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The first midterm will be on Tuesday September 18.

1. Right-invariant vector fields

Recall that we have a functor

Lie-Gp Lie-Alg

G TeG = g = Vect (G)
r

where Vect (G)
r

is the collection of right-invariant vector fields. This means for
every morphism h : H → G, we have a morphism T (h) : h → g. A priori this is a
map between these things, but potentially not a morphism of Lie algebras, though
this will follow from the following.

We also have an association

LieGroupActions ; LieAlgActions

where something on the left is of the form G→ Diffeo (X), which is then associated
to g→ Vect (X).

Example 1. Consider the right-invariant vector fields on GL (n,C). This is an

open subset of Rn2

. How do we construct right-invariant vector fields? Well we
looked at the left action of G on G, differentiated it, and then this gave us these
vector fields.

Recall TeG = g = gl (n,C) = M (n,C). Now let’s take some tangent vector,
and think about extending it to a right-invariant vector field. Recall we have an
isomorphism:

Lemma 1. In this example,

g Vect (G)
r

v ṽ

∼

Now pick a path γ : R→ G, a one-parameter subgroup. This just means γ is a
group homomorphism between R and G. For G = GL (n,C), take

γ (t) = etv = I + tv +
t2v2

2
+ · · ·

In general, for v ∈ g, we extend this to a right-invariant vector field ṽ ∈ Vect (G)
r
.

Now recall:
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Theorem 1. There exists unique local solutions to ODEs.

In this situation, this means that given any vector field in a small enough ball, we
can find a “motion” of the space that integrates this vector field for small enough
time. I.e. vector fields integrate locally in space and time. Sometimes they integrate
globally, but then you have to worry that you might “fall” off your space. So now
look for an integral curve γ (check existence globally) of ṽ such that γ (0) = e.

Exercise 1. Check that γ extends uniquely to a 1-parameter subgroup. I.e. check
that this construction not only gives us a map (−ε, ε)→ G, but in fact R→ G and
that it is a homomorphism. [Hint: The fact that it’s a homomorphism is almost
obvious, and then you can use this fact to get the extension.]

So in the case of GL (n,C), this is the unique such 1-parameter subgroup. So
now what we want to do is take some n×n matrix and get a right-invariant vector
field from it. To construct ṽ, consider γ acting on the left and differentiate with
respect to t. Let g ∈ GL (n,C). Then we send

g 7→ γ (t) · g = etvg

Then differentiate to get

vetvg + etvg′|t=0 = vg

Note that v is an n×n matrix, which we want to picture as a tangent vector at the
identity. So now the question is, if you stand at g, what is the n× n matrix which
is telling you the value of ṽ at g, and the answer is vg. This all takes advantage of

the fact that we are working in an ambient Rn2

. In general, we can only write the
following:

ṽ|g = Rg · v
which is just the statement that it is right-invariant.

2. Right-invariant vs. left-invariant

Now we might wonder, why this is right invariant rather than left invariant.
It’s clear that G acting on the right gives a map from G to the G-equivariant
automorphisms of G, AutG (G), and this map is also clearly injective. But any
such automorphism is determined by the image of the identity, which allows us to
show that this is in fact surjective as well.

In conclusion, the map g→ Vect (G) lands in the right invariant vector fields.

Exercise 2. Suppose this whole theory was developed with right actions instead
of left actions. So we sent v → ṽr, and someone else sends v 7→ ṽl. Write a formula
relating ṽr|g and ṽl|g.

Solution. For G = GL (n,C) we just have ṽr|g = vg and ṽl|g = gv. Then

ṽl|g = g̃vg−1
r

|g
So we just have to conjugate it.

Note also that ṽl|γ = ṽr|γ since ṽl|γ = γ·v = etv·v and ṽr|γ = v·γ = v·etv = etv·v.
So they certainly agree at the identity, but in general they will disagree elsewhere.
The point here, is that the image of R in G is abelian, since R is abelian, so anywhere
in this image, conjugation doesn’t do anything, and they agree everywhere on γ.
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Figure 1. The cones which make up the orbits of the action of
SL (2,R) on itself under conjugation. Note that for SL (2,C), the
hyperboloid of two-sheets is not present since these matrices are
then diagonalizable.

3. Conjugation and adjoint representations

We now consider conjugation in general as an additional natural action of G on
itself.

Warning 1. Action by conjugation is neither free nor transitive.

Example 2. Consider the action of GL (n,C) on itself under conjugation. The
orbits of this action are indexed by the so-called Jordan forms with nonzero eigen-
values.

For G = SL (2,C), the picture here is as in fig. 1. The stabilizer at 1 and −1 is
just G, and then

Stab

〈(
1 1
0 1

)〉
=

〈(
1 ∗
0 1

)〉
Stab

〈(
−1 1
0 −1

)〉
=

〈(
1 ∗
0 1

)〉
Finally we have:

Stab

〈(
λ 0
0 λ−1

)〉
=

〈(
α 0
0 α−1

)〉
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for α ∈ C×.
If we quotient by conjugation, then only the trace is well defined, because for

any matrix, we either get λ or λ−1 under the map tr : G → C. At any point we
see λ+ λ−1, and then there are two special points ±2, each of which somehow has
these cones living above it, so they have a sort of fuzzy piece above it corresponding
to the open piece. So this is some sort of strange non-Hausdorff space. The main
takeaway is that the quotient looks like a line given by the trace.

We can see that the shear matrices form a cone as follows. Notice that they
must have TrA = 2, and detA = 1. So if we write the matrix as:

A =

(
a b
c d

)
this means a+ d = 2 and ad− bc = 1, so d (2− d)− bc = 1. Now sending d 7→ d− 1
we get (d+ 1) (d− 1) + bc = 1 or

d2 + bc = 0

now the quadratic form associated to this is 0 1/2 0
1/2 0 0
0 0 1

 .

The eigenvalues of this matrix are ±1/2 and 1, so this corresponds to the equation

1

2
x2 − 1

2
y2 + z2 = 0

which is the equation for a cone.

Now, as usual, we want to differentiate this and see what sort of structures we
get. So let’s restrict TG×TG→ TG to G×TeG→ TeG where the first copy of TG
has been restricted to the zero section. This is a homomorphism Ad : G→ GL (g),
called the adjoint representation. All we’ve done here is take the conjugation action
of G on itself, and then look at what this does to tangent vectors at the identity.

Example 3. For G = GL (n,C)

�

M (n,C), the adjoint action is just (g, h) 7→
ghg−1, and we are differentiating with respect to h, and we get (g, h′) 7→ gh′g−1.
So the adjoint action of GL (n,C) is just given by this formula.

So the first thing we get from considering the conjugation, is we get a linearization
of it, which is a conjugation of G on its Lie algebra. The following claim shows that
it doesn’t just act by any old matrices, but in fact by matrices which preserve the
Lie algebra structure:

Claim 1. G → GL (g) acts by Lie algebra isomorphisms. I.e. [Adg v,Adg w] =
Adg ([v, w]).

Proof. Recall the left multiplication action L : G × G → G. Now we can act on
everything by conjugation:

(g, h) gh

(
kgk−1, khk−1

)
kghk−1

L

L
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Recall that [v, w] = [ṽ, w̃] |e. Now we can act by Adg on this expression to get:

Adg [v, w] = Adg ([ṽ, w̃] |e) = Adg [ṽ, w̃] |e = [Adg ṽ,Adg w̃] |e =
[
Ãdg v, Ãdg w

]
|e

by right invariance. �

Now we want to differentiate this with respect to the first variable as well. So
instead restrict to ad : TeG× TeG→ TeG, so this is a map g× g→ g which maps
(v, w) 7→ adv w.

Theorem 2. adv (w) = [v, w]
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