
LECTURE 18

LECTURES BY: PROFESSOR DAVID NADLER
NOTES BY: JACKSON VAN DYKE

We will continue our discussion of Bernstein-Gelfand-Gelfand (BGG) resolution,
and discuss sl (4,C) and sp (4,C) as generalizations of sl (3,C).

1. BGG resolution

Informally speaking this is a resolution of a finite dimensional representation
theory by Verma modules. More specifically, if we fix some highest-weight λ ∈ Λ+,
then we define:

ρ =
1

2

∑
αi∈R+

αi

and modify the action of the Weyl group to act as:

s̃·λ = s (λ+ ρ)− ρ

for s ∈ W . So ρ is now the center of the universe. Now we choose some simple
reflections, e.g. for sl (3,C), s12 and s23 generate the group so we set these to be
our simple reflections. Then the last ingredient is a length function l : W → Z≥0
where l (s) is the minimum word length of s in terms of simple reflections. Then
this gives us the resolution:

0← Vλ ← Iλ ←
⊕
l(s)=1

Is̃·λ ← · · · ← Iw0 ·̃λ ← 0

At each stage if we ask if it’s injective the answer is no1 since there will be a kernel,
and in particular it will be the maximal submodule.

One might be worried about the choice of these reflections depending on the fact
that the Weyl group is Sn for sl (n,C), but the point is, for every simple root, there
will be a Levi sl (2,C) living inside the Lie algebra, with that simple root as its
positive root, and the reflection for sl (2,C) will be a simple reflection for the Lie
algebra.

2. Weights and roots of sl (4,C)

Consider the Lie algebra sl (4,C). We proceed the same way as we did for sl (3,C)
and consider the weights of the standard representation on C4 as in fig. 1. Now
just as α12 and α23 were simple roots for sl (3,C), we now have three simple roots
α12, α23, and α34 as in fig. 1. Then the other roots are all of the edges of the bigger
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Figure 1. (Left) The weights of the standard representation of
sl (4,C). (Right) The weights of the adjoint representation of
sl (4,C).

cube on the right of fig. 1. The point here is that if we consider a matrix with a 1
in the spot: 

α12 α13 α14

α23 α24

α34


it will be an eigenvector with eigenvalue as in the right of fig. 1. Then there are six
more on the other edges of the cube.

The cone of elements which pair positively with the positive roots can be seen
in fig. 2. This is somehow a triangle on the back face coned off to the origin. Note
that it takes 24 such triangles to cover the face of the cube, which is of course
what we would expect since |S4| = 24, which makes sense since these cones should
correspond to the Borel subalgebras which are acted on simply freely by the Weyl
group.

We can view this cone as coming from three copies of sl (3,C) as being the sort
of intersections of the three figure in fig. 3. Reflections over these planes are the
simple reflections for sl (4,C).

3. Representations of sp (4,C)

3.1. Definition. Recall the Lie algebra sp (2n,C) ⊆ sl (2n,C), is the Lie algebra
of the Lie group Sp (2n,C) ⊆ SL (2n,C) which is the group of 2n × 2n matrices
which preserve the standard symplectic form in the sense that

Sp (2n,C) =
{
A ∈ SL (2n,C) |ATJA = J

}
where we have fixed a symplectic form

ω =
∑
i

e2i−1 ∧ e2i
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Figure 2. The cone of dominant weights in sl (4,C).
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Figure 3. The three Levi sl (2,C)s living inside of sl (4,C) give
us reflections over these three planes.

which, as a matrix, looks like

J =


0 −1
1 0

0 −1
1 0


But it doesn’t really matter, as long as we take something skew-symmetric and
non-degenerate, since we have the following.

Exercise 1. Show that all symplectic forms are equivalent.

Then the Lie algebra is

sp (2n,C) =
{
X ∈ sl (n,C) | JX = −XTJ

}
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Figure 4. The dual space h∗ of our Cartan subalgebra with
weights L1, L3, and the eight roots.

Exercise 2. Show that Sp (2n,C) is simply connected, so this is indeed the unique
simply connected Lie group associated to this Lie algebra. Also show Z (Sp (2n,C)) =
Z/2.

3.2. Roots. We can take our Cartan subgroup to be

H =

〈
a

a−1

b
b−1


〉

The idea is that if we are going to preserve the area, we need to spin neighbouring
coordinates by opposite amounts. Technically we should check that this is not only
abelian but actually maximal abelian, but we know this is rank 2, and we’ve already
seen the classification so we already know this is maximal.

This means our Cartan subalgebra h is

h =

〈
r
−r

s
−s


〉

Again we have h∗ ' C2, so we have an analogous picture in fig. 4.
Life is a little better here than it was in sl (3,C), because we have two favorite

functionals. We can take the functional which returns out the first diagonal entry,
L1, and the functional which returns the third, L3. Now we can generate the roots
by calculating commutators, and draw them as in fig. 4. The Weyl group here is
S2 × Z/2 = Z/2× Z/2 which is of course the dihedral group D2. Now we want to
find positive and simple roots. To do this we pick the Borel:

B = Sp (2n,C) ∩ { upper triangular matrices }
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Figure 5. The dominant weight lattice of sp (4,C).
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Figure 6. Weights of the standard representation of sp (4,C).

Then the positive roots are L3 − L1, 2L3, L1 + L3, and 2L1, and out of these the
two simple roots are 2L1 and L3−L1. The dominant weights are then Z multiples
of L1 + L3 and L3 as in fig. 5.

3.3. Constructing representations. Now we want to construct some representa-
tions of this by hand. Recall in sl (3,C), we constructed the standard representation
and the dual standard representation, and then we could just get everything from
tensoring these. Analogously, the two most important constructions here have
highest-weights L3 and L1 + L3. The representation corresponding to L3 is the
standard representation C4. The weights of this are as in fig. 6.

Now for L1 + L3, we should first notice that the weights should likely lie in
some sort of convex hull that looks like a square, where we have just reflected this
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Figure 7. The weights of the representation with highest-weight
L1 + L3.

highest weight across these hyperplanes. Then we might wonder if 0 is a weight of
this representation. To find out, we can just act with the “lowering” operators and
see if we land in it. Applying the root −L1 −L3, we do land at 0, so it is possible.
The answer turns out to be as in fig. 7. So now we know the weights, and we want
to find the actual representation. We learned from sl (n,C), that once we know the
standard representation, the smaller ones are just exterior powers. This inspires us
to look at:

∧2
(
C4
)

= C · ω ⊕W
which is a 6-dimensional representation, where W is some five-dimensional irre-
ducible representation. The weights of this exterior power are pairwise sums of
weights from the standard where we don’t add any weight to itself, so we get a
weight of multiplicity 2 at 0, and one at each of the four corners. Then the weights
of the decompositions are as follows:

•

••

••

= •

••

••

+ •

Note that sp (4,C) is born as a subalgebra of sl (4,C). This means we can project
the dual space of the Cartan subalgebras

h∗sl(4,C)

h∗sp(4,C)

according to the dual of the inclusion sp ↪→ sl. Then if we would have picked our
basis correctly, the eigenvalues would map exactly to eigenvalues Li 7→ Li.

Exercise 3. Draw G2. This is the other distinct rank two simple Lie algebra.



LECTURE 18 7

4. Flag variety and fundamental affine space for sp (4,C)

In general, the flag variety X should be the moduli of Borel subalgebras b ⊂ g.
For SL (n,C) we saw that X ' G/B since G

�

X transitively by conjugation with
stabilizer B. In this setting we have the following:

Proposition 1. The flag variety for sp (4,C) is

X '
{
{0} ⊆ E1 ⊆ E2 ⊆ · · · ⊆ En ⊆ C2n

}
where Ei is isotropic2, i.e. ω|Ei

= 0 and En is Lagrangian.

Exercise 4. Show that the symplectic group acts transitively on these isotropic
flags, and that the stabilizer of the standard isotropic flag is exactly a Borel sub-
group.

Example 1. For sp (2,C), the flag variety is just CP1, which is good since sp (2,C) '
sl (2,C), so they should agree.

Example 2. For sp (4), the choices of E1 are just CP3, i.e. forgetting E1 is a map
X → CP3. Then the fiber is CP1, which is the choice of E2 for a fixed E1. The
idea is that once we fix E1, we are looking for lines symplectically orthogonal to it.
So they have to somehow live in sp (2) /B ' CP1.

2Note that all lines are isotropic, so it’s really only a relevant condition for i ≥ 1.
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