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Recall last time we were about to prove:1

Theorem 1. The following functor

Lie-Gp Lie-Alg

G g

is an equivalence when restricted to connected, simply-connected groups.

Why is this a functor? I.e. why does ϕ : H → G induce a Lie-algebra homomor-
phism dϕ : h→ g. Consider H

�
G on the left via ϕ. Then

Vectr (H) Vect (G)

Vectr (G)

Definition 1. Let H, G be Lie groups. Then they are said to be locally isomorphic
if there is some neighborhood UH ⊂ G of e ∈ H and some neighborhood UG ⊂ G
of e ∈ G and a diffeomorphism ϕ : UH → UG mapping e 7→ e such that for any
h1, h2 ∈ UH , h1h2 ∈ UH iff ϕ (h1)ϕ (h2) ∈ UG and in this case,

ϕ (h1, h2) = ϕ (h1)ϕ (h2)

1. Examples

We will consider

Example 1. First of all Cn is the universal cover of (C×)
n

= Cn/Zn and so they
are locally isomorphic.

Define Spin (n,C) to be the double cover of SO (n,C). For n > 2, Spin (n,C) is
simply connected, so it is also the universal cover of SO (n,C).

Example 2. SO (1,C) is a single point, so Spin (1) ∼= Z/2Z.

Example 3. SO (2,C) ∼= C×, so Spin (2) = C× as a double cover.

Example 4. Spin (3,C) = SL (2,C) and SO (3,C) are locally isomorphic. Recall
we have the short exact sequence

Z/2→ SL (2,C)→ SO (3,C)

Date: September 13, 2018.
1 According to professor Nadler, we will at least prove this by December. . .
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Example 5. We seek to show that

Spin (4,C) = S̃O (4,C) = SL (2,C)× SL (2,C)

The first thing to find is dim SO (n,C), which is of course dim so (n,C). Now
differentiating AAT = I we get

X
(
AT |t=0

)
+AXT |t=0 = 0

so X +XT = 0. This means the dimension of this is n (n− 1) /2, so it makes sense
that Spin (4,C) = SL (2,C) × SL (2,C) To see this identification, we can consider
SL (2,C)×SL (2,C)

�

M2×2 (C) ' C4. Then we can take Q = det : M2×2 (C)→ C
to be our quadratic form.

Notice that ˜SO (4,C) is a Z/2 cover of SL (4,C), but this still has nontrivial
center, so this is a Z/2 cover of some sort of PSO (4,C) which turns out to be.
SO (3,C) × SO (3,C) As it turns out, we can do the other possible Z/2 quotients
to get the diagram:

SL (2,C)× SL (2,C)

SO (3,C)× SL (2,C) SO (4,C) SO (3,C)× SL (2,C)

SO (3,C)× SO (3,C)

This is the Galois covering diagram for the Galois group Z/2.

Example 6. For n = 5 we have Spin (5,C) = Sp (4,C) and the diagram is just:

Sp (4)

SO (5,C)

Example 7. For n = 6 we have Spin (6,C) = SL (4,C). This has the diagram:

SL (4)

SO (6)

PSO (6) = PSL (4,C)

where the arrows represent quotienting by Z/2, even though Z (SL (4)) = Z/4. So
we are quotienting by subgroups of the center to move down this tower.

This is the end of the spin group coincidences.

2. Lie’s fundamental theorems

Theorem 2. For H and G locally isomorphic, h and g are locally isomorphic.

Theorem 3. If g and h are locally isomorphic, then any Lie groups G and H which
give rise to them are locally isomorphic, so they have the same universal cover.

Theorem 4. Every g is the Lie algebra of some G.
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Figure 1. The cones which make up the orbits of the action of
SL (2,R) on itself under conjugation. Note that for SL (2,C), the
hyperboloid of two-sheets is not present since these matrices are
then diagonalizable.

Proof. Recall Ado’s theorem says that any finite dimensional Lie algebra is a sub-
algebra of gl (n,R) for some n. I.e. it has a faithful representation. Note that if
Z (g) = 〈0〉, then ad : g ↪→ GL (g)

Take G ⊆ GL (n,R) to be generated by all 1-parameter subgroups generated by
γ (t) : R→ G with γ′ (0) ∈ g ⊆ gl (n,R).

Then there are lots of things to check.

Exercise 1. Not every element of, for example SL (2,R), is in the image of some
1-parameter subgroup.

Recall this cone picture from fig. 1 Recall γ (t) = etv, then we can take v ∈
sl (2,R) and put it in Jordan form so we get matrices of the types:(

0 0
0 0

) (
a 0
0 −a

) (
0 1
0 0

) (
0 −b
b 0

)
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for a 6= −a and b 6= 0. Now we go and write the exponentials of these things, and
we get for example

exp t

(
0 −1
1 0

)
=

(
ct −st
st ct

)
so we can get the negative identity, but we can’t get the negative shears or negative
hyperbolic elements.

Anyway, this is a sketch of a proof of the third theorem, or the essential surjec-
tivity of the theorem from the beginning. �

For any Lie group G, we have the exponential map exp : g → G defined as the
map such that if exp (v) = γ (1) where γ (T ) : R→ G, then γ (0) = v.

Note for G ⊆ GL (n,R), exp is the exponential we already know.

Exercise 2. Take the differential T (exp) : Tg→ TG, and restrict this to {0} × g,
which gives us a map g→ TeG. Show this is the identity.

Lemma 1. The image of one-parameter subgroups contains an open neighborhood
of e.

Proof. By the exercise, exp : g→ G is a local diffeomorphism from a neighborhood
of 0 to a neighborhood of the identity. �

Proof of the theorem. It remains to show the bijection on maps. We first show it is
surjective. Consider a Lie algebra map ϕ : h→ g and then we want a map H → G
assuming H is simply connected.

Now we don’t want to construct the actual map, but rather the graph of the
map. We know a lot about subgroups, so we want to embed this problem in the
context of constructing subgroups.

Consider the graph of ϕ as Γϕ ⊆ h × g. Since ϕ is a homomorphism, we can
check that Γϕ is a subalgebra, and now we can generate a subgroup of H×G whose
Lie algebra will be this graph. Then this subgroup will be the graph of the desired
map of Lie groups.

Then this is not a cover, since G is simply connected, so it’s really a map, not a
correspondence. �


	1. Examples
	2. Lie's fundamental theorems

