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Recall from last time we stated the following theorem:

Theorem 1. For g a semisimple complex Lie algebra, we have an isomorphism:

U0g
∼−→ Diffalg (G/B)

Remark 1. The G action on G/B leads to a map g → Vectalg (G/B), which leads

to a map Ug→ Diffalg (G/B). Last time we discussed why this factors through Ug
to U0g = Ug/z0g, where z0g is the ideal I0 under the identification zg ' C [h×]

(W,̃·)
.

And from the same argument, is then injective.

1. Why is this map surjective

We will now try to see why we should expect this map to be surjective.

Remark 2. If this is indeed surjective, we might wonder what hits the functions on
the right, but the answer is that they’re all constant, since G/B is compact. The
example to keep in mind is P1.

Remark 3. If we’re somehow only concerned with representation theory of g, we
don’t really need this to be surjective, but we will make this comment anyway.

First note that the above maps are actually maps of filtered algebras. I.e.

Ug→ U0g→ Diffalg (G/B)

respect the natural filtrations on these objects. The first has the tensor algebra
filtration, the second has the tensor algebra filtration modulo some filtered ideal,
and the filtration on Diffalg (G/B) is given by the order of a given differential
operator. These all somehow look like∑

α

pα (x) ∂αx

where pα (x) are polynomials where for big enough α, they’re all zero. Then the
filtration is given by the order of α.
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Now we can pass to the associated graded algebras:

Sym (g) Sym (g) /
(

Sym (g)
G
)0
' C [gχ=0] Gr Diffalg (G/B)

C [g∗]
(
C [g∗]

G
)0

(
C [h∗]

W
)0

= I0

' '

'

where
(

Sym (g)
G
)0

is as follows. Recall we wrote down an isomorphism of G-

representations between Ug and Sym g. And under this isomorphism, the center
goes to the G-invariant piece. Then we take the ideal of zero inside of this, i.e.
the ideal of things which vanish when we just look at their constant piece. More
precisely,

Sym (g) ' C⊕ g⊕ Sym2 g⊕ · · ·

Sym (g)
G ' C⊕ 〈0〉 ⊕ Sym2 g⊕ · · ·(

Sym (g)
G
)0
' 〈0〉 ⊕ 〈0〉 ⊕ Sym2 g⊕ · · ·

We can think of this quotient by
(

Sym (g)
G
)0

as being functions C [gχ=0] where

χ : g∗ → h∗ is the characteristic polynomial map, and N = g∗χ=0 consists of the
matrices whose eigenvalues are all 0. The sort of geometric picture is:

g∗ g∗χ=0 = N

h∗/W 0

χ

3

Note that this diagram is the fiber in this category.
So on associated graded algebras, Ug becomes functions on g∗, and U0g becomes

functions on N . In other words, if we pass to algebraic functions, we get

C [g∗] C [N ]

Sym (g) Sym (g) /
(

Sym (g)
G
)0

C [h∗]
W C

χ∗

res0

So on the level of associated graded algebras, when we restrict to U0g, instead of
looking at functions on all of g∗, we’re just looking at functions on N . Now if we
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quantize, we get

Ug U0g

zg C

Remark 4. We have seen that when we pass to associated graded, U0g goes to
functions on N . For Uλg, this goes to functions on the fiber above λ as in the
above diagram.

Now finally, the associated graded algebra of Diffalg (G/B) is

Gr Diffalg (G/B) ' Oalg (T ∗G/B) .

This somehow has nothing to do with G/B, this is just a general fact. This is a
canonical construction.

Remark 5. In a kind of naive way, we can say that any time we have ∂x, we replace
it by the functions linear along the fiber, which to a covector, pairs with ∂x.

Remark 6. Certinaly every vector field gives you a function on the cotangent bundle
where you just pair with the vector field. Now if all of those commute, then you
get all functions on the cotangent bundle, and if they don’t, then you’re back to
thinking about differential operators.

To convince ourselves of this, we can consider the following local picture. Recall
that locally, differential operators on some Cd, are Diffalg

(
Cd
)

= C [x1, .., xd, ∂x1
, · · · , ∂xd

].
Then the filtration is given by the order of α. In particular,

Diff≤0
(
Cd
)

= O
(
Cd
)
⊂ Diff1

(
Cd
)

= O
(
Cd
)
〈∂x1 , · · · , ∂xd

〉 ⊂ · · ·
and in general

Diff≤n
(
Cd
)

= Diff≤(n−1)
(
Cd
)
〈∂x1 , · · · , ∂xd

〉
Now when we pass to associated graded, we get

Gr0 ' O
(
Cd
)

Gr1 ' O
(
Cd
)
〈ξ1, · · · , ξd〉

Gr2 ∼= O
(
Cd
)
〈ξiξj∀i, j〉

where the ξi are fiber-wise linear functions on the cotangent bundle which act as
ξi (x, η) = ηi and the ξiξj are fiber-wise quadratic functions which act as ξiξj (x, η) =
ηiηj . Now we can just glue this local picture together.

Now we want to understand the last map U0g → Diffalg (G/B) on the level
of associated graded algebras. Recall we’ve identified these with Oalg (N ) and

Oalg (T ∗G/B) respectively. Then the claim is that the map U0g → Diffalg (G/B)
is an isomorphism. In particular, we claim that this is an isomorphism iff it is
an isomorphism on the level of the associated graded algebras, and that this is an
isomorphism.

Exercise 1. The G action on G/B gives you a moment map µ : T ∗G/B → g∗.
Show:

(1) im (µ) is N ⊆ g∗

(2) µ∗ is Oalg (N )→ Oalg (T ∗G/B).
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(3) µ is a resolution, in particular proper and surjective, and conclude µ∗ is an
isomorphism.

In summary, we have the following:1

g∗ N T ∗G/B

Ug U0g Diffalg (G/B)

quantize

∼

This is a very nice picture, because we have these geometric spaces, and then con-
sider functions on them, and then we deform these functions to be non-commutative
and we get this picture.

2. Local modules

Now we return to the question of modules over differential algebraic operators
on Cd. Recall

Diffalg
(
Cd
)
' C [x1, · · · , xd, ∂x1

, · · · , ∂xd
]

In particular, we were wondering if there are any finite dimensional representations
over this. Suppose M is a finite dimensional representation, then xi and ∂xi are
just matrices and then there is a well defined trace, so tr ([xi, ∂xi ]) = 0 = tr (I) = n.
So the “smallest” modules are the size of the examples from last time which were
all somehow like O

(
Cd
)
' C [x1, · · · , xd] and O

(
Cd
)
eax ' eaxC [x1, · · · , xd].

There are more of this sort when we consider the xi and the ∂xi
on the same foot-

ing. In particular, we have some Fourier transform symmetries FTi : Diffalg
(
Cd
)
→

Diffalg
(
Cd
)

which map xj 7→ xj and ∂xj
→ ∂xj

for j 6= i and xi 7→ ∂xi
and ∂xi

7→ xi.
So another example is:

∆ (0) ' C [∂x1 , · · · , ∂xd
] ' Diffalg

(
Cd
)
/ (x1, · · · , xd) .

This is like O
(
Cd
)
' Diffalg

(
Cd
)
/ (∂x1 , · · · , ∂xd

) except we instead quotient out
by the xi. We also have

∆ (p) ' C [∂x1
, · · · , ∂xd

] ' Diffalg
(
Cd
)
/ (x1 − p1, · · · , xd − pd) .

These are called the “delta functions” and can be thought of as distributions.

3. D-modules

Definition 1. A D-module M on G/B is a compatible collection of Diffalg (Aw)-
modules.

More precisely we want

Mw|Aw∩Aw′ 'Mw′ |Aw∩Aw′

given by ϕw
′

w and then there’s a cocycle condition.

By restriction we mean the following. Given a Diffalg
(
Cd
)
-module M and an

open U = {p1 6= 0, · · · , pl 6= 0} ⊆ Cd then set

M |U = M

[
1

p1
, · · · , 1

pl

]
1 Professor Nadler says we should be screaming this in the middle of the night. He also says

this is potentially tattoo worthy mathematics.
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Theorem 2 (Beilinson-Bernstein localization). U0-Mod is equivalent to D-modules
on G/B where we send a D-module M to its global sections Γ (G/B,M).

Note that we define the global sections to be the equalizer of the following dia-
gram:

Γ (G/B,M)
∏
w∈W Mw

∏
w,w′Mw|Aw′

3.1. D-modules on P1. We will focus on g = sl (2,C), so G/B ' P1 ' A1 ∪Aσ '
C ∪ C where W ' Z/2 ' {1, σ}. Recall that since E•std = 〈e1〉, A1 is the subset of
lines l in P1 where l transverse to e1, and then E•σ = 〈e2〉, so Aσ is the subset of
lines l in P1 which are transverse to e2. A1 has coordinate t = s−1, and Aσ has
coordinate s, where s is the slope of the line, i.e. the intersection with the line at
x = 1.

Therefore a D-module M has two parts, it is a pair M1 and Mσ which are mod-
ules over C [t, ∂t] and C [s, ∂s] respectively. They also come with an isomorphism

M1

[
t−1
]
'Mσ

[
s−1
]

=: M1,σ

as modules over C
[
t, t−1, ∂t

]
' C

[
s, s−1, ∂s

]
.

The global sections are:

Γ
(
P1,M

)
= ker [M1 ×Mσ →M1,σ]

so these are pairs which map to m1,mσ 7→ m1−mσ. Recall sl (2,C)→ Vectalg
(
P1
)
.

Example 1. Oalg
(
P1
)

= Γ
(
P1,O

)
for some D-module O, defined by O (A1) =

C [t] and O (Aσ) = C [s]. So this is saying all polynomials on a compact space
are constant. This is a complicated way of telling you the trivial representation of
sl (2,C).

Example 2. The D-module ∆s=0 at s = 0 is given by the pieces ∆s=0 (A1) = 〈0〉,
and ∆s=0 (Aσ) = C [s, ∂s] / (s).

Exercise 2. What representation of sl (2,C) does this correspond to?

The BGG resolution will come from the Schubert cells which we will see on
Tuesday.
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