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The midterm will cover structure theory, and will be multiple choice. We will
continue with geometric structure theory, and next time we will move on to repre-
sentation theory of Lie algebras.

1. Adjoint representations

Recall that for every g ∈ G we got the Adg map in the following way: We
know G

�

G by conjugation, and then consider the induced action G

�

TG, and
in particular the action G

�

TeG ' g which we call Ad.
Write the left action α : G×G→ G. Now α is invariant under another G-action,

in particular, the diagram

G× (G×G) G×G

G×G G

id×α

conj.×α α

α

commutes. The point is, the vertical arrows are an additional invariance.

Lemma 1. For g ∈ G, Adg : g→ g is a Lie algebra morphism. This means that

[Adg v,Adg w] = Adg ([v, w])

Proof. Consider Adg ([v, w]). We can rewrite this as:

Adg ([v, w]) = Adg ([ṽ, w̃]e)

= ([Adg ṽ,Adg w̃] |e)

=
(

Ãdg (v), Ãdg (w)
)
|e

where we have used the fact that Adg is a diffeomorphism to get to the second
line. �

Recall that if we differentiate again, only this time wrt the first G, we get ad :
g× g→ g. More formally,

adv (w) =
d

dt

(
Adγ(t) (w)

)
|t=0

where γ is some path such that γ (0) = e and γ′ (0) = v. Then we have the following
theorem:

Theorem 1. adv (w) = [v, w]
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Proof. We know

[v, w] = [ṽ, w̃] |e =

(
d

dt
Lγ(t) (w̃)

)
|t=0|e

and since w̃ is right-invariant, we are done. �

2. Geometric structure theory

Assume everything is finite dimensional. Recall that we have the functor:

Lie-Gp Lie-Alg

G TeG = g

Then we have the following:

Theorem 2. This functor is an equivalence when restricted to connected, simply-
connected Lie groups.

Example 1. Consider g abelian, so it is isomorphic to Rn (or just Cn.) Since g is
abelian, [·, ·] is just 0. Which Lie groups have this algebra? The theorem tells us
there is a unique simply connected one, namely Rn with addition. But then there
is a whole tower of things covered by this such as

(
S1
)n

, (C×)
n
,
(
Cn/Z2n

)
and

many more.

Example 2. Consider g = sl (2,C). Let’s come up all the potential Lie groups
which give rise to this algebra. Of course SL (2,C) gives rise to this, but this might
not be the unique one we are looking for if it is not simply-connected, so we are
instead looking for the universal cover of this.

What is the fundamental group of SL (2,C)? We know SL (2,C)

� C2. This has
two orbits, i.e. when v = 0 and v 6= 0. The stabilizer of the first is everything, and

Stab

(
1
0

)
=

〈(
1 u
0 1

)〉
This means

SL (2,C) / Stab ' SL (2,C) /C ' C2 \ {0}
This means π1 (SL (2,C)) is the same as π1 of the complement of 0 in C2. But this
is homotopy equivalent to S3, which is simply connected (it has trivial π1) so the
unique simply connected Lie group is just SL (2,C).

But what other Lie groups might give rise to this algebra? This is really just
considering things that SL (2,C) covers. If we consider the center

Z = Z (SL (2,C)) ' Z/2 =

〈(
±1 0
0 ±1

)〉
and mod out by this, we get PSL (2,C) = SL (2,C) /Z which has π1 ' Z/2. These
turn out to be the only two. Equivalently, 〈1〉 and Z = Z/2 are the only two
discrete normal subgroups of SL (2,C).

Exercise 1. Show PSL (2,C) = SO (3,C)
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Solution. Recall SO (3) consists of M such that MT = M−1 and detM = 1. We
want to send any A and −A to the same B ∈ SO (3).

Recall Ad : G × g → g, so for g ∈ G, Adg ∈ GL (g). So apply this to G =
SL (2,C). Given A ∈ SL (2,C) and v ∈ sl (2,C), we send this to AvA−1 ∈ sl (2,C),
and sl (2,C) is 3-dimensional, so this makes AdA into a 3×3 matrix. So the question
is, what 3 × 3 matrices do we obtain? To find out, we consider the inner product
〈v, w〉 = Tr (vw). So if

v =

(
x y
z −x

)
w =

(
r s
t −r

)
the inner product is

〈v, w〉 = xr + yt+ zs+ xr

and in particular,

〈v, v〉 = x2 + yz + zy + x2 = 2
(
x2 + yz

)
which is a nondegenerate quadratic form. But there is only one nondegenerate
quadratic form on a complex vector space, i.e. in a different basis, this is just the
sum of the squares. Now this inner product is clearly invariant under the SL (2,C)
action, since

Tr
(
AvA−1AwA−1

)
= Tr

(
AvwA−1

)
= Tr (vw)

so the matrices preserve this quadratic form. So these 3 × 3 matrices land in
the orthogonal group of this quadratic form, now we just have to check it has
determinant 1. To do this, we consider the following basis for sl (2,C):

v1 =

(
1 0
0 −1

)
v2 =

(
0 1
0 0

)
v3 =

(
0 0
1 0

)
Now we calculate the action of some arbitrary A ∈ SL (2,C) as

Av1A
−1 =

(
a b
c d

)(
1 0
0 −1

)(
d −b
−c a

)
=

(
ad+ bc −2ab

2dc − (ad+ bc)

)
Completing the same calculation for the other basis elements, we can express AdA
as the following matrix:

(1)

ad+ bc −ac bd
−2ab a2 −b2
2dc −c2 d2


then we can calculate:

(2) (ad+ bc)
(
a2d2 − b2c2

)
+ ac

(
−2abd2 + 2b2cd

)
+ bd

(
2abc2 − 2a2cd

)
= a3d3 − ab2c2d+ a2bcd2 − b3c3 − 2a2bcd2 + 2ab2c2d+ 2ab2c2d− 2a2bcd2

= (ad− bc)3 = 1

since A ∈ SL (2,C).
This means the image lands in SO (3,C), where this is the orthogonal group with

respect to the above inner product, which is fine since all such inner products are
the same. So now we just need to show the kernel of this map is the center. But
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from the matrix in (1) we can see this directly, since if A is in the kernel, a = d = ±1
and therefore c = d = 0 as desired.

Example 3. What about g = sl (2,R). If we try the same game as in the complex
case, we find that SL (2,R) /Stab ' R2 \ {0} is the orbit, which is homotopy

equivalent to S1, which has π1 = Z. The universal cover, ˜SL (2,R), has a map to
SL (2,R) with fibers Z.

Exercise 2. If we have a group which is not simply-connected, then the universal
cover is naturally a Lie group.

Solution. The universal cover is space of homotopy classes of paths from a base
point. Then we can multiply two paths pointwise to get a group, and the projection
is homomorphism.

Warning 1. This universal cover does not have any finite dimensional representa-
tions, so it cannot be viewed as consisting of matrices.

We have just been assuming this so far, but for G = GL (n,C), the fact that
adv (w) = [v, w] means that [ṽ, w̃] = vw − wv, so the bracket on gl (n,C) is truly
the commutator of the matrices since

d

dt

(
Adγ(t) wγ (t)

−1
)

= vw + w (−v)

Theorem 3 (Ado). Any finite dimensional Lie algebra is a subalgebra of gl (n,R)
for some n.

Partial proof. Assume Z (g) = 〈0〉, so nothing has bracket 0 with everything. We
know ad : g × g → g, which we can view as a map ad : g → End (g) = gl (n,R)
where n = dim g. Since the center is trivial, the kernel is trivial, so this is an
injection. �

2.1. Killing form. The Killing form is an inner product g× g→ C (or R) where
we take

〈v, w〉k = Tr (adv adw)

which is a bilinear pairing.

Warning 2. This is not always nondegenerate.

For example, if g is abelian, adv and adw are 0. Note that all of my matrices
preserve this inner product. Now write Qk (v) = 〈v, v〉, and then Ad : G→ O (Qk)
and ad : g→ o (Qk).
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