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Today we will talk a bit more about the classification of semisimple Lie algebras,
root systems, and Dynkin diagrams. Going forward, we will take a more geometric
approach via D-modules.

1. Classification of simple Lie algebras

Recall we saw the following classification of Lie algebras according to their rank.1

g Diagram Z (G) π1 (G)

An (n ≥ 1) sl (n+ 1,C) Z/ (n+ 1)Z 0

Bn (n ≥ 2) so (2n+ 1,C) 0 Z/2Z
Cn (n ≥ 3) sp (2n,C) Z/2Z 0

Dn (n ≥ 4) so (2n,C) Z/2Z Z/2Z

E6 − Z/3Z −

E7 − Z/2Z −

E8 − 0 −
F4 − 0 −
G2 − 0 −

We will now see what these cartoons mean mathematically. The strategy will be
to go from simple Lie algebras, extract root systems, and get a list of Lie algebras
out of that.

1.1. Root systems.

Definition 1. A root system is a real euclidean2 vector space (V, 〈·, ·〉) equipped
with some subset of roots R which satisfy the following properties:

(1) The roots span V .
(2) If α ∈ R then −α ∈ R.
(3) α and −α are the only roots on R · α.

Date: November 6, 2018.
1 Recall the rank of a Lie algebra is just the dimension of a Cartan subalgebra. These of

course all have to be the same since they’re related by conjugation by the unique connected,

simply-connected Lie group.
2 Non-degenerate inner product.
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Figure 1. The root system G2. Note that the projection of the
red root onto the horizontal axis is 1.5 times the blue root. The
projection is pictured in gray.

(4) Reflection across α⊥ for α ∈ R preserves the set of roots.
(5) Orthogonal projection to R · α takes R to {±α,±α/2, 3α/2}.

Example 1. The roots of sl (3,C) and sp (4,C) comprise root systems.

Proposition 1. If g is a semisimple complex Lie algebra, and h ⊆ g is a Cartan
subalgebra, then the roots R ⊂ h∗ satisfy all the axioms of a Root system in V =
SpanR (R) ⊆ h∗ with respect to the Killing inner product.

Remark 1. If axiom 1 fails for the roots of some Lie algebra, then this means g
must have a nontrivial center, so it can’t be semisimple. Motivation from the second
axiom is meant to come from the fact that for every root which somehow comes
from an upper triangular location, there should be a corresponding root which came
from a lower triangular location. This is again because we are semisimple here. If
we were talking about solvable Lie algebras, we would somehow only have roots on
one side. For axiom 4, recall we have the Weyl group action. For any root, we have
a copy of sl (2,C) with that root as its root. Then we can reflect according to the
this particular sl (2,C). To see the last axiom 5, consider any root γ, and reflect it
with respect to α. Then we need the difference between γ and its reflections to be
in the Z-linear span of the roots.

Example 2. So far we have only ever seen root systems where we only need ±α
and ±α/2 in the list in axiom 5. An example that illustrates the fact that we need
the 3α/2 which can be seen in fig. 1.

As it turns out, the arrow between semi-simple Lie algebras and root systems is
really an equivalence.

Lemma 1. There is a map from based root systems3 to root systems. I.e. we can
construct everything from the simple roots.

3 These just consist of a basis of roots satisfying some properties.



LECTURE 19 3

L1

L2

L3

L4

α12

α23

α34

α24

α14

Figure 2. (Left) The weights of the standard representation of
sl (4,C). (Right) The roots of sl (4,C), i.e. the weights of the
adjoint representation of sl (4,C). One choice of simple roots is in
red.

1.2. Dynkin diagrams. A Dynkin diagram is a graph with a vertex for every
α ∈ ∆. Then there is a single edge edge for an angle between the roots of 2π/3, a
double edge for 3π/4, and a triple edge for 5π/6. The direction of the double and
triple edges point from longer to shorter roots.

Example 3. Recall sl (4,C) has a picture as in fig. 2. One choice of simple roots
consists of α12, α23, and α34. The angle between α12 and α34 is π/2 so they don’t
get connected, but the angle between α12 and α23 is 2π/3, and similarly for α23

and α34, so we indeed get

which is the A3 diagram.

Example 4. First consider sp (6,C) which has root system B3 as in fig. 3. so (7,C)
has the root system C3 as in fig. 3. Both of these systems have roots on all edges
of the square. The B3 root system has roots on all surfaces of the cube, whereas
the C3 system has roots above all surfaces of the cube. Therefore they have the
same angular relationship, which is that two of the simple roots have an angle of
π/2, two have an angle 2π/3, and two have an angle of 3π/4. But the relationship
between the lengths of the roots is different which is why the direction of the arrow
is different for B3 versus C3:

B3 C3

Example 5. For so (4,C) the roots are as in fig. 4. which means the angle between
all roots is π/2, so the Dynkin diagram is just two unconnected points. This is a
reflection of the fact that

so (4,C) = sl (2,C)× sl (2,C)

Exercise 1. Come up with a creative way to think about/draw F4.
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Figure 3. (Left) The root system B3 for sp (6,C). The simple
roots are the roots of multiplicity 2. (Right) The root system C3

for so (7,C). The simple roots are the roots of multiplicity 2.
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Figure 4. The roots of so (4,C).

1.3. Simply-laced Dynkin diagrams. The An, Dn, and En Dynkin diagrams
are called simply-laced because they only have single bars in their Dynkin diagram.
One sample connection to another part of mathematics is as follows.4 The ADE
diagrams are in bijection with rational/du Val surface singularities.

Example 6. The diagrams An correspond to

V
(
x2 + y2 + z1+n

)
⊆ C3

For n = 1, so sl (2,C), we get a nice cone. As n increases this gets worse and worse.
Now we might ask how far this is from being a manifold. One way to measure this
is to find a minimal resolution X̃n → Xn. The idea is that X̃n will be a smooth
surface, and this map will be an isomorphism away from the singular point which
is also proper everywhere.5 Then the preimage of the singular point is n copies of

4 This is typically attributed to to Grothendieck but Professor Nadler says the way it goes is

that the rich get richer.
5 This just means the inverse image of compact sets is compact.
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CP1 which intersect in a chain which is the An diagram. The same story holds for
types Dn and En, only in those cases the singularities look a bit different.

2. Harish Chandra center

Let g be a simple Lie algebra over C, and letG be the connected simply-connected
group with Lie algebra g. Since g is simple, the center z (g) = 〈0〉. This means Z (G)
must be finite.6 This seems like we can’t attack it with much since it’s sort of atomic,
but as it turns out the enveloping algebra Ug has a somehow large center. This is
an amazing fact, because if we have a G action, we have a g action, so we have a
Ug action, and this object actually has this large useful center.

Theorem 1 (Harish Chandra). The center of the enveloping algebra z (Ug) is iso-

morphic to (Ug)
(W,̃·)

where W acts around ρ rather than the origin.

6 It is immediate that the center must be discrete, but after a bit of work we could see that it
does indeed have to be finite.
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