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1. Fundamental affine space

Definition 1. The fundamental affine space Xn of sl (n,C) is contained in

Xn ⊂ Cn × ∧2Cn × · · · × ∧n−1Cn

In particular, it comprises collections of the following form:

(a1, b1 ∧ b2, c1 ∧ c2 ∧ c3, · · · )

These are elementary forms in the sense that they aren’t sums of such elements.
We also insist on the “inclusions” a1 ∧ (b1 ∧ b2) = 0 and the higher-dimensional
analogues1 i.e. a1 ∧ (c1 ∧ c2 ∧ c3) etc. I.e. the spans are included in the larger if
nonzero.

This is supposed to look like the flag variety.
To see that this isn’t so mysterious, consider the open subset X0

n ⊂ Xn where
all terms are nonzero. This space has a natural projection

X0
n

B
to the flag variety of flags in n-space, B, where we map these primitive forms to
their span. This makes sense since we required them to be nonzero.

This is surjective, and in fact a fibration with fiber as follows. Each time we
sort of introduce a new vector, all we care about is preserving the “volume” of the

parallelepiped, there’s sort of C× many choices. So the fibers are (C×)
n−1

.
Note the following:

dimBn =
n (n− 1)

2
dimX0

n =
n (n− 1)

2
+ n− 1 =

(n+ 2) (n− 1)

2

Now we have the following lemma:

Lemma 1. Xn
0 ' G/N where N = [B,B] =

〈
b1b2b

−1
1 b−1

2 ∈ B
〉

consists of upper
diagonal matrices with 1 on the diagonal.

Proof. We need to show G acts transitively, and the stabilizer is N . I.e. we take
any list of such forms to any other list of forms using G. So we write down our
favorite element of Xn

0 :

(e1, e1 ∧ e2, · · · , e1 ∧ · · · ∧ en−1)
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1These are called Plücker equations.
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and then any other one is:

(a1, b1 ∧ b2, c1 ∧ c2 ∧ c3, · · · )

and we need a matrix in SL (n) which takes us there. The first column should just
be a1. Now because of the inclusion equations, we can write b1 ∧ b2 as a1 ∧ b′2 for
some b′2. Explicitly, we can write a matrix with columns:

( a1 b
′
2 · · · )

this is basically just a change of basis matrix.
Now what group elements fix this nested sequence? We better have 1, 0, · · · , 0

in the first column, and we have to maintain the span of b1 and b2, so we have to
have 0 after the second coordinate, so we get (∗, 1, 0, · · · , 0) in the second column,
since we have 1 on the diagonal. All together we get:

1 ∗ · · · · · ·
0 1 · · · · · ·
0 0 · · · · · ·
· · · · · · · · · · · ·
0 0 0 1


which is of course N . �

Corollary 1. Recall we already saw Bn = G/B, so this is a fibration for B/N ' T .

Example 1. The fundamental affine space of sl (2,C) is X2 = Cn and X0
2 =

C2 \ {0}. The projection maps v 7→ l ∈ Bn ' P1 where l ' C 〈v〉.

Remark 1 (For algebraic geometers). We have these two creatures X0
n and Xn and

we might sort of wonder why we’re considering both of them. Dealing with just
G/N is very nice, but it is not an affine variety, as we saw in the previous example:
C2 \ 0 is not affine (though it is quasi-affine). The affine closure of X0

n is Xn.

Example 2. We know the dimension of sl (3,C) is 8, and then the dimension of
X0

3 is 8 − 3 = 5. T is two dimensions so when we divide by this we get down to
the three-dimensional flag variety. We start with a1 = ae1 then b′2 = be2, and all
together a 0 0

0 b 0
0 0 a−1b−1


since we need determinant one. So this is a map from points above to determinant
one diagonal matrices.

The fiber living above the standard flag:

E1 = C 〈e1〉 E2 = C 〈e1, e2〉

is (C×)
2
, so it is somehow missing the axes. Then the closure is T ' C2, but

we got this only from paying attention to a and b, but we really want something
which pays equal attention to all coordinates. More democratically, T is naturally

a subset of (C×)
3

cut out by det = 1. The quotient picture was like a photograph
of the corner of the room, and this is like the slice of the corner of the room.



LECTURE 16 3

1.1. Relationship with fundamental representations. We now return to the
following proposition:

Proposition 1.

O (Xn) =
⊕
λ∈Λ+

Vλ

where Vλ is a representation of highest weight λ, and each Vλ appears exactly once.

Proof. We need to calculate the highest weights in O (Xn). Recall these are the

invariants under N , so they are in O (Xn)
N

where N = [B,B] consists of the
strictly upper triangular matrices as usual. Recall the Lie algebra of N is C 〈Xij〉.

Claim 1. There exists an open B orbit in Xn isomorphic to B.

Proof. Take the opposite standard flag,

eop = {en, en ∧ en−1, · · · }
and then we claim B acts on this with an open orbit. Start with e3, then take
e3 ∧ e2.

Exercise 1. Show that B ·eop consists of all configurations with nonzero terms with
spans transverse to the standard configuration e. Also check that if b · eop = eop

then b = 1.

and we are done. �

This means B ' B · eop ⊆ Xn is an open dense subset. Now take the functions
O (Xn) and restrict them to O (B · eop) = O (B), and since B is dense this must
be an inclusion. Now we can also restrict:

O (Xn)
N
↪→ O (B · eop)

N ' O (N\B) ' O (T )

So N invariant functions give us functions on T . In conclusion we have an injection:

O (Xn)
N
↪→ O (T )

But we know the weight lattice Λ is just monomial functions on T , Λ = HomAb (T,C×),
so O (T ) is just the C-span of the weight lattice C 〈Λ〉.

Example 3. The idea here is

O
(
C×
)

=

{
N∑

i=−N
ciz

i

}
and in this case Λ ' Z =

{
zi | i ∈ Z

}
.

So to everyN -invariant function we have assigned a linear combination of weights.
But we know N -invariants are highest weights, so the actual function we get can’t
be arbitrary, it has to be highest weight. I.e. the image of any particular highest
weight must be a monomial. I.e. the injection above is T -equivariant.

There is a G action G

� O (Xn) where (g · f) (x) = f
(
g−1x

)
. Now look at

O (Xn)
N

. Then claim that this still has a T action given by the same formula. So
(t · f) (x) = f

(
t−1x

)
. So now we want to check the following. Look at n (tf) and

we want to show that this is just tf :

n (tf) = tt−1 (ntf) = t (n′f) = tf
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so there’s still a T action.
Since the construction is T -equivariant we have the map

O (Xn)
N
↪→ O (T )

and a left T -action on both. This is just since restriction “commuted” with the
T -action. A highest weight vector of highest-weight λ must get mapped to some
scale of the highest weight monomial zλ. Therefore we can conclude that the
highest weight vectors inject into the possible weights. I.e. there exists at most one
dimension of highest weight vector for any given weight.

Now conversely we claim that

Vstd,∧2Vstd, · · · ,∧n−1Vstd = V ∗std

are all inside O (Xn). Recall the highest weights of these representations are a basis
for the dominant weights. Now let f1, · · · , fn−1 be highest weight vectors in each
of the ∧iVstd inside O (Xn). Products of these will be nonzero, and this product
will still be N invariant. Therefore it has to contain at least one irreducible of
every highest weight. I.e. f i11 f

i2
2 · · · f

in−1

n−1 is a nonzero N -invariant vector of weight
i1λ1+· · ·+in−1λn−1 i.e. a highest weight of this eigenvalue. This is in Λ+, therefore
for every λ ∈ Λ+ there exists highest weight representation Vλ inside O (Xn). �
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