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1. Harish Chandra center

We will continue our discussion of the Harish-Chandra center. The setup will be
g a semi-simple complex Lie algebra, and G the unique connected, simply-connected
Lie group. Inside g we have a Cartan subalgebra h, and on this we have this Weyl
group action. Then we have the following theorem:

Theorem 1.
z (Ug) ' (Uh)

W,̃·

2. The RHS

The first thing to notice is that we have a canonical isomorphism Uh ' Sym (h).
Recall

Uh :=
⊕
n≥0

h⊗n/ (H1 ⊗H2 −H2 ⊗H1 − [H1, H2] = 0) .

Since h is abelian, we are actually just killing transpositions, so we get a symmetric
algebra.

2.1. A useful point of view. A useful point of view is to think of Sym h as
polynomial functions on h∗, written C [h∗]. Now we have a W action1 only we want
to re-center at −ρ to get the this ·̃ action.

To get this action we had to choose a Borel subalgebra, which told us the positive
roots, and then we write down half the sum of the positive roots, and this is ρ. More
specifically,

w·̃λ = w · (λ+ ρ)− ρ .
The reason this point of view is useful, is that we have

(Uh)
W,̃·

= Sym (h)
W,̃·

= C [h∗]
W,̃·

so we should think of this as consisting of the polynomials invariant under this
twisted W action.

Remark 1. This C [h∗]
W,̃·

is what we would write in algebraic geometry as

C [h∗//W, ·̃]
Note that this space, which we now write as

c∗ := h∗//W ,

Date: November 8, 2018.
1 Professor Nadler’s polarity changed after his week away and now he gets shocked by the

blackboard.
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is again an affine space.

Fact 1 (Fantastic fact). (Uh)
W,̃·

is again a polynomial algebra.

Example 1. In sl (n,C), W = Σn is the symmetric group. We will ignore the
·̃ part for now just to get a feeling for this. Here h∗ just consists of n-tuples of
eigenvalues of trace 0. Now we can ask for all of the polynomial functions of the
eigenvalues that are invariant under their permutations. As it turns out, these are
the polynomials in the elementary symmetric functions:

C [h∗//W ] ' C [σ2, · · · , σn] .

So we should think of this guy as another affine space.

2.2. Motivation/what this is telling us. Let’s stop for a second and enjoy what
this theorem is telling us. It is saying that any time you write down a module over
this algebra Ug, i.e. a representation of g, finite or infinite dimensional, you have
an action of the center on the module. So the entire representation theory of this
algebra lives over functions on an affine space. So we can talk about when a module
is supported at a point of an affine space, based on acting on it by functions.

The upshot of all this is that the category Ug-Mod is linear over the polynomial
algebra C [c∗]. So if we are given some Ug module M , we can take some2 λ̄ ∈ c∗,
and then consider functions which vanish exactly at this point, and multiply the
module by them. Now we can ask if the action is, say, always an isomorphism. And
if it is, that means the module would somehow live only here.

Remark 2. What professor Nadler is trying to convey here in basic terms is the
following. If you’ve ever taken Spec of a module in algebraic geometry you know
you get a sheaf on this thing. So it tells us that all modules have some expansion
over this affine space.

In particular, if you’re irreducible, we already know what the irreducible modules
are for a polynomial algebra. They’re just given by the maximal ideals, i.e. just
the points. So the upshot is that all of the irreducible modules live over points of
c∗. If a module “spreads out” then we can just multiply it by a function x− λ̄ and
get a submodule.

So again, the representation theory of this lives over an affine space, whose points
are somehow sets of eigenvalues. So what remains for us, as representation theorists
trying to understand all Ug modules, is to fix any single point in c∗ and just study
all of the modules that live above this.

For fixed λ̄ ∈ c∗ we set the following notation:

Uλ̄g = Ug/Iλ̄
where Iλ̄ is the ideal of C [c∗] which consists of functions vanishing at λ̄. So the
only nonzero things are what’s happening here.

Example 2. This is supposed to be like taking kλ ' k [t] / (t− λ) to get the sky
scraper (copy of scalars) at λ.

So now we have the following observation: Uλ̄g-Mod just consists of Ug-Mod
on which the center acts by the character. I.e. we map

z→ z/Iλ̄ ' kλ̄
2 We call this λ̄ to convey that it somehow comes as the image of some set of eigenvalues.

Points of h∗ are like ordered eigenvalues, and points of c∗ are like unordered eigenvalues.
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Remark 3. What do we mean by acts by the character? If we take any Ug module
we can ask how the center acts. Remember we want to think of this as functions
on c∗. So now we’re just doing algebraic geometry. We have a polynomial algebra,
and we’re asking how it acts on a module. One of our favorite ways is to take a
polynomial, restrict it to λ̄ to get its value, and then scale the module by that value.
But this is mathematically the same as saying the polynomial algebra maps to its
quotient by the ideal of functions vanishing at λ̄ which is just the values at λ̄.

The whole representation theory of the enveloping algebra, which is to say the
representation theory of g, has this giant center in it, and we can somehow talk
about those representations that live over any point in Spec of the center. We define
this algebra to be the quotient of the entire algebra which is given by just looking
at the point λ̄. The whole representation theory is then somehow an “integral”
over the representation theory at these λ̄.

Remark 4. This is somehow the reason one likes centers. If g was commutative, it
would just be its own center, and we would be back in algebraic geometry where
we know how to classify irreducibles (given by maximal ideals) so there’s a whole
structure there. And the next best thing is the (very big) center of Ug. So in this
part things are just algebraic geometry, and then for each λ̄ you have to do the
algebraic geometry of this new particular algebra which has center just consisting
of scalars.

Remark 5. This is somehow a general paradigm. Any time someone gives you a
mathematical object, you should ask what its endomorphisms are, and then find the
center of the endomorphisms. Then spread it out over Spec of the center. Professor
Nadler says you can understand almost everything in mathematics by asking that
question.

2.3. Calculation for sl (2,C).

Example 3. Let g = sl (2,C). Then h = C ·H and h∗ = C ·L1 where La (aH) = a.
We want to think about L1 as a point, and then functions on this line h∗ are
polynomials in H, C [h∗] ' C [H]. Recall the usual W = Z/2 = {1, σ} action is just

reflection wrt 0, so C [H]
W

is all polynomials invariant under H 7→ −H, which is
of course C

[
H2
]
. This is again a polynomial algebra, and we should think of this

as being like a double cover by the square map. Here ρ = L1, so −ρ = −L1, so the
action of W = Z/2 by ·̃ is really reflection over −1:

σ·̃ (aL1) = − (aL1 + L1)− L1 = (−a− 2)L1 .

Now the invariant functions under this action are:

C [h∗]
W,̃·

= C
[
(H + 1)

2
]

Remark 6. One might be annoyed by this ·̃ action because it’s an extra thing to
keep track of. Professor Nadler says that often times in mathematics it is best to
respect structures like this and be their friends so they can guide us.

3. The LHS

Now we want to think about the LHS of the theorem. Recall again that:

Ug =

( ∞⊕
n=0

g⊗n

)
/ (X ⊗ Y − Y ⊗X − [X,Y ])
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But this quotient doesn’t respect the grading of the tensor algebra since it effectively
sets degree 2 things equal to degree 1 things. We do however maintain the filtration:

F 0Ug ⊂ F 1Ug ⊂ · · ·

where F iUg somehow consists of tensors of degree i and lower. We can canonically
write that

F 0Ug = C F 1Ug = C⊕ g

are tensors of degree 0 and degree 1, but after this there is no canonical splitting
of the filtration. PBW does however give us a non-canonical splitting.

Recall that this PBW story was that Ug has a basis of ordered monomials of the
form Xα1Hα2Y α3 which gives us a splitting of this filtration. This tells us that we
can set

F 2Ug = C⊕ g⊕ {degree two s.t. linear combination of PBW basis} .

Now if we pass to the associated graded algebra:

GrF (Ug) =

∞⊕
n=0

FnUg/Fn−1Ug ' Sym (g)

we get a symmetric algebra on g.

3.1. Organizing Ug and Sym (g). What we did above doesn’t really have anything
to do with PBW. Any time we have a filtered algebra like this we can do what’s
called the Rees construction, which builds a new algebra which depends on both
the initial algebra and the filtration. Explicitly we define the algebra:

Rg =

∞⊕
n=0

FnUg · ~n

where the multiplication is given by:

(τn · ~n) · (τ ′m · ~m) := τnτ
′
m · ~n+m

Note that ~ is central, which means this algebra lives over the ~ line. Now we can
ask about the fibers of this algebra at different points. When ~ = 0, we recover the
associated graded algebra GrF (Ug), and at ~ = 1 we recover Ug. In general we
get:

Rg|a = Rg/ (~− a)

Exercise 1. Show that with this definition Rg|0 = GrF (Ug) and Rg|1 = Ug.

Solution. For ~ = 0 we can look at the inclusion of something in the ideal (h) into
Fn+1Ug · ~ and this will be exactly GrF (Ug).

Remark 7. The whole point here is that what we did above is completely general
and doesn’t have anything to do with PBW.

Remark 8. So we start with a symmetric algebra, the functions on g, and then one
can view this as quantizing those functions. A useful point of view is that Rg is
the deformation quantization3 of the algebra of symmetric functions with respect
to the Poisson structure given by [·, ·].

3 This is just a word for deforming a commutative algebra to be something noncommutative.
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Remark 9. The general point of view here is that when we’re studying Ug, we’re
really looking at g∗ as a vector space, which has a ring of functions with a Poisson
bracket, and we’re quantizing the Poisson bracket to get Ug.

3.2. Key observation. Now we want to determine the center of Ug. What is the
center of the special fiber? This is commutative, so it is the whole thing. So passing
between them something strange happens since the center gets much smaller. We
now have the following key observation:

z (Ug) ' (Ug)
G

under the adjoint action. So if we take a tensor τ such that Adg τ = τ , then
differentiating with respect to g = exp (tX) we get adX (τ) = 0 which means
[X, τ ] = 0 where this extends by the Jacobi identity. Therefore, being an invariant
means you’re certainly in the center. Now conversely, if something is in the center
we can just exponentiate it, which generates a neighborhood of the identity, and
therefore this thing is invariant under the adjoint action of G as well. So we just
reinterpreted being in the center as a quality which only concerns invariants of this
vector space.

Now the PBW splitting gives the isomorphism of vector spaces Ug ' Sym (g) so
the subspaces of invariants are the same as vector spaces:

(Ug)
G ' Sym (g)

G
.

Warning 1. The LHS is commutative and the RHS is not, so these are cer-
tainly not isomorphic as algebras, and in fact they’re not even isomorphic as G-
representations. We will see an example of this soon.

Now there is a theorem of Chevalley4 which says:

(Sym g)
G ' (Sym h)

W

Example 4. In g = sl (n,C), this isn’t so surprising. In this case Sym (g)
G

consists
of all polynomial functions on traceless n × n matrices which are invariant under

change of basis, i.e. they are conjugation invariant. On the other hand, Sym (h)
W

consists of symmetric functions on traceless n-tuples of eigenvalues. There is a

natural map Sym (g)
G → Sym (h)

W
where we just restrict to the diagonal matrices.

In the other direction, one needs to convince oneself that any function of n × n
matrices that are conjugation invariant is just going to be a symmetric function on
the eigenvalues.

Exercise 2. Show this.

All together we have shown that:

z (Ug) ' (Sym h)
W

as vector spaces, which shows us they are somehow the same size, which is what
Harish-Chandra said was true. But there is no ·̃ in sight, so we need to go back and
somehow correct the fact that this was not an isomorphism of algebras, or even of
representations. We will see what this looks like for sl (2,C), and the main point
will be that we need to go and symmetrize the PBW basis. This changes the W
action, which finishes the picture. In the process we will calculate the first casimir,
which is to say the first interesting invariant.

4 This is often referred to as Chevalley’s restriction theorem.
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