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Office hours are officially Thursday 12:30-2 in Evans 740 or maybe Evans 814.
Midterms will be short, potentially multiple choice. Then you can probably just
drop the bad one. We are nearing the end of the basic intro part of the class, and
will soon be moving to representation theory and structure theory, so there will
likely be a midterm soon.

1. Sources of Lie algebras

Recall from last time, we defined Lie algebras, and we talked about where they
come from. Recall the sources are:

(1) Whenever you have an associative algebra A, you can consider the deriva-
tions Der (A), and this is a Lie algebra.

(2) For A an associative algebra, we can just forget the fact that it’s an algebra,
and just remember the [·, ·] structure.

Example 1. The key example of the first one is the algebra C∞ (M), and then
Vect (M) = Der (C∞ (M)).

Example 2. The key example of the second is A = Diff (M) where we just think
of this as a Lie algebra directly.

1.1. Enveloping algebras. In the case of the examples above, Vect (M)→ Diff (M).
One might hope that the following is the case, though it is not.

Warning 1. Diff (M) 6= U Vect (M)

The functor U : Lie-Alg → k-Algass is the adjoint functor to the forgetful
functor. Explicitly, for g a Lie algebra,

Ug =

∞⊕
n=0

g⊗n/ (x⊗ y − y ⊗ x = [x, y])

Before modding out, this is just sums of words of the elements of g.

Remark 1. So why is the above warning true? Well g0 is just k, but the zeroth
portion of Diff (M) is smooth functions. So the corrected relationship is that the
sheaf of differential operators is the universal enveloping algebroid of the tangent
sheaf. The sheaf of differential operators is somehow a universal construction of
this sheaf of vector fields.
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2. Associating a Lie algebra to a Lie group

For G a Lie group, then TeG, the tangent space at e is a Lie algebra.

Example 3 (Meta-example). For G = Diffeo (M), the group of diffeomorphisms
of M , what is g = Te Diffeo (M)? It is Vect (M). In any sense that one might
conceive of, this consists of infinitesimal diffeomorphisms, or basically vector fields.
G consists of the symmetries of something, and the identity is a god-given symmetry,
and then we are looking for symmetries nearby. Open neighborhoods are already
too complicated, so we just want to consider the linearization.

Example 4. Let G = GL (n,C)

�

V = Cn. We won’t use it, but it just so happens

that it is acting on a vector space. So we have a map G = GL (n,C)
∼−→ Aut (V ).

So now we want to look at the Lie algebra g = gl (n,C) and understand what
the bracket is all about. GL (n,C) is open inside all n × n matrices, M (n,C) so
the tangent space at any point is also just M (n,C) = End (V ).

Exercise 1. Show that the Lie algebra structure on g = gl (n,C) is just the usual
commutator [A,B] = AB −BA.

2.1. Vector fields. Now we return to considering a general Lie group G

�

X
for some manifold X. Then we can differentiate this action, i.e. we have a map
α : G × X → X and we can differentiate to get a map T (α) : TG × TX → TX.
Now we can restrict to TeG × X → TX where this copy of X is regarded as the
zero-section of X.

Then we have a map of vector bundles A : g × X → TX so this is a moment
where we have used the fact that we are taking the tangent space at the identity
in particular. Now we can pass to global sections, so for each x ∈ X, we obtain a
linear map Ax : g→ TxX, called the infinitesimal action map at x ∈ X.

All together, we obtain a linear map g→ Vect (X) which maps any vector field
v 7→ ṽ such that ṽx = Axv.

Example 5. IfG consists of diffeomorphisms, then the tangent space at the identity
consists of vector fields, so this construction gives us the identity.

The idea is that for G

�

X, we can say we are looking at a map of pairs
G → Diffeo (X), which is a group homomorphism, and from this, we saw TeG →
Te Diffeo (X) = Vect (X), which will be a Lie algebra homomorphism when we
understand the Lie structure on g. So basically the goal is to find a Lie algebra
structure on g such that this map is always a Lie algebra homomorphism.

Example 6. Consider GL (1,C) = C× �

V = C. The action map is α : C××C→ C
which takes α (z, x) → zx. Now we want to unwind the definitions in order to see
what this map g→ Vect (X) looks like in this case.

First of all, g = C. Now we want to understand how to differentiate α. So for
an element v ∈ g, we should get vector field on C.

Remark 2. The general construction is as follows: Consider a map F : M → N . If
we have a point x ∈M and a vector v ∈ TxM , and we want to somehow transport
v to Tf(x)N , then we take an arbitrary path γ : R → M such that the tangent

line to γ at x is v, then we can map this to F (γ), and take F (γ)
′
(0), to get our

TF (v) ∈ Tf(x)N .
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Let’s take v = ∂z, and a path which has v as its tangent at 1. Take γ (t) = et,
so this is a path from R → G = C×, such that γ (0) = e, and γ′ (0) = (1, 0) = ∂z.
Acting by γ (t) for small t gives a small motion of C.

α (γ (t) , z) = γ (t) z = etz

So this is the image of the path, and we just need to differentiate with respect to
t, and find ṽ = z∂z.

Example 7. Consider SL (2,C)

�

X = CP1. The goal is again to calculate the
map g → Vect

(
CP1

)
. For any vector field on CP1, we can restrict to the same

vector field on CP1 \∞,

g Vect
(
CP1

)
Vect

(
CP1 \ {∞}

)
Recall SL (2,C) = {det g = 1}. So this is sitting inside of C4, and the tangent space
is

sl (2,C) = {x | trx = 0} .
(The reason is, if we start out with the identity matrix, and want to add an extra
matrix up to some multiple of ε, and maintain that the determinant is 0, we have:

det

((
1 0
0 1

)
+ ε

(
1 b
c d

))
= det

(
1 + εa εb
εc 1 + εd

)
= (1 + εa) (1− εd)− ε2bc = 1 + ε (a+ d) + ε2ad

so we just require that the additional matrices have trace 0.)
Now for each x ∈ sl (2,C), we want some f (s) ∂s ∈ Vect (C). So choose our

favorite basis

H =

(
1 0
0 −1

)
E =

(
0 1
0 0

)
F =

(
0 0
1 0

)
Now define γM (t) = etM to get:

γH (t) = etH =

(
et 0
0 e−t

)
γE (t) = etE =

(
1 t
0 1

)
γF (t) = etF =

(
1 0
t 1

)
now we just apply these to our elements of CP1.

γF (t)

(
a
b

)
=

(
a

at+ b

)
so it took a point s = b/a and transformed it into st = (at+ b) /a. Now we take
the derivative, and evaluate at t = 0 to get 1, so under this map

F 7→ ∂s .

Similarly, we can calculate

γH (t)

(
a
b

)
=

(
eta
e−tb

)
so s = b/a 7→ st = e−2tb/a, and again we differentiate, to discover that

H 7→ −2s∂s .
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Finally, we get

γE (t)

(
a
b

)
=

(
a+ bt
b

)
so s = b/a 7→ b/ (a+ bt), and now differentiating, we get −b2/ (a+ bt)

2
, so finally

E 7→ −s2∂s .

Let’s now consider G

�

X = G acting by left multiplication. In this case, we get
a map g→ Vect (G).

Let H

�

Y , then we can talk about Vect (Y )
H ⊆ Vect (Y ) the H-invariant vector

fields.

Exercise 2. Vect (Y )
H ⊆ Vect (Y ) is a Lie subalgebra.

Lemma 1. The image of this map is precisely the collection of right-invariant
vector fields Vect (G)

r
.

Proof. The claim here is that g
A−→ Vect (G)

r
is an isomorphism of Lie algebras.

The fact that the image is contained in the right-invariant vector fields follows from
commuting the right action with the left action.

The fact that it is an isomorphism follows from the fact that A|e = id : g→ g. �

Definition 1. The Lie algebra structure on g is transported via g
∼−→ Vect (G)

r ⊂
Vect (G) which is a sub Lie-algebra.

Theorem 1. If G acts on arbitrary X, then the map g→ Vect (X) is a Lie algebra
homomorphism.
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