LECTURE 25
 MATH 261A

LECTURES BY: PROFESSOR DAVID NADLER
 NOTES BY: JACKSON VAN DYKE

Today we will pick up where we left off with $\mathfrak{s l}(2, \mathbb{C})$ and return to the BGG resolution.

1. D-modules

Recall we were considering $G=\operatorname{SL}(2, \mathbb{C}) \subset \mathbb{P}^{1} \simeq \mathcal{B} \simeq G / B$. This is the usual action by fractional linear transformations. So we get a map $\mathfrak{g} \rightarrow \operatorname{Vect}\left(\mathbb{P}^{1}\right)$. Then we have our favorite elements X, H, and Y, which go to

$$
X=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right) \mapsto s^{2} \partial_{s} \quad H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \mapsto 2 s \partial_{s} \quad Y=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right) \mapsto-\partial_{s}
$$

in the chart $A_{\sigma}=\left\{l \pitchfork\left\langle e_{2}\right\rangle\right\}$. Recall a D-module M on \mathbb{P}^{1} is a compatible pair M_{1} and M_{σ} where M_{1} is a module over the Weyl algebra $\mathbb{C}\left\langle s, \partial_{s}\right\rangle$ and M_{2} is a module over $\mathbb{C}\left\langle t, \partial_{t}\right\rangle$ where $t:=s^{-1}$. Then these have to agree on the overlap. Equivalently, the following diagram commutes:

The global sections of this pair, $\Gamma\left(\mathbb{P}^{1}, M\right)$, comprise the kernel of the map:

$$
M_{1} \times\left. M_{\sigma} \xrightarrow{\mathrm{res}_{1}-\mathrm{res}_{\sigma}} M_{1}\right|_{A_{\sigma}}=\left.M_{\sigma}\right|_{A_{1}}
$$

Now because of the above compatibility, this is naturally a $\mathcal{U g}$ module. Now we want to match D-modules and $\mathcal{U} \mathfrak{g}$-modules.

One thing we could do is write down some D-modules and see what we get when we take global sections. We could also pick a representation and see some D-module that hits it. There are plenty of ways to play this game.

Example 1. Let's start with our favorite D-module \mathcal{O}, which consists of algebraic functions on \mathbb{P}^{1}. In the charts this is $\mathcal{O}_{1}=\mathbb{C}[t]$ and $\mathcal{O}_{\sigma}=\mathbb{C}[s]$. Then the global sections $\Gamma\left(\mathbb{P}^{1}, \mathcal{O}\right)$ are given by the kernel of $\mathbb{C}[t] \times \mathbb{C}[s] \rightarrow \mathbb{C}\left[t, t^{-1}\right]$ which takes $(f(t), g(s)) \mapsto f(t)-g\left(t^{-1}\right)$. But if this is 0 , then $f=g$ is a constant, and this is indeed the trivial representation.

[^0]Example 2. Fix $l=\left\langle e_{1}\right\rangle$, and define $\Delta(l)$ to be the algebraic delta function at l. On charts, $\Delta(l)_{1}=\langle 0\rangle$, and $\Delta(l)_{\sigma}=\mathbb{C}\left[s, \partial_{s}\right] /(s)=\mathbb{C}\left[\partial_{s}\right]$. Note that we can write this as $\mathbb{C}\left[\partial_{s}\right]=\mathbb{C} \oplus \mathbb{C} \partial_{s} \oplus \mathbb{C} \partial_{s}^{2} \oplus \cdots$ so 1 is playing the role of a distribution which takes a function and tells you the value at a point. Then ∂_{s} is playing the roll of the distribution which eats a functions, takes the derivative, and tells you the value of the derivative at a point, and so on. The global sections are

$$
\Gamma\left(\mathbb{P}^{1}, \Delta(l)\right)=\mathbb{C}\left\langle s, \partial_{s}\right\rangle /\langle s\rangle
$$

Now to find which representation this is, we look at the image of the basis in Vect $\left(\mathbb{P}^{1}\right)$, and act it on this. First notice that

$$
X \cdot 1=s^{2} \partial_{s} \cdot 1=s\left(\partial_{s} s-1\right) \cdot 1
$$

since we quotiented out by (s). Therefore 1 is an X highest-weight vector.
Now we want to see what the weight of the highest weight vector is by calculating:

$$
H \cdot 1=2 s \partial_{s} \cdot 1=2\left(\partial_{s} s-1\right) \cdot 1=-2 \cdot 1
$$

so 1 is a highest weight vector of highest weight -2 . We already saw Y generates this, so we have that ∂_{s} has weight $-4, \partial_{s}^{2}$ has weight -6 , etc. This shows us that this is the Verma module $V_{-2}=\mathcal{U} \mathfrak{s l}(2, \mathbb{C}) \otimes_{\mathcal{U} \mathfrak{b}} \mathbb{C}_{-2}$.

Remark 1. If we change the pole of the delta function, i.e. we consider $\Delta(l)$ for some $l \in \mathbb{P}^{1}$, then the representation is a Verma module, but for a different choice of Borel.

Now let's pick a representation and try to construct a D-module M such that when we take the global sections $\Gamma\left(\mathbb{P}^{1}, M\right)$ we get this representation. Our favorite $\mathcal{U} \mathfrak{g}$ module with trivial central character, is $\mathcal{U}_{0}=\mathcal{U} \mathfrak{s l}(2, \mathbb{C}) / \mathfrak{z}^{0} \mathfrak{s l}(2, \mathbb{C})$ where $\mathfrak{z}^{0} \mathfrak{s l}(2, \mathbb{C})$ is generated by the Casimir. As it turns out, if we take the D-module of differential operators $M=D$, where $D_{1}=\mathbb{C}\left\langle t, \partial_{t}\right\rangle$ and $D_{\sigma}=\mathbb{C}\left\langle s, \partial_{s}\right\rangle$, then the global sections are indeed $\mathcal{U}_{0} \mathfrak{g}$.

Remark 2. The collection of global sections of a D-module is the same as

$$
\Gamma\left(\mathbb{P}^{1}, M\right)=\operatorname{Hom}_{D-\operatorname{Mod}}(D, M)
$$

where D is the free module. This is supposed to be like the story in algebra where we have some $\operatorname{ring} A$ and a module over A, then if we want to uncover the underlying abelian group structure of the module, we can just take Hom from the free rank 1 A-module to the module in question.

There is always a left adjoint to such a construction. If we have a representation V, we can tensor $D \otimes_{\mathcal{U}_{0} \mathfrak{s l}(2, \mathbb{C})} V$ where D is a D-module. We can form this tensor since $\mathcal{U}_{0}(\mathfrak{s l}(2, \mathbb{C}))$ maps to D. This is what's called localization. This is the usual adjunction between Hom and tensor, which in this case is an equality.

2. BGG Resolution

2.1. $\mathfrak{s l}(2, \mathbb{C})$. We first do this for $\mathfrak{s l}(2, \mathbb{C})$ and trivial central character. There is only one finite-dimensional representation with trivial central character, which is the trivial representation. Then we saw that $V_{0} \rightarrow \mathbb{C}$, and in particular

$$
0 \rightarrow V_{-2} \hookrightarrow V_{0} \rightarrow \mathbb{C} \rightarrow 0
$$

is exact. Now we want to try to understand what is going on with the D-modules. So we will localize to obtain a SES of D-modules:

$$
0 \rightarrow \Delta(l) \hookrightarrow ? ? \rightarrow \mathcal{O} \rightarrow 0
$$

where $l=\left\langle e_{1}\right\rangle$. As it turns out, "??" is:

$$
\Delta\left(U_{l}\right)=D \otimes_{\mathcal{U}_{0} \mathfrak{s l}(2, \mathbb{C})} V_{0}
$$

which we will specify in each coordinate chart. On the chart A_{1}, this is just $\mathcal{O}=\mathbb{C}[t]$. On A_{σ}, this is $\mathbb{C}\left\langle s, \partial_{s}\right\rangle /\left(s \partial_{s}\right)$. We say this consists of the algebraic distributions on $\mathbb{P}^{1} \backslash\{l\}$. Now we would need to check that when we invert s and t, these become the same.

On the A_{σ} chart the SES looks like

$$
0 \rightarrow \mathbb{C}\left\langle s, \partial_{s}\right\rangle /(s) \hookrightarrow \mathbb{C}\left\langle s, \partial_{s}\right\rangle /\left(s \partial_{s}\right) \rightarrow \mathbb{C}\left\langle s, \partial_{s}\right\rangle /\left(\partial_{s}\right) \rightarrow 0
$$

where $1 \mapsto \partial_{s}$ under the injection, and $1 \mapsto 1$ under the surjection. On A_{1} the SES looks like

$$
0 \rightarrow\langle 0\rangle \hookrightarrow \mathbb{C}[t] \rightarrow \mathbb{C}[t] \rightarrow 0
$$

So to l we have assigned $\Delta(l)$, and to the rest, U_{l}, we assigned this $\Delta\left(U_{l}\right)$. So we cut \mathbb{P}^{1} up into a point and its complement, and to each of these we have assigned a canonical module, which is the Verma module. And then the fact that the flag variety is a union of these pieces is manifested by functions on the flag variety being built up in a short exact sequence like this.
2.2. General story. In general, we have the Schubert stratification of the flag variety:

$$
\mathcal{B}=G / B=\bigcup_{w \in W} \mathcal{B}_{w}
$$

where \mathcal{B}_{w} consists of the Borels $\mathfrak{b} \subseteq \mathfrak{g}$ such that the relative position ${ }^{1}$ of \mathfrak{b} w.r.t. fixed \mathfrak{b}_{0} is w. Then to each \mathcal{B}_{w} we can assign the D-module of algebraic distributions on $\mathcal{B}_{w}, \Delta\left(\mathcal{B}_{w}\right)$, and then the collection of global sections is a Verma for this Borel and for some character. And so the BGG resolution is the obvious fact that the D-module of functions can be cut up into distributions/functions on each of the Schubert pieces.

[^1]
[^0]: Date: December 4, 2018.

[^1]: ${ }^{1}$ Up to linear algebra, if one flag is standard, then the other can be made to be some coordinate flag, and w is which one.

