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1. Examples of Lie groups and representations

Recall that a Lie group is a smooth manifold G, which is also a group such that
the group multiplication and inverse map is smooth with respect to the manifold
structure. These of course have to be associative and unital.

Also recall the nature of a group action on a space. We will always have in mind
that the space we are acting on is some smooth manifold X. The action is a smooth
map G×X → X. This action must also satisfy associativity and that the identity
acts as the identity diffeomorphism.

We should keep the following examples in mind.

Example 1. The group G = GL (n,C) is a Lie group consisting of n×n invertible
matrices.

Example 2. A representation is a special case of a group action on a manifold.
For any vector space V , G × V → V is given by linear diffeomorphisms which are
of course associative and unital.

Example 3. In particular, consider GL (2,C). This consists of all matrices(
a b
c d

)
such that ad− bc 6= 0. Take X = CP1. The action is GL (2,C)×CP1 → CP1 which
maps

A =

(
a b
c d

)
, l =

(
x
y

)
7→

(
ax + by
cx + dy

)
If we think about this in terms of slope, this says that the line with slope y/x goes
to the line with slope (cx + dy) / (ax + by). This is what is called a fractional linear
transformation.

Example 4. For V = C2 we get an example of a representation where GL (2,C)×
C2 → C2 is the natural action.

2. Higher dimensional examples

We now generalize to any n. For G = GL (n,C), V = Cn, what are the poten-
tial spaces X we might consider? We will consider complex projective space, the
Grassmannian of n planes, and flag manifolds.
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Figure 1. The horizontal axis is Ck, and the vertical axis is Cn−k.
The line P is such that P ∩ Cn−k = {0}.

2.1. Complex projective space. Well first we can have X = CPn−1.

Exercise 1. What is the analogue of the “slope” in this higher dimensional case?

How do we see this is a manifold? We cover this with copies of Cn−1. For all
i ∈ {1, · · · , n} write

Ui ' Cn−1 ' {(x1, · · · , xi−1, 1, xi+1, · · · , xn)}

Exercise 2. Check that these are all appropriately compatible in their intersec-
tions.

2.2. Grassmannian. Another possibility, is to consider the “Grassmannian” which
is

X = Gr (k, n,C) = {k-planes in Cn through 0}

Exercise 3. For what k,k′,n,n′ do we have a diffeomorphism between Gr (k, n,C) '
Gr (k′, n′,C).

How do we see this is a manifold? Consider the following chart in Gr (k, n).
Consider a k-plane P as in fig. 1. such that P ∩Cn−k = {0}. Then consider U to be
the set of all such k-planes. Note that U ' Hom

(
Ck,Cn−k). This is of course just

a collection of matrices, so U ' Ck(n−k). Now we need to check that these objects
actually cover Gr (n, k). We will take two approaches.

This open set U can be defined anytime we break this up into k coordinates, and
the complement. That is, for any I ⊂ {1, · · · , n} such that |I| = k, we can split
this space into CI and CIc

and now we can define UI for this choice of I.
The second approach is to note the following:

Exercise 4. GL (n,C) acts transitively on all three of the spaces we are considering
here.

Then we can use the group action to move U around to cover.

Exercise 5. Check that these agree on the intersections.
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2.3. Flag manifolds. Another example is a flag manifold. Let’s write some subset

k ⊆ {1, · · · , n− 1} .

Then we can consider the flag manifold Fl (k) which consists of nested sequences of
subspaces Ek1

⊂ Ek2
⊂ · · · with dimension of Eki

= ki where ki is the ith element
of k.

To see this is a manifold, we can consider it as a subspace of the following:

Fl (k, n,C) ⊆
∏
ki

Gr (ki, n,C)

Exercise 6. Show that Fl (k, n,C) is cut out of the above as a regular value of a
smooth map so it is a submanifold.

3. Types of group actions

We now introduce some terminology for different types of group action. We will
write an action G×X → X as G

�

X. We say an action is transitive if for every
x, y ∈ X, there exists some g ∈ G such that g · x = y. This is somehow saying G
is bigger than X. We can also ask that the action is free, which means for every
x ∈ X, if g · x = x, then g = e. This is somehow saying X is bigger than G.

Define the orbit of x ∈ X to be

X ⊇ G · x := {y ∈ X | ∃g ∈ G s.t. y = g · x}
Then the stabilizer is

G ⊇ Gx := {g ∈ G | g · x = x}
Note that an action is transitive iff there is only one orbit, and an action is free

iff every stabilizer is trivial.

Lemma 1. Stabilizers are closed subgroups. In addition, for y = gx, we have
Gy = gGxg

−1.

Proof. The second statement is effectively obvious so we focus on the first state-
ment. The fact that the stabilizer is a subgroup is immediate. We prove it is closed.
The stabilizer Gx is the fiber at x of the map g 7→ g ·x. Since X is Hausdorff, points
are closed, so the fiber is closed, so the stabilizer is closed. �

Example 5. Consider G = GL (n,C)

�

Fl (k, n,C). This is a transitive action so
there is only one orbit. The stabilizer Gx of a point

x = {Ek1
= Span {e1, · · · , ek1

} , · · · , Eki
= Span {e1, · · · eki

}}
is the collection of matrices such that the top left ki block has zeros beneath it for
every i. Note that for full flags we get the collection of all upper-triangular matrices
in GL (n,C).

Based on lemma 1 we introduce the following definition:

Definition 1. A Lie subgroup H ⊂ G is a subgroup, which is also closed.

Example 6 (Non-example). We offer a subgroup H ⊂ G which is not closed. Take
G = T 2, and then H = R× {irrational slope} then we get a subgroup which is not
closed.

From now on we assume all subgroups are Lie subgroups.
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Lemma 2. Lie subgroups are Lie groups. In particular we have a bijection between
Lie subgroups and transitive G actions.

Exercise 7. Prove lemma 2. I.e. show that Lie subgroups are in fact submanifolds.

Example 7. Consider GL (2,C)

� (
CP1

)k
. For what k is this transitive? For

what k is this free? For what k does this have finitely many orbits? What are the
stabilizers?

The case k = 0 is trivial. For k = 1 this is transitive but not free. It is not
free because the diagonal matrices scale the vectors without changing the line, so
the stabilizer of any point contains the diagonal matrices which comprise C×. For
x = (1, 0),

Gx =

{(
a b
0 d

)
| ad 6= 0

}
For k = 2, this action is not transitive, and it has two orbits which consist of pairs

of matching lines l1 = l2, and different lines l1 6= l2. What about the stabilizers?
First take x to be l1 = l2 = [e1], and we get

Gx =

{(
a b
0 d

)
| ad 6= 0

}
and then for x consisting of l1 = [e1],l2 = [e2] we get

Gx =

{(
a 0
0 d

)
| ad 6= 0

}
Exercise 8. Complete the same analysis for k = 3.

Exercise 9. Consider GL (2,R)

� CP1. Calculate the orbits. Calculate the stabi-
lizers.

Next time we start with G acting on itself by left/right translations. This will
lead us to Lie algebras.
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