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Recall last time we were about to prove:!
Theorem 1. The following functor
Lie-Gp — Lie-Alg

G— g
is an equivalence when restricted to connected, simply-connected groups.

Why is this a functor? I.e. why does ¢ : H — G induce a Lie-algebra homomor-
phism dy : h — g. Consider H C G on the left via ¢. Then

Vect” (H) —— Vect (G)

Vect” (G)

Definition 1. Let H, G be Lie groups. Then they are said to be locally isomorphic
if there is some neighborhood Uy C G of e € H and some neighborhood Us C G
of e € G and a diffeomorphism ¢ : Uy — Ug mapping e — e such that for any
hi,hy € Ug, h1hy € Uy iff ¢ (h1) ¢ (ha) € Ug and in this case,

¢ (h1,ha) = ¢ (h1) ¢ (ha2)
1. EXAMPLES
‘We will consider

Example 1. First of all C" is the universal cover of (C*)" = C"/Z" and so they
are locally isomorphic.

Define Spin (n, C) to be the double cover of SO (n,C). For n > 2, Spin (n,C) is
simply connected, so it is also the universal cover of SO (n,C).

Example 2. SO (1,C) is a single point, so Spin (1) & Z/27Z.
Example 3. SO (2,C) = C*, so Spin (2) = C* as a double cover.

Example 4. Spin (3,C) = SL(2,C) and SO (3,C) are locally isomorphic. Recall
we have the short exact sequence

7/2 = SL(2,C) — SO (3,C)
Date: September 13, 2018.

1 According to professor Nadler, we will at least prove this by December. ..
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Example 5. We seek to show that
Spin (4,C) = SO (4,C) = SL(2,C) x SL(2,C)

The first thing to find is dim SO (n,C), which is of course dimso (n,C). Now
differentiating AAT = I we get

X (A")1=0) + AXT|1=0 =0

so X + XT = 0. This means the dimension of this is n (n — 1) /2, so it makes sense
that Spin (4,C) = SL (2,C) x SL(2,C) To see this identification, we can consider
SL(2,C) x SL(2,C) C Maxso (C) ~ C*. Then we can take Q = det : Moy (C) — C
to be our quadratic form.

Notice that SO (4,C) is a Z/2 cover of SL(4,C), but this still has nontrivial
center, so this is a Z/2 cover of some sort of PSO (4,C) which turns out to be.
SO (3,C) x SO (3,C) As it turns out, we can do the other possible Z/2 quotients
to get the diagram:

SL(2,C) x SL(2,C)
{
SO (3,C) x SL(2,C) SO (4,C) SO (3,C) x SL(2,C)

SO (3,C) x SO (3,C)

This is the Galois covering diagram for the Galois group Z/2.

Example 6. For n = 5 we have Spin (5,C) = Sp (4, C) and the diagram is just:

Sp (4)
{
SO (5,C)

Example 7. For n = 6 we have Spin (6,C) = SL (4, C). This has the diagram:
SL (4)
1
SO (6)

{
PSO (6) = PSL (4,C)

where the arrows represent quotienting by Z/2, even though Z (SL(4)) = Z/4. So
we are quotienting by subgroups of the center to move down this tower.

This is the end of the spin group coincidences.

2. LIE’S FUNDAMENTAL THEOREMS
Theorem 2. For H and G locally isomorphic, h and g are locally isomorphic.

Theorem 3. If g and b are locally isomorphic, then any Lie groups G and H which
give rise to them are locally isomorphic, so they have the same universal cover.

Theorem 4. FEvery g is the Lie algebra of some G.
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FIGURE 1. The cones which make up the orbits of the action of
SL (2, R) on itself under conjugation. Note that for SL (2, C), the
hyperboloid of two-sheets is not present since these matrices are
then diagonalizable.

Proof. Recall Ado’s theorem says that any finite dimensional Lie algebra is a sub-
algebra of gl (n,R) for some n. Le. it has a faithful representation. Note that if
Z (g) = (0), then ad : g — GL (g)
Take G C GL (n,R) to be generated by all 1-parameter subgroups generated by
v(t) : R — G with v/ (0) € g C gl (n,R).

Then there are lots of things to check.

Exercise 1. Not every element of, for example SL (2,R), is in the image of some

1-parameter subgroup.

Recall this cone picture from fig. 1 Recall v (t) = €', then we can take v €
s[(2,R) and put it in Jordan form so we get matrices of the types:

0o G5 G G
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for a # —a and b # 0. Now we go and write the exponentials of these things, and

we get for example
ot 0 -1\ fct —st
AP 0 ) T \st et

so we can get the negative identity, but we can’t get the negative shears or negative
hyperbolic elements.

Anyway, this is a sketch of a proof of the third theorem, or the essential surjec-
tivity of the theorem from the beginning. O

For any Lie group G, we have the exponential map exp : g — G defined as the
map such that if exp (v) =« (1) where v (T') : R — G, then v (0) = v.
Note for G C GL (n,R), exp is the exponential we already know.

Exercise 2. Take the differential T (exp) : Tg — T'G, and restrict this to {0} x g,
which gives us a map g — T.G. Show this is the identity.

Lemma 1. The image of one-parameter subgroups contains an open neighborhood
of e.

Proof. By the exercise, exp : g — G is a local diffeomorphism from a neighborhood
of 0 to a neighborhood of the identity. (Il

Proof of the theorem. It remains to show the bijection on maps. We first show it is
surjective. Consider a Lie algebra map ¢ : h — g and then we want a map H - G
assuming H is simply connected.

Now we don’t want to construct the actual map, but rather the graph of the
map. We know a lot about subgroups, so we want to embed this problem in the
context of constructing subgroups.

Consider the graph of ¢ as I'y, C § x g. Since ¢ is a homomorphism, we can
check that I, is a subalgebra, and now we can generate a subgroup of H x G whose
Lie algebra will be this graph. Then this subgroup will be the graph of the desired
map of Lie groups.

Then this is not a cover, since G is simply connected, so it’s really a map, not a
correspondence. (I
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