈ {0, 1, 2, · · · }. The
second implies that once you get to −n− 2, we see I−n−2 is sitting inside, so now
we can quotient In/I−n−2 to get the finite dimensional representation Vn.
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Warning 1. The sequence in the above proposition does not split.

Example 3. For λ = 0, we have: I−2 ⊂ I0, now let’s imagine if there’s a comple-
ment of I−2 in I0, but this can’t be, since if we have v0 and act by Y we immediately
are moved out of this subspace.

Exercise 1. Prove the above proposition. The idea is to remember that Iλ =
〈vλ, Y vλ, · · ·〉, and then just apply X to see if there is any invariant subspace. So
see if there’s any way to come back.

Example 4. Let λ = 0. Then the basis of I0 is v0, Y v0, · · · and Xv0 = 0, so we
can calculate the following:

XY v0 =���Y Xv0 + [X,Y ] v0 = Hv0 = 0v0 = 0

However, as we saw last time:

XY 2v0 = (2λ− 2)Y v0 = −2Y v0

So once we have applied Y enough times, we reach the I−n−2 subspace, which in
this case is I−2. Then the quotient I0/I−2 is the trivial representation.

Example 5. If λ = 1, we can calculate that:

XY v1 =���Y Xv1 + [X,Y ] v1 = Hv1 = v1

and similarly,

XY 2v1 = (2λ− 2)Y v1 = 0

XY 3v1 = 3 (λ− 2)Y 2v1 = −3Y 2v1

So again, if we apply Y enough times we reach I−n−2 = I−3, and then we can’t get
out. Then quotienting I1/I−3 gives us the standard representation.

Exercise 2. Generalize these formulas.

Now we just need to prove the representations are semisimple. There are two
approaches, one is kind of algebraic, and one is kind of geometric.1 We will prove
it the second way.

Recall we have an equivalence between simply connected, connected Lie groups
over C and finite dimensional Lie algebras over C. In particular, this means for any
complex vector space V ,

Aut (V ) = GL (V ) 7→ gl (V ) = End (V )

This means, for our arbitrary g, we have

HomLie-Alg (g, gl (V )) HomLie-Gp (G,GL (V ))

Vect

'

i.e.
Repfd (G) ∼= Repfd (g)

and this preserves the natural forgetful map to Vect. Actually to see this, we
technically need the following:

1 According to Professor Nadler, some sort of higher intelligence might prefer the algebraic
approach, but he is not a higher intelligence, so we will take the sort of geometric approach. Also

because we will see some interesting important math along the way.
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Exercise 3. Show that since G is simply-connected, the map Hom (G,GL (V ))→
Hom

(
G, G̃L (V )

)
is the inverse of the projection in the following diagram:

HomLie-Alg (g, gl (V )) HomLie-Gp

(
G, G̃L (V )

)

HomLie-Gp (G,GL (V ))

so these things are all equal. I.e. show that if we have a homomorphism of a simply
connected group, it naturally lifts to the universal cover. So we have the following
diagram:

G̃L (V )

G GL (V )

Remark 1. The previous exercise holds for any group, not just GL (V ).

Now to finish the proof of the theorem, it is sufficient to prove the following:

Proposition 2. Repfd (SL (2,C)) is semisimple.

We will first reduce this to an even easier statement.
Consider SU (2) ⊆ SL (2,C). Recall SU (2) are the matrices〈(

α β

−β α

)
| |α|2 + |β|2 = 1

〉
which also preserve the standard hermitian inner product:

〈a1e1 + a2e2, b1e1 + b2e2〉 = a1b1 + a2b2

Exercise 4. Show this is true.

Solution. Let A ∈ SU (2). Then

〈Av,Aw〉 = Av
T
AwvTA

T
Aw = vw = 〈v, w〉

where the last equality uses the fact that A
T
A = I.

Notice the following good properties of SU (2) ⊂ SL (2,C):

(1) SU (2) is compact and isomorphic to S3

(2) su (2)⊗ C ' sl (2,C)

so the first says it is small, and the seccond says it’s big in the sense that it doesn’t
miss any of the structure of sl (2,C).

Remark 2. Subgroups of GC with these properties are called “maximal compact”.
I.e. this doesn’t really have anything to do with sl (2,C).

Lemma 1. The restriction

Repfd (SL (2,C))
∼−→ Repfd (SU (2))

is an isomorphism.

Proof. Since SU (2) is simply connected, Repfd (SU (2)) ' Repfd (su (2)).
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Exercise 5. Show the restriction:

Repfd (su (2)⊗R C)
∼−→ Repfd (su (2))

is an isomorphism.

This is effectively a tautology. So we are done. �

Proposition 3. Repfd (SU (2)) is semisimple.

Proof. Let V be a finite dimensional representation of SU (2). Then we will con-
struct a hermitian inner product on V invariant under SU (2).

First choose any hermitian inner product 〈v, w〉0. Now to make this invariant
under the group action, we define:

〈v, w〉 =

∫
SU(2)

〈gv, gw〉0 dg

Here, dg is a nonzero invariant measure2 on SU (2). Suppose W ⊆ V is a sub-
representation, then we can consider

W⊥ := {x ∈ V | ∀y ∈W, 〈x, y〉 = 0}

Exercise 6. Show that W⊥ ⊆ V is also a sub-representation, and in particular:

V 'W ⊕W⊥

�

So the strategy was to go from a simple Lie algebra over C, to a simply connected
Lie group over C, to maximal compact Lie group:

g ; G; Gc

which all have the same representations. �

1.1. Invariant measure. At the end of the proof of the above theorem we just
asserted there was an invariant measure on SU (2). We now construct this. At
every point of SU (2), we will define a volume form, i.e. a nondegenerate 3-form,
and then this will give us a measure.

First pick an inner product on the tangent space at the identity. In particular,
choose an Ad-invariant volume m on su (2). One such example is the killing form.
Now translate this by left multiplication to any Tg SU (2). Finally, observe that this
is also right invariant. This is since the initial form was Ad invariant.

2. Playing with the representations

2.1. Tensor products. Take Vn ⊗ Vm. This may or may not be irreducible, but
it certainly will be a sum of irreducibles:

Vn ⊗ Vm =

∞⊕
k=0

V dkk .

Then the challenge is to determined the dk.

Example 6. V0 ⊗ Vn = Vn, so dn = 1, and all other di = 0.

2 See section 1.1.
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Example 7. V1 ⊗ V1 = V2 ⊕ V0, so d0 = d2 = 1 and all other di = 0.

The past two examples were somehow easy to do without thinking too hard.
The next example effectively generalizes to any case:

Example 8. Let’s try to calculate V2 ⊗ V3. The weights of V2 are 2, 0, and −2.
The weights of V3 are 3, 1, −1, and −3. Then we observe that the restriction of a
representation of Lie algebra to a Lie subalgebra, the tensor product is preserved.
In particular, h = C 〈H〉 ⊆ g = sl (2,C) preserves ⊗.

Therefore the weights of V2 ⊗ V3 are the pairwise sums of weights of V2 and V3
independently. Therefore the weights are:

−5 -3 -1 1 3 5

where we have circled the weights as many times as their multiplicity. Then the
multiplicity is how many ways these weights summed to give the new weights.
Therefore the multiplicity of 5 is 1, the multiplicity of 3 is 2, the multiplicity of 1
is 3, and the same multiplicities for the negative weights.

Now we can understand the irreducibles just from this. Find the highest weight
5, then this means we must have a copy of V5 inside, so we can cancel the weights
associated with 5, so we have 1 left on ±1, and 2 left on ±1, so we have a V3, and
we cancel again, to get only 1 left on ±1 so we get a V1 and our answer is:

V2 ⊗ V3 = V5 ⊕ V3 ⊕ V1
Exercise 7. Write this down in general.

Solution. The basic idea is starting at the sum m+n and then just counting down
by 2 until you hit their difference. Let m ≥ n, then:

Vm ⊗ Vn =
⊕
i∈2Z

m−n≤i≤m+n

Vi

Next time we will generalize to all simple Lie algebras. In particular, we will write
down a list of all such Lie algebras, and then see that the general story references
sl (2,C), so this is really an important thing to understand.
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