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NOTES BY: JACKSON VAN DYKE

We will have lecture this week and Tuesday of next week. There will be office
hours this week and next week as usual. The final will be posted this week, and it
will be due on Monday December 10. The topic for the remaining lectures will be
D-modules and Beilinson-Bernstein localization.

1. Harish-Chandra

For any complex simple Lie group G, we have the actions G

�

G/N 	 B/N ' H
where G/N is the fundamental affine space.

Example 1. For G = SL (2,C), the fundamental affine space is C2 \ {0}, where
SL (2,C) acts by fractional linear transformations, and C× ' H acts on the right
by dilations.

We know we can map g → (G/N) ← h and extend this to Ug → Diff (G/B) ←
Uh.

Theorem 1. z (Ug) ↪→ Diff (G/N) with image

Diff (G/N)←↩ (Uh)
(W,̃·) ' (Sym h)

(W,̃·) ' C [h∗]
(W,̃·)

so
z (Ug)

∼−→ C
[
h×
](W,̃·)

Example 2. z (Usl (2,C)) ' C [K] where K = H2 + 2 (XY + Y X) is the Casimir.

We should then think of its image under this isomorphism, (H + 1)
2 ∈ C [h×]

(W,̃·)
,

as the quadratic function that vanishes to order 2 at −1.

2. Beilinson-Bernstein localization

Let G

�

G/B be a simple complex Lie group acting on this flag variety. As usual
we can map g→ Vect (G/B) and Ug→ Diff (G/B).

2.1. Algebraic vector fields and differential operators. We want to restrict
our attention to algebraic vector fields and algebraic differential operators. So
let’s see what those things are. G/B can be covered by affine spaces Cd where
d = dim (G/B). We can do this by taking a coordinate flag E•w for w ∈W . Recall
the standard flag is:

E•std = {〈0〉 ⊂ 〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · ·Cn}
and then

E•2 = w (E•std) =
{
〈0〉 ⊂

〈
ew(1)

〉
⊂
〈
ew(1), ew(2)

〉
⊂ · · ·

}
.
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So given any coordinate flag we can define the affine space

Aw = {E• t E•w}

which means Ek t En−kw for all k.

Exercise 1. Show that each of these Aw ' Cd.

Now “algebraic” means that we only allow polynomial functions on the coordi-
nate patches. So algebraic vector fields are vector fields such that on any coordinate
patch, it will look like a polynomial function times ∂/∂xi rather than a generic com-
plex analytic function times these ∂/∂xi. Explicitly they are of the form:

x =

d∑
i=1

pi (x) ∂xi

where the pi are polynomials. We will write Vectalg (G/B) and Diffalg (G/B) for
the algebraic vector fields and algebraic differential operators respectively.

Exercise 2. Show that the maps g → Vect (G/B) and Ug → Diff (G/B) land in
algebraic vector fields and algebraic differential operators.

Example 3. For g = sl (2,C), in one of the coordinate patches we saw thatX 7→ ∂x,
H 7→ −2x∂x, and Y 7→ −x2∂x which are of course algebraic.

2.2. A fundamental theorem.

Theorem 2. The map U0g→ Diffalg (G/B) is an isomorphism, where we define

U0g = Ug/z0 (Ug)

where z0 (Ug) is the augmentation ideal, i.e. the ideal of z (Ug) ' C [h×]
(W,̃·)

van-
ishing at 0 ∈ h×.

This is compatible with the HC isomorphism in the following sense. Recall that
when discussing HC we mapped g→ Vectalg (G/N)← h and Ug→ Diffalg (G/N)←
Uh. But now we can obtain Diffalg (G/B) from Diffalg (G/N) by doing “quantum
Hamiltonian reduction.” In particular we following the steps:

(1) Take H invariant differential operations on G/N , Diffalg (G/N)
H

.
(2) Quotient by U0h, which is the H-invariant differential operators along the

fibers. Note that U0h is the kernel of the map U0h→ Uh ' C [h×]
ev0−−→ C.

So in the end we get:

Diffalg (G/B) = Diffalg (G/N)
H
/U0h

So the map Ug→ Diffalg (G/B) certainly must send the ideal z0 (Ug) ⊆ U0h to 0.

Remark 1. Similarly we can prove that Uλg
∼−→ Diffalg

λ (G/B) where Uλg = Ug/zλ (Ug),
and

Diffalg
λ (G/B) = Diffalg (G/N)

H
/Uλh .

This new object consists of what are called “twisted differential operators.” We
can think of this as taking the fiber of the moment map at λ rather than at 0. The
most general version of this theorem that one might consider is:

Theorem 3. Ug⊗zg Uh
∼−→ Diffalg (G/N)

H
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So in this case we somehow skip the second step of the Hamiltonian reduction
above.

The point is that if we want to understand Ug modules, or in particular irre-
ducible Ug modules, each of them will have a fixed central character, so each of
them will come with some Uλg. And this theorem is telling us that the theory of
Uλg modules is the same as the theory of modules over the differential operators, so
something very geometric. We will spend the next week or so talking about what
it means to be a module over differential operators.

3. Modules over differential operators

We could tell this whole story for twisted differential operators, which is neces-
sary to understand all Ug modules, since studying differential operators only tells
us about U0g. But we will keep it simple and just study Diffalg (G/B). Now we
have the following key idea:

Key idea: To obtain modules over global differential operators from

local modules over differential operators by taking global sections.

The point here is that we will construct modules by gluing together “local”
modules. We couldn’t do this in U0g itself, but in G/B we can since

G/B =
⋃
w∈W

Aw

is just the union of affine pieces which are each Cd for d = dimG/B. In particular,
we will study differential operators on these pieces Aw and then glue them all
together.

3.1. Local story: algebraic differential operators and their modules on
Cd.

Exercise 3. Show that the algebraic differential operators are exactly the Weyl
algebra:

Diffalg
(
Cd
)
' C 〈x1, · · · , xd, ∂x1

, · · · , ∂xd
〉

where the xi all commute, the ∂xi
commute, and then

[∂xi
, xj ] = ∂xi

xj − xj∂xi
=

{
0 i 6= j

1 + xi∂xi − xi∂xi = 1 i = j
.

Now we will think about what modules are like over this algebra. First we will
focus on the case d = 1 and do some examples. So in this case, Diffalg (C) '
C 〈x, ∂x〉.

Example 4. The free module C 〈x, ∂x〉⊕n is of course a module.

Example 5. Polynomial functions Oalg (C) ' C [x] is a module over Diffalg (C)

where x acts as x and ∂x differentiates x. Note that C 〈x, ∂x〉 / (∂x)
∼−→ C [x] where

1 7→ 1. This isn’t free, but it’s still nice. This is a somehow small module since it’s
the quotient of a rank-one free module.

Example 6. We can also consider the rational functions

Kalg (C) ' C (x) =

{
p

q
| q 6≡ 0

}
.
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This is also a module, but it is not finitely generated, because whenever you think
you’ve finitely generated it, some function walks into the room with a deeper pole.

Example 7. We can consider

Oalg (C) 〈ex〉 = {p · ex | p polynomial}
but we have to check that

∂x (pex) = p′ex + pex = (p′ + p) ex .

This is somehow a small module, so we expect it to be somehow surjected upon by
a rank 1 free module. Indeed, C 〈x, ∂x〉 / (∂x − 1)

∼−→ Oalg (C) 〈ex〉 where we map
1 7→ ex.

Example 8. We can also consider any sufficiently differentiable function space on
C, but these are somehow huge and not so algebraic.

Now we might wonder if there is a module M with dimCM < ∞. Certainly
none of them so far have satisfied this. An easier question to ask might be to forget
about ∂x, and think of finite dimensional C [x] modules.

Exercise 4. Show that any finite dimensional C [x] module is a finite dimensional
vector spaces equipped with an endomorphism. Show that

V =

k⊕
i=1

C [x] / (x− λi)di .

Note that each of these is a Jordan block.

So now we need to ask ourselves how to add ∂x into the picture and act on such
a V .

Claim 1. Finite dimensional C 〈x, ∂x〉-modules M are all trivial.

First we need to check how ∂x must act on an eigenvector, then we just need to
notice what happens when we keep applying ∂x.

Remark 2. We can also show it more algebraically. If we have some finite dimen-
sional module M , then we can represent x and ∂x as two matrices A and B which
act as linear operators on M . Then since [x, ∂x] = 1, [A,B] = I, but if M is finite
dimensional we have a well defined Tr, so

n = Tr (I) = Tr (AB −BA) = 0

so M must be zero dimensional, or Tr is not well defined.
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