LECTURE 7 MATH 261A

LECTURES BY: PROFESSOR DAVID NADLER NOTES BY: JACKSON VAN DYKE

Recall last time we were about to prove:¹

Theorem 1. The following functor

$$\operatorname{Lie-Gp}
ightarrow \operatorname{Lie-Alg}$$

$$G\longmapsto \mathfrak{g}$$

is an equivalence when restricted to connected, simply-connected groups.

Why is this a functor? I.e. why does $\varphi : H \to G$ induce a Lie-algebra homomorphism $d\varphi : \mathfrak{h} \to \mathfrak{g}$. Consider $H \odot G$ on the left via φ . Then

Definition 1. Let H, G be Lie groups. Then they are said to be locally isomorphic if there is some neighborhood $U_H \subset G$ of $e \in H$ and some neighborhood $U_G \subset G$ of $e \in G$ and a diffeomorphism $\varphi : U_H \to U_G$ mapping $e \mapsto e$ such that for any $h_1, h_2 \in U_H, h_1h_2 \in U_H$ iff $\varphi(h_1) \varphi(h_2) \in U_G$ and in this case,

$$\varphi\left(h_{1},h_{2}\right)=\varphi\left(h_{1}\right)\varphi\left(h_{2}\right)$$

We will consider

Example 1. First of all \mathbb{C}^n is the universal cover of $(\mathbb{C}^{\times})^n = \mathbb{C}^n / \mathbb{Z}^n$ and so they are locally isomorphic.

Define Spin (n, \mathbb{C}) to be the double cover of SO (n, \mathbb{C}) . For n > 2, Spin (n, \mathbb{C}) is simply connected, so it is also the universal cover of SO (n, \mathbb{C}) .

Example 2. SO $(1, \mathbb{C})$ is a single point, so Spin $(1) \cong \mathbb{Z}/2\mathbb{Z}$.

Example 3. SO $(2, \mathbb{C}) \cong \mathbb{C}^{\times}$, so Spin $(2) = \mathbb{C}^{\times}$ as a double cover.

Example 4. Spin $(3, \mathbb{C}) = SL(2, \mathbb{C})$ and SO $(3, \mathbb{C})$ are locally isomorphic. Recall we have the short exact sequence

$$\mathbb{Z}/2 \to \mathrm{SL}(2,\mathbb{C}) \to \mathrm{SO}(3,\mathbb{C})$$

Date: September 13, 2018.

 $^{^1}$ According to professor Nadler, we will at least prove this by December. . .

Example 5. We seek to show that

 $\mathbf{2}$

$$\operatorname{Spin}(4,\mathbb{C}) = \operatorname{SO}(4,\mathbb{C}) = \operatorname{SL}(2,\mathbb{C}) \times \operatorname{SL}(2,\mathbb{C})$$

The first thing to find is dim SO (n, \mathbb{C}) , which is of course dim $\mathfrak{so}(n, \mathbb{C})$. Now differentiating $AA^T = I$ we get

$$X(A^{T}|_{t=0}) + AX^{T}|_{t=0} = 0$$

so $X + X^T = 0$. This means the dimension of this is n(n-1)/2, so it makes sense that $\text{Spin}(4, \mathbb{C}) = \text{SL}(2, \mathbb{C}) \times \text{SL}(2, \mathbb{C})$ To see this identification, we can consider $\text{SL}(2, \mathbb{C}) \times \text{SL}(2, \mathbb{C}) \subset M_{2 \times 2}(\mathbb{C}) \simeq \mathbb{C}^4$. Then we can take $Q = \text{det} : M_{2 \times 2}(\mathbb{C}) \to \mathbb{C}$ to be our quadratic form.

Notice that SO $(4, \mathbb{C})$ is a $\mathbb{Z}/2$ cover of SL $(4, \mathbb{C})$, but this still has nontrivial center, so this is a $\mathbb{Z}/2$ cover of some sort of $PSO(4, \mathbb{C})$ which turns out to be. SO $(3, \mathbb{C}) \times$ SO $(3, \mathbb{C})$ As it turns out, we can do the other possible $\mathbb{Z}/2$ quotients to get the diagram:

$$\begin{array}{c} \operatorname{SL}(2,\mathbb{C})\times\operatorname{SL}(2,\mathbb{C}) \\ \downarrow \\ \operatorname{SO}(3,\mathbb{C})\times\operatorname{SL}(2,\mathbb{C}) \\ \downarrow \\ \operatorname{SO}(3,\mathbb{C})\times\operatorname{SO}(3,\mathbb{C}) \times \operatorname{SL}(2,\mathbb{C}) \\ \downarrow \\ \operatorname{SO}(3,\mathbb{C})\times\operatorname{SO}(3,\mathbb{C}) \end{array}$$

This is the Galois covering diagram for the Galois group $\mathbb{Z}/2$.

Example 6. For n = 5 we have $\text{Spin}(5, \mathbb{C}) = \text{Sp}(4, \mathbb{C})$ and the diagram is just:

$$\operatorname{Sp}(4)$$

 \downarrow
 $\operatorname{SO}(5,\mathbb{C})$

Example 7. For n = 6 we have $\text{Spin}(6, \mathbb{C}) = \text{SL}(4, \mathbb{C})$. This has the diagram:

$$SL (4)
\downarrow
SO (6)
\downarrow
PSO (6) = PSL (4, \mathbb{C})$$

where the arrows represent quotienting by $\mathbb{Z}/2$, even though $Z(SL(4)) = \mathbb{Z}/4$. So we are quotienting by subgroups of the center to move down this tower.

This is the end of the spin group coincidences.

2. Lie's fundamental theorems

Theorem 2. For H and G locally isomorphic, \mathfrak{h} and \mathfrak{g} are locally isomorphic.

Theorem 3. If \mathfrak{g} and \mathfrak{h} are locally isomorphic, then any Lie groups G and H which give rise to them are locally isomorphic, so they have the same universal cover.

Theorem 4. Every \mathfrak{g} is the Lie algebra of some G.

FIGURE 1. The cones which make up the orbits of the action of $SL(2,\mathbb{R})$ on itself under conjugation. Note that for $SL(2,\mathbb{C})$, the hyperboloid of two-sheets is not present since these matrices are then diagonalizable.

Proof. Recall Ado's theorem says that any finite dimensional Lie algebra is a subalgebra of $\mathfrak{gl}(n,\mathbb{R})$ for some n. I.e. it has a faithful representation. Note that if $Z(\mathfrak{g}) = \langle 0 \rangle$, then $\mathrm{ad} : \mathfrak{g} \hookrightarrow \mathrm{GL}(\mathfrak{g})$

Take $G \subseteq \text{GL}(n, \mathbb{R})$ to be generated by all 1-parameter subgroups generated by $\gamma(t) : \mathbb{R} \to G$ with $\gamma'(0) \in \mathfrak{g} \subseteq \mathfrak{gl}(n, \mathbb{R})$.

Then there are lots of things to check.

Exercise 1. Not every element of, for example $SL(2, \mathbb{R})$, is in the image of some 1-parameter subgroup.

Recall this cone picture from fig. 1 Recall $\gamma(t) = e^{tv}$, then we can take $v \in \mathfrak{sl}(2,\mathbb{R})$ and put it in Jordan form so we get matrices of the types:

 $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & -b \\ b & 0 \end{pmatrix}$

for $a \neq -a$ and $b \neq 0$. Now we go and write the exponentials of these things, and we get for example

$$\exp t \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} ct & -st \\ st & ct \end{pmatrix}$$

so we can get the negative identity, but we can't get the negative shears or negative hyperbolic elements.

Anyway, this is a sketch of a proof of the third theorem, or the essential surjectivity of the theorem from the beginning. $\hfill \Box$

For any Lie group G, we have the exponential map $\exp : \mathfrak{g} \to G$ defined as the map such that if $\exp(v) = \gamma(1)$ where $\gamma(T) : \mathbb{R} \to G$, then $\gamma(0) = v$.

Note for $G \subseteq \operatorname{GL}(n,\mathbb{R})$, exp is the exponential we already know.

Exercise 2. Take the differential $T(\exp): T\mathfrak{g} \to TG$, and restrict this to $\{0\} \times \mathfrak{g}$, which gives us a map $\mathfrak{g} \to T_e G$. Show this is the identity.

Lemma 1. The image of one-parameter subgroups contains an open neighborhood of *e*.

Proof. By the exercise, $\exp : \mathfrak{g} \to G$ is a local diffeomorphism from a neighborhood of 0 to a neighborhood of the identity.

Proof of the theorem. It remains to show the bijection on maps. We first show it is surjective. Consider a Lie algebra map $\varphi : \mathfrak{h} \to \mathfrak{g}$ and then we want a map $H \to G$ assuming H is simply connected.

Now we don't want to construct the actual map, but rather the graph of the map. We know a lot about subgroups, so we want to embed this problem in the context of constructing subgroups.

Consider the graph of φ as $\Gamma_{\varphi} \subseteq \mathfrak{h} \times \mathfrak{g}$. Since φ is a homomorphism, we can check that Γ_{φ} is a subalgebra, and now we can generate a subgroup of $H \times G$ whose Lie algebra will be this graph. Then this subgroup will be the graph of the desired map of Lie groups.

Then this is not a cover, since G is simply connected, so it's really a map, not a correspondence. $\hfill \Box$