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We will meet 4 games people play with representations.

1. Tensor products

Recall last time we were playing some games with representations of sl (2,C). In
particular, we saw that for m ≥ n,

Vm ⊗ Vn =
⊕

l=m−n+2k
0≤k≤n

Vl

2. Characters

Consider C [Z], the collection of compactly supported C-valued functions1 on Z.

Definition 1 (Character). A formal character is an element of C [Z]. We write en
for the characteristic function of n ∈ Z.

The en form a basis for C [Z] as a complex vector space. This can be considered
a ring with the operation given by convolution. This effectively just depends on
the group structure on Z.

(f ∗ g) (n) =
∑
k+l=n

f (k) g (l)

Exercise 1. Check that en ∗ em = en+m.

This is somehow a linear extension of the group structure on Z.

2.1. More invariant origin. Return to representation theory. We want to think
about Z as integer weights in the H eigenline C.

Definition 2 (Character of a representation). The formal character of a finite
dimensional representation V is V 7→ χV ∈ C [Z] where

χV (n) = dimC Vλ=n

where Vλ=n is the eigenspace at λ = n.

Example 1. The irreducibles from before have characters:

χVn
=

∑
l=−n+2k
0≤k≤n

el

Date: October 4, 2018.
1Or maybe distributions. Or maybe not compactly supported. The mathematics is smart and

will tell us what’s right.

1
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Exercise 2. Check the following:

χV⊕W = χV + χW χV⊗W = χV ∗ χW

So characters somehow take a representation and return an element of C [Z]. But
this statement isn’t formal, since this is somehow mixing levels - representations
are objects in a category, and C [Z] is just a ring. One way to formalize this is to
instead consider this as a map from the Grothendieck group to the ring of formal
characters:

K0 (Repfd (sl (2,C)))⊗ C→ C [Z]

Recall Rep is an abelian category. The Grothendieck group is what you get when
you ask for a group whose elements are the objects of your category, and direct sum
becomes addition. It’s somehow the universal version of a group resulting from only
insisting that exact sequences make sense.

We can think of elements of this as being some sort of formal difference V −W
of two objects of the original category.

Proposition 1. χ is injective, and in particular,

χ : K0

(
Repfdsl (2,C)

)
⊗ C ∼−→ C [Z]

Σ2

is an isomorphism, where Σ2 ' Z/2 acts by σ (n) = −n.

Proof. Injectivity follows from the fact that up to isomorphism, representations are
determined by their characters. To see this is surjective, we just have to check that
en + e−n is in the image, which is

χ (Vn − Vn−2)

so we are done. �

3. Character formulas

The game is the following. Put n ∈ N into the machine, and the machine is
supposed to give you χVn

N 3 n; χVn
∈ C [Z]

Σ2

The answer for sl (2,C) is just the sum of the weights as above in example 1, but
in general it won’t be this easy. So we will consider in a complicated but beautiful
way to do it for sl (2,C) which will turn out to generalize.

We know we can take Vn which has a surjective map In → Vn from the Verma
module, and in particular, we have the exact sequence:

0→ I−n−2 → In → Vn → 0

Remark 1. This is a special case of the Bernstein-Gelfand-Gelfand (BGG) resolu-
tion.

This sequence implies that the character2 of Vn is the character of In minus the
character of I−n−2:

χVn = χIn − χI−n−2

2 This isn’t really a character because the dimension of each eigenspace to the infinite negative
side has dimension 1 for these Verma modules. Therefore the associated character is not compactly

supported.
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But taking inspiration from:

1

1− x
= 1 + x+ x2 + · · ·

we can write this is a more clever way:

χVn
=

en
1− e−2

− e−n−2

1− e−2
=
en − e−n−2

1− e−2

Now rewriting this, we get:

χVn
=
en+1 − e−n−1

e1 − e−1

4. Tannakian formalism

Suppose C is a C-linear abelian ⊗-category. Suppose

F : C→ Vect

is a “forgetful functor.” This means this is a ⊗-functor which is exact, faithful, and
maybe a few more things that the actual forgetful functor is.

To this, we can associate a group

G = GC,F = Aut⊗ (F )

which is the group of tensor automorphisms of F . For g ∈ G, we get an automor-
phism

gV : F (V )
∼−→ F (V )

for every V ∈ C, which respects the tensor structure in the sense that:

gV⊗W = gV ⊗ gW
This is called the Tannakian group of C with respect to the fiber functor F .

Exercise 3. For C = Repfd (sl (2,C)), and F = Forget, then this says for every
representation of sl (2,C), forget it down to a vector space, then everything in
Aut⊗ (F ) is a choice of automorphisms of these vector spaces. Show that GC,F '
SL (2,C).

Solution. First start with an element A ∈ sl (2,C), then we want to get an element
g ∈ G, i.e. a collection of automorphisms

gV

�

V ∈ Repfd (sl (2,C))

It is enough to specify this on the irreducibles Vn = Symn V1 = SymnC2.

Remark 2. If you have an abelian category you’re trying to learn something about,
try calculating the Tannakian group. By the above discussion, the category will
then be the representations of this group, though the new group might be something
terrible you’ve never seen before.

5. Classification of simple Lie algebras over C

This is somehow the general answer over algebraically closed fields, but we will
just do it over C. This is called the Cartan classification.
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5.1. Classical Lie algebras. The first type is An for n ≥ 1, and these are

sl (n+ 1,C) = 〈trA = 0〉

The next series is Bn for n ≥ 2, and these are the odd orthogonal Lie algebras

so (2n+ 1,C) =
〈
−A = AT

〉
This one starts at so (5) because so (3) is already on the list since:

Proposition 2. sl (2) ' so (3)

The next is Cn for n ≥ 3, which are sp (2n,C). These preserve the standard
symplectic inner product:

sp (2n,C) =
〈
ωA = −ATω

〉
for ω some nondegenerate skew-symmetric matrix/inner product. So these are
linear automorphisms of a symplectic vector space.

Remark 3. We got this condition on elements of sp by differentiating

(gv1)
T
ωgv2 = vT1 ωv2

with respect to g which gives:

0 = (Av1)
T
ωv2 + vT1 ωAv2 = ATω + ωA

For n = 1 we get sp (2), which just consists of area preserving matrices, but this
is sl (2) so this is already on the list. And for n = 2 we have:

Exercise 4. Show that sp (4) ' so (5).

Solution. Proof. Take (V, ω) to be a four-dimensional symplectic vector space.
Then we have an action of Sp (4) on ∧2V , which is 6-dimensional and preserves the
symmetric pairing

∧2 V × ∧2V → ∧4V = C

So we have a map

Sp (V )→ SO
(
∧2V

)
The element ω is fixed and its norm ω ∧ ω 6= 0, so Sp (V ) fixes the 5-dimensional
orthogonal complement I⊥ and we have an induced map Sp (4,C) → SO (5,C).
Check it is surjective and at the level of Lie algebras induces the required isomor-
phism. �

Next we have Dn for n ≥ 4 which corresponds to so (2n,C). This indexing starts
here because:

Proposition 3.

so (4,C) ' sl (2,C)⊕ sl (2,C) so (6,C) ' sl (4,C)

and

Proposition 4. so (2,C) is one-dimensional and commutative, and therefore it is
not semisimple.
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Note that the Bn and Dn are both so (n) for odd/even n. So we could hypothet-
ically lump these in the same list, but as we have seen, these algebras have different
behaviours. In particular, the simply connected Lie groups corresponding to these
Lie algebras have different centers. One has Z/4, and one has Z/2× Z/2.

This is the full list of classical Lie algebras. Looking at this we can sort of ask
what kinds of geometries we can do. And this tells us we can do classical euclidean
geometry, which has to do with the orthogonal matrices, or you can do symplectic
geometry, which of course has to do with the symplectic matrices.

5.2. Exceptional Lie algebras. Now we have the exceptional E6, E7, E8, F4,
and finally G2, and now this is everything.

Remark 4. In a certain sense, if you’re a usual algebraist that likes to understand
simple things and view them as atoms, these are somehow the atoms that things
will be built out of.

5.3. Dynkin diagrams. We will come back to these later, but for now we will
just see them as “hieroglyphics” which will help us remember this classification.

g Diagram Z (G) π1 (G)

An (n ≥ 1) sl (n+ 1,C) Z/ (n+ 1)Z 0

Bn (n ≥ 2) so (2n+ 1,C) 0 Z/2Z
Cn (n ≥ 3) sp (2n,C) Z/2Z 0

Dn (n ≥ 4) so (2n,C) Z/2Z Z/2Z

E6 − Z/3Z −

E7 − Z/2Z −

E8 − 0 −
F4 − 0 −
G2 − 0 −

These appear all over mathematics.

Remark 5. One of the last things Grothendieck did before “leaving” mathematics
to become a farmer, is that he found these Dynkin diagrams in resolutions of surface
singularities. One can look at algebraic surfaces, and there are these nice classical
du Val singularities, and they have natural resolutions, and then these diagrams
show up in the geometry of their resolutions.3

These pictures bring to light a clear duality called Langlands duality, that isn’t
made apparent from the list itself. If we reverse the direction of the bar, then An,
Dn, and En are self dual. The diagrams An, Dn, and En are called simply-laced.
These are somehow the most basic ones. Then Bn and Cn are dual to one another.
Then F4 and G2 are said to be twisted self-dual.

3 We won’t talk about this, but one can ask Professor Nadler some other time if one is interested.
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One might want to play a game where we start with An, Dn, and En and recover
Bn, Cn, F4, and G2 form some operations. There’s a whole “game” called folding
Lie algebras which allows you to take Dn, and sort of collapse the end together to
get these double bars in Bn and Cn. Similarly, we can take D5 and sort of collapse
it down to F4, and collapse D4 into G2.

5.4. Associated groups. In the table above we have written the centers of the
associated Lie groups. Note however that these centers are of the “usual” group
associated with the algebra. This is however not the unique simply connected one
in the case of so (2n+ 1) and so (2n). In this case the unique simply connected one
is Spin (2n+ 1) and Spin (2n) respectively. We list the centers so we can determine
all of the groups which can be associated to these algebras since we just have to
quotient out by subgroups of the center to get these.

In the case of An we can quotient out by any subgroup of Z/ (n+ 1)Z, which
is of course just any divisor of n + 1. In the case of Bn we can take the universal
cover, and then these are the only two: SO (2n+ 1) and Spin (2n+ 1). For Cn,
we just get Sp (2n,C) and Sp (2n,C) /Z/2. Finally, for Dn we get SO (2n,C) and
SO (2n,C) /Z/2, and Spin (2n). Only now Spin (2n) has center Z/2Z × Z/2Z if n
is even and center Z/4Z if n is odd.

Remark 6. One might wonder what Lie groups give rise to the exceptional Lie
algebras. We can play the usual game, and take the adjoint representation, then
since the algebras are simple, they have no center, so the adjoint representation
puts it inside endomorphisms of some vector space, then we can exponentiate these
matrices and get a group.
G2 is the smallest, so it’s sort of easiest to get our hands on. If we look at

the unit octonions, we can then consider the automorphisms of the non-associative
algebra of unit octonions, and this is G2. In fact all of them arise as automorphisms
of something. E8 is probably the most important one in all of Math, it’s somehow
the biggest.

6. Finite dimensional representations of sl (3,C)

It’s somehow the case that once one understands sl (2,C), and then how to
generalize this to sl (3,C), there isn’t much left to do to understand simple Lie
algebras.

We want a similarly natural set of operators to act as a basis like we had for
sl (2,C). First we define:

H12 =

1 0 0
0 −1 0
0 0 0

 H23

0 0 0
0 1 0
0 0 −1


These will again generate a subalgebra:

h = C 〈H12, H23〉 ⊆ sl (3,C)

which is a 2-dimensional abelian subalgebra. Now we can consider all of the fol-
lowing matrices:

X12

0 1 0
0 0 0
0 0 0

 X13 =

0 0 1
0 0 0
0 0 0

 X23 =

0 0 0
0 0 1
0 0 0





LECTURE 12 MATH 261A 7

Y21 =

0 0 0
1 0 0
0 0 0

 Y31 =

0 0 0
0 0 0
1 0 0

 Y32 =

0 0 0
0 0 0
0 1 0


We choose these since it’s a basis of eigenvectors for h acting on g with the adjoint
action.
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