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1. Recall

Recall we have the space of all weights h∗ which contains the dominant integral
weights Z≥0 〈L1,−L3〉. This consists of non-negative integral multiples of the fun-
damental weights. Recall the fundamental weights are the highest weights for the
standard representation and the standard dual representation.

Also recall we had the theorem:

Theorem 1. Irreducible representations are in bijection with the dominant weights.
In particular, we send an irreducible representation to its b highest weight.
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Figure 1. Dominant weights for sl (3,C) if we take b to be gen-
erated by the Hij and Xij .
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2. What choices have we made so far

Professor Nadler says it’s relatively fair to say that representation theory is the
study of choices. So we now review some of the choices we have made so far in our
discussion of sl (3,C).

2.1. Cartan subalgebra. Recall we chose a Cartan subalgebra h to be some max-
imal abelian subalgebra. This is not a unique choice, but we do have the following:

Proposition 1. Let G have Lie algebra g.

(1) All Cartan subalgebras h ⊆ g are conjugate by G under Ad : G→ GL (g).
(2) The Weyl group

Wg = NG (h) /ZG (h) = NG (h) /H

is a finite, where H ⊆ G is the subgroup with Lie algebra h.

Remark 1. We don’t need to take the unique simply-connected G since whether
or not we quotient out by the center Z (G) won’t affect the action Ad, so it won’t
change whether or not these things are related by conjugation.

Remark 2. It is very beautiful when the action of a group is transitive, since it is
somehow enough to only understand the action on one element. But then we have
to ask another very important question, which is what the stabilizer of this one is,
and that’s what led us to the second half of this proposition.

Remark 3. The ambiguity of making a certain choice of Cartan subalgebra is some-
how recorded by the Wg action on g by conjugation.

Example 1. We now calculate the Weyl group for g = sl (n,C). In this case

Wg = Σn

The action of this on h ⊆ g, i.e. the traceless diagonal matrices, is called the
standard representation of Wg.

The action is explicitly given by permutation matrices. For example under σ =
(12),λ1 λ2

λ3

 7→
 0 1
−1 0

1

λ1 λ2
λ3

0 −1
1 0

1

 =

λ2 λ1
λ3


So this acts on the space of eigenvalues by permuting them as expected.

In the language of the diagrams we have been drawing, the three lines that we
were just sort of using to orient ourselves are really representing the hyperplanes
over which the elements of Wg are reflecting. For example, σ = (12) is reflecting
across the −L3 line.

2.2. Borel subalgebra. We also saw that we have to choose a Borel subalgebra
inside of g which contains h. We have a similar proposition for this choice:

Proposition 2. Let G have Lie algebra g.

(1) All Borel subalgebras are related by conjugation under Ad : G→ GL (g).
(2) The stabilizer of any b is the subgroup B ⊆ G with Lie algebra b.

Definition 1. The flag variety B of g is the space of Borel subalgebras.
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The proposition tells us that the flag variety is just G/B since G acts transitively
on this space, and the stabilizer is B.

Remark 4. The flag variety is the space of choices for Borel subalgebras.

Example 2. For g = sl (n,C), we calculate the flag variety. So consider all of
the Borel subalgebras inside g. This is just an ambient vector space, and each
Borel subalgebra is a subspace, so we should think of this flag variety as being a
submanifold of the Grassmannian of subspaces of g i.e.

B ⊆ Gr (dim b,dim g)

This all seems a bit abstract, but we’re just looking for like k planes in l space, and
then some of these are Borel subalgebras and that’s what we want.

So let G = SL (n,C), and B be the upper triangular matrices in SL (n,C).

Claim 1. G/B is naturally isomorphic to flags

〈0〉 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En = Cn

where dimEi = i.

Exercise 1. Prove this claim. That is, show that sl (n) acts transitively on flags,
and that b is the stabilizer of the standard flag where Ei = Span 〈e1, · · · , ei〉.

Solution. This is somehow a standard exercise in linear algebra. Show every flag
can be split into a basis, and then sl (n) acts transitively on the basis.

Example 3. For n = 1 the flag variety is a point. For n = 2, we are studying flags
in C2. Since the ends are fixed, every flag is just a choice of lines, which is just
CP1.

For n = 3, this consists of lines E1 inside planes E2, inside C3. The collection
of these isn’t anything special we have seen before, but it is inside the collection of
choices of lines crossed with choices of planes:

CP2 ×
(
CP2

)∗
The line is represented by a vector v, and the plane is represented by a covector w.
The condition is just that the line must be inside the plane. In particular, E1 is the
span of v and E2 is orthogonal to w, the kernel of w. So the flag variety is cut out
by the equation w (v) = 0. So we start with four dimensions, and insisting on this
equation gives us three dimensions, which is good since sl (3) is eight-dimensional,
and B is 5-dimensional.

There are many beautiful things to be said about flag varieties, but we just state
one more thing. Recall we really liked CP1 since it was just projective space. But as
it turns out, we can think of this flag variety as a sort of iterated projective space.
So let’s say we forget the line and remember the hyperplane, so we’re projecting:

SL (n,C) /B (n)

(
CPn−1)∗

and then the rest of the data for this fixed hyperplane is just a flag in this hyper-
plane, so the fiber is SL (n− 1,C) /B (n− 1).
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The n = 2 example was literally CP1, the n = 2 example was just sort of roughly
a CP1 and a CP2, and the next one is put together as a CP1, CP2, and a CP3. This
is however not to say that these aren’t somehow put together in an interesting way,
because they are.

2.3. Borus. The two choices of a Cartan and Borel subalgebra together make
the choice of a Borus, and now we have the following proposition bringing them
together:

Proposition 3. Let G be a Lie group with Lie algebra g, then

(1) All “boruses” are conjugate by G.
(2) The stabilizer is isomorphic to ZG (h) ' H.

2.4. Back to representation theory. Now we have the following as a result of
these propositions:

Corollary 1. The Weyl group acts simply transitively on the Borel subalgebras
containing h.

Exercise 2. Prove that the above three propositions imply this corollary.

So note that the choice of a borus that we made last time determined which
chamber was the dominant one. There are actually four other choices of chambers
that are just as good. We illustrate this with some examples. For all of them fix
h ⊆ sl (n,C) the usual diagonal Cartan subalgebra.

Example 4. Let n = 2. Then Σ2

� 〈b containing h〉 acts simply transitively.

b =

〈(
∗ ∗
0 ∗

)〉
7→

(
0 1
−1 0

)
b

(
0 −1
1 0

)
=

〈(
∗ 0
∗ ∗

)〉
= bop

Example 5. Let n = 3. Then Σ3 · 〈b containing h〉. We know b upper tri-
angular matrices works. Now we can conjugate to find the others. We know
Σ2 = 〈(12) , (23)〉. first we lift these to matrices:

(12) =

 0 1 0
−1 0 0
0 0 1

 (23) =

1 0 0
0 0 1
0 −1 0


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Figure 2. These are two distinct tangles which represent products
of transpositions which are the same in Σ3.

Now we conjugate to get:

〈e1〉 ⊂ 〈e1, e2〉 〈e2〉 ⊂ 〈e1, e2〉 〈e3〉 ⊂ 〈e1, e3〉 〈e2〉 ⊂ 〈e1, e2〉∗ 0 ∗
∗ ∗ ∗
0 0 ∗

 ∗ ∗ 0
0 ∗ 0
∗ ∗ ∗


∗ ∗ ∗

0 ∗ ∗
0 0 ∗

 ∗ 0 0
∗ ∗ 0
∗ ∗ ∗


∗ ∗ ∗

0 ∗ 0
0 ∗ ∗

 ∗ 0 0
∗ ∗ ∗
∗ 0 ∗


〈e1〉 ⊂ 〈e1, e2〉 〈e1〉 ⊂ 〈e1, e3〉 〈e2〉 ⊂ 〈e2, e3〉 〈e2〉 ⊂ 〈e1, e2〉

(23)

(12)(12)

(23)

(12)

(23)

Exercise 3. Show that this is the case by explicitly conjugating.

We write the flags stabilized by these choices of Borels above and below the
diagram. The fact that these paths give the same final result is a result of the fact
in fig. 2.

Now fix a Cartan subalgebra h. Inside of h∗ we want to talk about the b-dominant
integral weights Λ+ ⊆ h∗. All integral weights form a lattice inside h∗, and now
we can ask how we chose this cone. We chose those which were “positive” with
respect to b. The cone Λ+ consisted of the possible highest weights for b. So if we
conjugate b by a permutation matrix, this is just acting this permutation on this
cone by reflecting over the Li, so it gives us the alternative cones.

3. Construction of irreducible representations

Fix a borus h ⊂ b. We want to construct the irreducible representation with a
given highest weight. Recall in the sl (2,C) case we saw

Vn = Sym2 V1
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and
∞⊕

n=0

Vn = C [u, v]

so since we’re trying to construct polynomials we might have guessed that.
So now in the sl (3,C) case, we have V0 = C is trivial, VL1

' C3 is the standard
representation, and V−L3 ' C3 is the dual standard representation. Then we claim
the following:

Claim 2. Symn (VL1) is irreducible with highest weight nL1, and Symn (V−L3) is
irreducible with highest weight −nL3.

So we have the same sl (2,C) picture along the −L3 and L1 lines. Just as before
we have the following decomposition:⊕

n

Symn VL1
' C [u, v, w]

⊕
n

Symn V−L3
' C [u∗, v∗, w∗]
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