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Today we will finish discussion representation of sl (3,C) and then talk about
representations of sp (4).

1. Representations of sl (3,C)

1.1. Recall. Recall we have the following theorem:

Theorem 1. Repfd (sl (3,C)) is semisimple and the irreducibles are in bijection

with λ ∈ Λ+.

So far we have done the following:

1. Constructed Vλ ⊂ O (X3) for λ ∈ Λ+.
2. Some analysis of possible weights. For λ ∈ Λ+ we discussed that the possi-

ble weights for any irreducible representation with this highest weight will
live in some sort of generalize hexagon.

3. Semi-simplicity of this category. This is done in the exact same way as it
was done for sl (2,C). Recall we said that representations of sl (2,C) are
the same as representations of SL (2,C), which are the same as represen-
tations of SU (2), and then we put metrics on everything and decomposed.
Similarly, we have:

Repfd (sl (3,C)) ' Repfd (SL (3,C)) ' Repfd (SU (3))

and these all have invariant inner products, so subrepresentations have
orthogonal complements. This technique generalizes even further to all
simple Lie algebras. All we’re really doing here is bring it to its unique
simply connected Lie group, then go to the maximal compact subgroup,
and then construct an invariant metric.

What we haven’t shown is that any two irreducibles with the same highest-
weight must be isomorphic. Once we do this, we will be done with the proof of the
theorem. Recall for sl (2,C) this was accomplished using Verma modules, which we
will use in this case as well.

1.2. Verma modules. Let g be a simple Lie algebra, and h ⊆ b ⊆ g be a
choice of Borus. Recall b is maximal solvable, and h is maximal abelian, and
ad-diagonalizable.

Note that h ↪→ b � b/ [b, b], and in fact this composition is an isomorphism.1

I.e. h lives in b as a subalgebra and a quotient. This tells us that b ' hn [b, b].

Date: October 23, 2018.
1 It makes sense that the quotient b/ [b, b] is abelian since b is solvable.
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λ

•Y1

• Y2

•Y3

Figure 1. The ordering of the negative roots used in the calculations.

Fix a character (i.e. a linear map) λ : h→ C of h. In other words think of λ ∈ h∗

as a weight. We want to view λ as a 1-dimensional representation Cλ of h, i.e. Cλ
is a complex line where H ∈ h acts as: H · v = λ (H) v.

Definition 1. The Verma module Iλ is

Iλ := Ug⊗Ub Cλ
Note that Cλ is a representation of b via b → h, so it can of course be a repre-

sentation of Ub. In other words, X · v = 0 and H · v = λ (H) v for X ∈ [b, b], and
H ∈ h.

One might wonder why anyone would bother defining this in the first place. As
it turns out, this is the standard way to construct a module which has the following
universal property. If you find a vector in your representation such that X kills it,
and H acts by λ, then there exists a unique map from Iλ to your representation.
I.e.

Homg (Iλ, V ) ' Homg (Cλ, V )

which consists of the [b, b]-invariants and h eigenvectors of weight λ.
Now the following gives us a basis for the Verma module:

Theorem 2 (PBW). Choose an ordering of the positive roots R+, which gives us
an ordering of the negative roots. Then a basis of Ug is given by ordered monomials
Y aHbXc.

This immediately implies that a basis for Iλ is given by the ordered monomials
Y a. This implies that we understand the weights of Iλ. Order the negative roots as
in fig. 1. Then we can calculate the dimension of the weight spaces of these weights
as in fig. 2. The weight spaces which are given by successive actions of Y1 or Y2
are all of dimension 1. However if we act by Y1Y2, this is the same as just acting
Y3, so this space has dimension 2. As it turns out, each shell consists exactly of
spaces with the same dimension, and every time you venture one shell deeper the
dimension increases by 1.

Example 1. The corner of the third shell can be reached by monomials Y 2
3 , Y 2

1 Y
2
2 ,

and Y1Y2Y3.
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Y1Y2 = Y3

Figure 2. The different potential ways of reaching a given weight
with ordered monomials gives the dimension of the weight space
by PBW.

Exercise 1. Recall the pattern for sl (2,C) was somehow linear with slope 0, then
this is linear of slope 1. Find the pattern for sl (4,C).

Now we want to write a closed formula for the character of Iλ. Well we know
that it will somehow be eλ ∗ (· · · ) for something inside. In particular:

ch (Iλ) = eλ ∗

 ∏
αi∈−R+

1

1− eαi


We would love this to be a function with compact support on Λ, i.e. an element of

C [Λ] for λ ∈ Λ, but we end up taking the completion Ĉ [Λ].

1.3. Back to finite dimensional representations. Suppose V is an irreducible
finite dimensional representation of highest weight λ ∈ Λ+. Now we will try to
state some facts and arguments which will hopefully show that V is unique up to
isomorphism.

Proposition 1. The natural map Iλ → V given by the highest-weight vector is
surjective.

Proof. This is somehow a tautology, because if it wasn’t surjective then the image
would be a subspace of V , which is of course impossible since V is irreducible. �

Remark 1. This is saying that we can get to anything in V by applying the Y s.

Now we construct a resolution of V in terms of the Verma modules. Return
to sl (3,C). We will discuss how it generalizes later. Recall we already know the
nonzero weights of some representation with highest-weight λ lie in this sort of
generalized hexagon. Then we can consider the first points where the Y s act as 0.
To do this we define the following:
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λ

s23s13

s12

s23̃·λ

s12s23̃·λ

s12̃·λ

s23s13̃·λ

s23s12s23̃·λ

Figure 3. The images of λ under the sij ·̃ action.

Definition 2. Let 2ρ = α12 +α23 +α13. Then define s̃·λ for s ∈W and λ ∈ h∗ to
be the “reflection” with respect to hyperplanes translated by −ρ.

Remark 2. The point here is somehow that −ρ was supposed to be the center of
the universe all along rather than 0.

Example 2. We write the twisted product explicitly for single group actions:

s12̃·λ = s12λ− α12 s23̃·λ = s23λ− α23 s13̃·λ = s13λ− α13

This explicitly tells us that s12̃·λ and s23̃·λ are the first time we escape the gener-
alized hexagon from applying Y s as is evident in fig. 3.

This means that we have the following exact sequence:

Is12 ·̃λ ⊕ Is23 ·̃λ Iλ V

but this isn’t short exact since we still haven’t somehow killed everything. So we
keep considering the kernels to get the full resolution:

0 Is12s23s12 ·̃λ Is12s23 ·̃λ ⊕ Is23s12 ·̃λ Is12 ·̃λ ⊕ Is23 ·̃λ Iλ V

Example 3. For sl (2,C) the eigenvalue for upper-triangular matrices was 2, so
ρ = 1, and then reflection about −1 is what gave us the term I−n−2 as the kernel
in the SES.

Now we are somehow done, because here we just learned that for any irreducible,
we are able to resolve it in terms of Verma modules. I.e. the part of the sequence
without V has nothing to do with V . This is somehow just taking the maximal
proper submodule of an object and repeating the process until we get 0.

1.4. Weyl character formula. The resolution from above also gives us the Weyl
character formula since the character of V is the alternating sum of the preceding
objects in the sequence.
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Corollary 1 (Weyl character formula).

ch (V ) =
∑

ch (Iλ)− (ch (Is12 ·̃λ) + ch (Is23 ·̃λ)) + · · ·

=
∑
w∈W

(−1)
l(w)

ew·̃λ ∗ ∏
αi∈R+

1

1− eαi


where l is the length of w.

Example 4. The length l (w) in the case of sl (3) is the number of these simple
transpositions to get to w.

We will return to this next time when we will learn why this resolution is true, and
that we can view it as some sort of algebraic realization of Schubert decomposition
of the flag variety.
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