LECTURE 25 MATH 261A

LECTURES BY: PROFESSOR DAVID NADLER NOTES BY: JACKSON VAN DYKE

Today we will pick up where we left off with $\mathfrak{sl}(2,\mathbb{C})$ and return to the BGG resolution.

1. D-modules

Recall we were considering $G = \mathrm{SL}(2,\mathbb{C}) \oplus \mathbb{P}^1 \simeq \mathcal{B} \simeq G/B$. This is the usual action by fractional linear transformations. So we get a map $\mathfrak{g} \to \mathrm{Vect}(\mathbb{P}^1)$. Then we have our favorite elements X, H, and Y, which go to

$$X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \mapsto s^2 \partial_s \qquad H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \mapsto 2s \partial_s \qquad Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \mapsto -\partial_s$$

in the chart $A_{\sigma} = \{l \pitchfork \langle e_2 \rangle\}$. Recall a *D*-module *M* on \mathbb{P}^1 is a compatible pair M_1 and M_{σ} where M_1 is a module over the Weyl algebra $\mathbb{C} \langle s, \partial_s \rangle$ and M_2 is a module over $\mathbb{C} \langle t, \partial_t \rangle$ where $t := s^{-1}$. Then these have to agree on the overlap. Equivalently, the following diagram commutes:

$$\mathcal{U}\mathfrak{g} \underbrace{\begin{array}{c} \mathbb{C}\langle s,\partial_s\rangle \\ \\ \mathcal{U}\mathfrak{g} \\ \\ \mathbb{C}\langle t,\partial_t\rangle \end{array}}^{\mathbb{C}\langle s,s^{-1},\partial_s\rangle} = \mathbb{C}\langle t,t^{-1},\partial_t\rangle$$

The global sections of this pair, $\Gamma(\mathbb{P}^1, M)$, comprise the kernel of the map:

$$M_1 \times M_\sigma \xrightarrow{\operatorname{res}_1 - \operatorname{res}_\sigma} M_1|_{A_\sigma} = M_\sigma|_{A_1}$$

Now because of the above compatibility, this is naturally a $\mathcal{U}\mathfrak{g}$ module. Now we want to match *D*-modules and $\mathcal{U}\mathfrak{g}$ -modules.

One thing we could do is write down some D-modules and see what we get when we take global sections. We could also pick a representation and see some D-module that hits it. There are plenty of ways to play this game.

Example 1. Let's start with our favorite *D*-module \mathcal{O} , which consists of algebraic functions on \mathbb{P}^1 . In the charts this is $\mathcal{O}_1 = \mathbb{C}[t]$ and $\mathcal{O}_{\sigma} = \mathbb{C}[s]$. Then the global sections $\Gamma(\mathbb{P}^1, \mathcal{O})$ are given by the kernel of $\mathbb{C}[t] \times \mathbb{C}[s] \to \mathbb{C}[t, t^{-1}]$ which takes $(f(t), g(s)) \mapsto f(t) - g(t^{-1})$. But if this is 0, then f = g is a constant, and this is indeed the trivial representation.

Date: December 4, 2018.

Example 2. Fix $l = \langle e_1 \rangle$, and define $\Delta(l)$ to be the algebraic delta function at l. On charts, $\Delta(l)_1 = \langle 0 \rangle$, and $\Delta(l)_{\sigma} = \mathbb{C}[s, \partial_s] / (s) = \mathbb{C}[\partial_s]$. Note that we can write this as $\mathbb{C}[\partial_s] = \mathbb{C} \oplus \mathbb{C} \partial_s \oplus \mathbb{C} \partial_s^2 \oplus \cdots$ so 1 is playing the role of a distribution which takes a function and tells you the value at a point. Then ∂_s is playing the roll of the distribution which eats a functions, takes the derivative, and tells you the value of the derivative at a point, and so on. The global sections are

$$\Gamma\left(\mathbb{P}^{1},\Delta\left(l\right)\right) = \mathbb{C}\left\langle s,\partial_{s}\right\rangle / \left\langle s\right\rangle$$
.

Now to find which representation this is, we look at the image of the basis in Vect (\mathbb{P}^1) , and act it on this. First notice that

$$X \cdot 1 = s^2 \partial_s \cdot 1 = s \left(\partial_s s - 1 \right) \cdot 1$$

since we quotiented out by (s). Therefore 1 is an X highest-weight vector.

Now we want to see what the weight of the highest weight vector is by calculating:

$$H \cdot 1 = 2s\partial_s \cdot 1 = 2\left(\partial_s s - 1\right) \cdot 1 = -2 \cdot 1$$

so 1 is a highest weight vector of highest weight -2. We already saw Y generates this, so we have that ∂_s has weight -4, ∂_s^2 has weight -6, etc. This shows us that this is the Verma module $V_{-2} = \mathcal{Usl}(2, \mathbb{C}) \otimes_{\mathcal{Ub}} \mathbb{C}_{-2}$.

Remark 1. If we change the pole of the delta function, i.e. we consider $\Delta(l)$ for some $l \in \mathbb{P}^1$, then the representation is a Verma module, but for a different choice of Borel.

Now let's pick a representation and try to construct a *D*-module *M* such that when we take the global sections $\Gamma(\mathbb{P}^1, M)$ we get this representation. Our favorite $\mathcal{U}\mathfrak{g}$ module with trivial central character, is $\mathcal{U}_0 = \mathcal{U}\mathfrak{sl}(2, \mathbb{C})/\mathfrak{z}^0\mathfrak{sl}(2, \mathbb{C})$ where $\mathfrak{z}^0\mathfrak{sl}(2, \mathbb{C})$ is generated by the Casimir. As it turns out, if we take the *D*-module of differential operators M = D, where $D_1 = \mathbb{C} \langle t, \partial_t \rangle$ and $D_{\sigma} = \mathbb{C} \langle s, \partial_s \rangle$, then the global sections are indeed $\mathcal{U}_0\mathfrak{g}$.

Remark 2. The collection of global sections of a D-module is the same as

$$\Gamma\left(\mathbb{P}^{1},M\right) = \operatorname{Hom}_{D\operatorname{-Mod}}\left(D,M\right)$$

where D is the free module. This is supposed to be like the story in algebra where we have some ring A and a module over A, then if we want to uncover the underlying abelian group structure of the module, we can just take Hom from the free rank 1 A-module to the module in question.

There is always a left adjoint to such a construction. If we have a representation V, we can tensor $D \otimes_{\mathcal{U}_0\mathfrak{sl}(2,\mathbb{C})} V$ where D is a D-module. We can form this tensor since $\mathcal{U}_0(\mathfrak{sl}(2,\mathbb{C}))$ maps to D. This is what's called localization. This is the usual adjunction between Hom and tensor, which in this case is an equality.

2. BGG Resolution

2.1. $\mathfrak{sl}(2,\mathbb{C})$. We first do this for $\mathfrak{sl}(2,\mathbb{C})$ and trivial central character. There is only one finite-dimensional representation with trivial central character, which is the trivial representation. Then we saw that $V_0 \twoheadrightarrow \mathbb{C}$, and in particular

$$0 \to V_{-2} \hookrightarrow V_0 \twoheadrightarrow \mathbb{C} \to 0$$

is exact. Now we want to try to understand what is going on with the D-modules. So we will localize to obtain a SES of D-modules:

$$0 \to \Delta(l) \hookrightarrow ?? \twoheadrightarrow \mathcal{O} \to 0$$

where $l = \langle e_1 \rangle$. As it turns out, "??" is:

$$\Delta\left(U_l\right) = D \otimes_{\mathcal{U}_0 \mathfrak{sl}(2,\mathbb{C})} V_0$$

which we will specify in each coordinate chart. On the chart A_1 , this is just $\mathcal{O} = \mathbb{C}[t]$. On A_{σ} , this is $\mathbb{C}\langle s, \partial_s \rangle / (s\partial_s)$. We say this consists of the algebraic distributions on $\mathbb{P}^1 \setminus \{l\}$. Now we would need to check that when we invert s and t, these become the same.

On the A_{σ} chart the SES looks like

$$0 \to \mathbb{C}\langle s, \partial_s \rangle / (s) \hookrightarrow \mathbb{C}\langle s, \partial_s \rangle / (s\partial_s) \twoheadrightarrow \mathbb{C}\langle s, \partial_s \rangle / (\partial_s) \to 0$$

where $1 \mapsto \partial_s$ under the injection, and $1 \mapsto 1$ under the surjection. On A_1 the SES looks like

$$0 \to \langle 0 \rangle \hookrightarrow \mathbb{C}\left[t\right] \twoheadrightarrow \mathbb{C}\left[t\right] \to 0$$

So to l we have assigned $\Delta(l)$, and to the rest, U_l , we assigned this $\Delta(U_l)$. So we cut \mathbb{P}^1 up into a point and its complement, and to each of these we have assigned a canonical module, which is the Verma module. And then the fact that the flag variety is a union of these pieces is manifested by functions on the flag variety being built up in a short exact sequence like this.

2.2. General story. In general, we have the Schubert stratification of the flag variety:

$$\mathcal{B} = G/B = \bigcup_{w \in W} \mathcal{B}_w$$

where \mathcal{B}_w consists of the Borels $\mathfrak{b} \subseteq \mathfrak{g}$ such that the relative position¹ of \mathfrak{b} w.r.t. fixed \mathfrak{b}_0 is w. Then to each \mathcal{B}_w we can assign the *D*-module of algebraic distributions on \mathcal{B}_w , $\Delta(\mathcal{B}_w)$, and then the collection of global sections is a Verma for this Borel and for some character. And so the BGG resolution is the obvious fact that the *D*-module of functions can be cut up into distributions/functions on each of the Schubert pieces.

 $^{^1}$ Up to linear algebra, if one flag is standard, then the other can be made to be some coordinate flag, and w is which one.