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1. sl (3,C)

Recall for g = sl (3,C) we have the Cartan subalgebra h = C 〈H12, H23, H31〉
where H12 + H23 + H13 = 0. Then h∗ = 〈L1, L2, L3〉, and we want to describe
invariant functions on h∗. We can regard the Hij as linear functions on h∗. For
example, H12 is the function which is +1 at L1, −1 at L2, and zero on the span of
L3. Now to find functions invariant under the Weyl group action we want a basis
of h∗ for which the Weyl group permutes the elements. Unfortunately the usual
basis is not such a basis since, for example, (12) takes H12 to −H12.

We need to take different coordinates in order for this to be a permutation action.
The idea is that we don’t want functions which are vanishing on the these particular
hyperplanes. Instead we will set:

a = H12 −H31 b = H23 −H12 c = H31 −H23 .

Now these functions take values as in fig. 1.

Claim 1. W = Σ2 permutes the functions a, b, and c.

“Proof” by example. Take σ = (12), then this takes a 7→ b, b 7→ a, and c 7→ c. �

As a result of this observation, we can write:

Sym (h)
W ' C [a, b, c]

W ' C [σ2, σ3]

where

σ2 = ab+ bc+ ca σ3 = abc

Now we want to find the image of the hyperplanes under taking W invariants.
First notice that L1, L2, and L3 all map to a point. The hyperplanes are the
vanishing locus of the Hij , but in the a, b, c basis, the hyperplanes are instead where
a = b or b = c or c = a. Then the claim is that the image of these hyperplanes
is given by some equation of order 3 in σ2 and order 2 in σ3, i.e.

{
c2σ

3
2 + c3σ

2
3

}
for some c2 and c3. In particular for h = (a− b) (b− c) (c− a) we have that h2 is
exactly the equation cutting out this cusp.
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Figure 1. The values taken by our new basis a, b, and c. The
functions vanish along the dotted hyperplanes now rather than the
hyperplanes that the Weyl group reflects over.

2. Isomorphism of Ug and Sym g as vector spaces but NOT
representations

If we choose a PBW basis, we can get an identification Ug ' Sym (g) as vector
spaces, but certainly not as G-representations. The following example shows this.

Example 1. Take g = sl (2,C) with the usual PBW basis. If we look at XY ∈ Ug,
then under this isomorphism with Sym g this element XY 7→ XY ∈ Sym g. But if
we instead take Y X ∈ Ug, the prescription is to rewrite this as Y X = XY +[Y,X] =
XY −H which is in “PBW form” so this gets mapped to XY −H ∈ Sym g. This
is exactly the point of PBW, it is somehow telling you how to break symmetry.

Consider

g =

(
0 1
−1 0

)
∈ SL (2,C) .

Then we’re hoping that if we conjugate Y X and map it to Sym g, this is the same
as mapping it and then conjugating it. We can calculate the action of Adg to be(

0 1
−1 0

)(
a b
c −a

)(
0 −1
1 0

)
=

(
−a −c
−b a

)
which means

H 7→ −H X 7→ −Y Y 7→ −X

and therefore we have

Adg (Y X) = Adg (Y ) Adg (X) = (−X) (−Y ) = XY .
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Therefore we have seen that if we first conjugate and then map to Sym g versus
mapping to Sym g and then conjugating, we don’t get the same result:

Y X XY −H

XY XY Y X +H

Adg

PBW 6=
Therefore these things are not isomorphic as G representations in this way.

3. Isomorphism of Ug and Sym g as adjoint G representations

The goal is now to construct an isomorphism of these as representations. We
will not be using PBW at all. We know Ug is filtered, and Sym g is even graded,
so it’s certainly filtered.

Claim 2 (Good news). There exists an isomorphism of adjoint G representations
so that in particular, for any piece of our filtration of Ug we have the following
isomorphism:

Ug Sym g

F kUg
k⊕

i=0

Symi g

∼

∼

Proof. We will prove this by induction on the filtration. The base case is just:

F 0Ug ' C ' Sym0 (g)

So now suppose we have

F k−1Ug '
k−1⊕
i=0

Symi (g)

as G representations. Consider the following SESs:

0 F k−1Ug F kUg Grk Ug 0

0
k−1⊕
i=0

Symi (g)
k⊕

i=0

Symi (g) Symk (g) 0

∼ ? ∼

where the bottom sequence naturally splits. Then since the category is semi-simple,
the top SES splits. �

4. More discussion of Harish Chandra

We won’t be explicitly proving the HC isomorphism, but we will discuss it more
so we at least feel comfortable with it. Recall the content of the theorem is that

z (Ug) ' (Uh)
W,̃·

.

Geometrically, we can think of G/N as having a left action of G by left multi-
plication, and a right action of H which commutes with this action since

(gN)h = gh
(
h−1Nh

)
= ghN

since H normalizes N .
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Example 2. Let g = sl (2,C). Then G/N = C2 \ {0} and

gN 7→ g

(
1
0

)
.

Recall that N =

〈(
1 n
0 1

)〉
is exactly the stabilizer of this vector (1, 0). Now we

can think about what this action does to vectors in C2 \ {0}. Take h =

(
z 0
0 z−1

)
inside the Cartan, and now we want to see what gNh = ghN goes to:

ghN 7→ gh

(
1
0

)
= g

(
z
0

)
so H ' C× acts by dilation, and SL (2,C) acts as usual by linear transformations.
So we have these two commuting actions on C2 \ {0}.

Exercise 1. Show than when we have these two commuting actions G

�

G/N 	 H,
then G-equivariant automorphisms of G/N are exactly just H acting on the right.

Solution. Since B = NG (N), we have H ' B/N . This is just a general fact
that in any subgroup if you ask what are the G-equivariant automorphisms of the
homogeneous space, the answer will be the normalizer modulo the stabilizer which
in this case is H.

The point is that one only needs to know where one point goes since it is G
equivariant.

Remark 1. This is very similar to when we were talking about highest weights.

Corollary 1. G invariant vector fields on G/N are given by vector fields coming
from h.

Corollary 2 (More generally). The collection of G invariant differential operators
on G/N is isomorphic to differential operators coming from Uh.

Example 3. Let’s return to G = SL (2,C) to see what’s going on here. In this
context this is saying that:

AutG
(
C2 \ {0}

)
' C×

where C× acts by dilation. So if you need to map a vector to another vector in
a way that is G-compatible, i.e. it commutes with linear tranformations, then the
only way to do it is by dilation.

4.1. Application. The reason this abstract discussion is useful, is the following
application. We can map

z (Ug)→ DiffG (G/N)

but these must come from Uh. In other words we have a factorization

zUg DiffG (G/N)

Uh

and this is the Harish Chandra homomorphism. In this language the theorem is

saying that the image is actually (Uh)
(W,̃·)

.
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To be continued. . . 1

1 A fire alarm went off at this point. Probably because the large amount of smoke in the air
from the forest fires leaked into the building and set the alarms off.
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