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The next midterm will probably be take home.

1. The last midterm question

Recall if we have a Lie group acting G
�

X we get an infinitesimal action, which
is a map g→ Vect (X) which is a map of Lie algebras, so it is linear. The moment
map is effectively the transpose to this map:

µ : T ∗X → g∗

which is somehow no more or less information than g → Vect (X). Explicitly, for
x ∈ X and ξ ∈ T ∗xX,

µ (x, ξ) (v) = ξ (ṽx)

for v ∈ g.

Exercise 1. We know dµ is a g∗ valued 1-form on T ∗X. Then ω−1 (dµ) is now a
g∗-valued vector field on T ∗X, and now this can be evaluated at v ∈ g, so we get
v̂ = ω−1 (dµ) (v) which is now a vector field on T ∗X. Show that this vector field
is tangent to the zero-section, and gives us ṽ. I.e. show v̂|X = ṽ. This is somehow
recovering the infinitesimal action from the moment map and symplectic structure.

So now we want to calculate this explicitly in the examples from the midterm.

Example 1. Let GL (1,R) = R× � R by r · x = rx. This action generates the
vector field ṽ = x∂x, so µ (x, ξ) = ξ (x∂x) = xξ.

Example 2. Let GL (1,R) = R× � R2 by r · (x1, x2) =
(
rx1, r

−1x2
)
. Then the

vector field is x1∂x1
− x2∂x2

. The moment map is just µ = x1ξ1 − x2ξ2.

Example 3. Now let G

�

X = G. In this case T ∗X = T ∗G is parallelizable, so
T ∗G = G × g, since G × g

∼−→ TG is just right-invariant vector fields, so it’s just
mapping (g, v) 7→ (g, ṽg). This means function µ : T ∗G → g∗ are just functions
G× g∗ → g∗.

If the action is trivial, the vector field is 0. This means µ = 0.
If the action is left multiplication, then µl (g, ξ) = ξ.
If the action is right multiplication, then

µr (g, ξ) (v) = µl (g, ξ) (Adg v) = Adg (ξ) (v)
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2. Lie algebras

2.1. Ignoring groups. We have now developed enough theory to see that the
theory of simply connected Lie groups is the same theory as finite dimensional lie
algebras. Therefore we will now ignore Lie groups and focus on Lie algebras. Not
because we don’t care about them, but because we understand they are equivalent.

Professor Nadler doesn’t know how to answer the following:

Exercise 2. For g a Lie algebra, then we can associate it to G a connected, simply
connected Lie group. What is the center of G?

Solution. This solution doesn’t make sense until after lecture 13 at the earliest.
We claim the following:

Claim 1. The center of the simply connected compact group G associated to a Lie
algebra g can be identified with the dual of the finite group Λ/ZR where Λ is the
weight lattice and ZR is the root lattice.

If Λ = Hom (H,C×) is the weight lattice and ZR is the root lattice, which is given
by Z-linear combinations of the nonzero eigenvalues of the adjoint representation
ad, then we can write down the dual of these things to get:

Λ∗ = {X ∈ h | ∀L ∈ Λ, LX ∈ Z}
(ZR)

∗
= {X ∈ h | ∀α ∈ ZR,αX ∈ Z}

now under the exponential map, (ZR)
∗

maps onto the center of H, which is the
center of G, so we just need to quotient out by the kernel of the exponential, but
this is exactly Λ∗.

Recall this is important because if G→ G/Γ is some covering, then Γ ⊆ Z (G).
So knowing the center lets us calculate the types of covers and therefore all of the
groups G which might give rise to g.

2.2. Fields. From now on we will focus on representation theory of Lie algebras.
We can consider Lie algebras over any field.1 We will usually let this be C, but first
we make some comments about the general setting. For any g/k, we can pass to
g⊗k k/k where we have extended all of the bracket operations linearly.

First note that in general this operation somehow loses information. That is,
many different g/k might go to the same g⊗k k/k.

Example 4. Consider sl (2,R) → sl (2,C), and so (3,R) → so (3,C). We already
saw that sl (2,C) ' so (3,C). But the point is that sl (2,R) 6' so (3,R). One way
to see this, is that the universal cover of SL (2,R) is contractible and noncompact.
Whereas the universal cover of SO (3,R) is Spin (3), which is compact.

In what follows, we will start with g/C finite dimensional. If time permits, one
thing we could do is talk about what happens when k is not algebraically closed.

3. Rough classification

We won’t worry too much about the details of these definitions or their rela-
tionship right now. We’re more worried about getting a rough idea of what we are
looking at.2 Recall Ado’s theorem, which says that g ↪→ gl (n,C) for some n. The

1 Or rings, but we won’t worry too much about this.
2 Professor Nadler compared this to going to the Zoo. It is nice to have some idea what the

big cat house is and what the reptile house is.
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point being, that these always somehow come as matrices. This will be a theme
throughout.

3.1. Abelian Lie algebras. First we might study g abelian, so [v, w] = 0 for all
v, w ∈ g. Therefore these are just complex vector spaces of some finite dimension.

Example 5. The classic example of this is just diagonal matrices Cn ⊆ gl (n,C).

For arbitrary g, we can always associate a certain abelian Lie algebra to g, called
its center which is defined as

{v ∈ g | ∀w ∈ g, [v, w] = 0}

Example 6. If we consider g = gl (n,C), then the center is z (g) = {zIn | z ∈ C}.

3.2. Nilpotent Lie algebras. For any g we can define the commutator subalgebra
[g, g] which consists of all linear combinations of commutators of elements of g. Then
we can continue to take the commutator of this object with g to get a series:

[[g, g] , g] [[[g, g] , g] , g] · · ·

If this process ever reaches 0, we say g is nilpotent.

Example 7. The classic example is strictly upper triangular n×n matrices written
n (n,C). If we take the commutator, we lose the super diagonal, and then each
commutator after that we lose another diagonal.

Theorem 1. If g is nilpotent, then g ⊆ n (n,C) for some n.

Fact 1. All subalgebras of nilpotent Lie algebras are nilpotent.

3.3. Solvable Lie algebras. There are many equivalent definitions for solvable
Lie algebras, but we define this to be a Lie algebra g such that [g, g] is nilpotent.
This doesn’t mean g is nilpotent, since this condition just says that:

[[g, g] , [g, g]] [[[g, g] , [g, g]] , [g, g]] · · ·

eventually reaches 0.

Example 8. The classic example of a solvable Lie algebra is b (n,C) consisting of
upper triangular matrices. Note that the commutator subalgebra [b, b] of course
yields strictly upper triangular matrices n, which we already saw were nilpotent.

Theorem 2. Any solvable Lie algebra g is contained g ⊆ b (n,C) for some n.

3.4. Simple. There are many formulations of simple Lie algebras, but one is that
g is not abelian, and has no proper non-zero ideals. The non-abelian condition is
basically just to omit C.

Example 9. The classic example is sl (n,C). Note that gl (n,C) is not simple,
since this looks like sl (n,C)⊕ C, and therefore has two non-zero proper ideals.

Theorem 3. If g is simple, it somehow sits inside sl (n,C).
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3.5. Semisimple. g is semi-simple if it is a direct sum of simple Lie algebras.

Example 10. The classic example is⊕
i

sl (ni,C)
∑
i

ni = n

so this is just sort of n× n block diagonal matrices where each block has trace 0.

Fact 2. g is semi-simple iff the radical3, which is the maximal solvable ideal,
rad (g) = 〈0〉.

Note that this also means semisimple Lie algebras have no center.

3.6. Reductive. The idea here is that g is reductive if it is the direct sum of a
semi-simple Lie algebra and an abelian Lie algebra:

g = gss ⊕ z .

This abelian Lie algebra will of course also be the center of g.

Fact 3. g is reductive iff the radical rad (g) = z is just the center.

Example 11. A classic example is gl (n,C). In some sense the reason we define
this is, well, to include this, and also to contain

l⊕
i=1

gl (ni,C)

which consists of block matrices with no conditions on the blocks

Proposition 1. This contains abelian Lie algebras as well as semi-simple Lie al-
gebras.

Fact 4. The sum of any two nilpotent ideals is a nilpotent ideal.

Example 12. One might be worried about strictly upper triangular matrices, and
strictly lower triangular matrices. So we can add these and take their span, but
why is this not violating that the sum of nilpotent Lie ideals is a nilpotent Lie
ideal? Neither of these are nilpotent ideals. They are somehow nilpotent, but not
normal.

3.7. Containments. Note that all abelian Lie algebras are trivially nilpotent, but
we also have that all nilpotent Lie algebras are solvable. Also note that trivially all
simple Lie algebras are semisimple, and all semisimple Lie algebras are reductive.
So being abelian and being simple are somehow two forms of “good” behavior that
are just being generalized to get the other four types. In fact we have the following:

Lemma 1. The intersection of semi-simple and solvable Lie algebras is empty.

Proof. Let g be semi-simple. Then it must be the direct sum of some simple Lie
algebras gi. It follows from linearity of the bracket, that

[g, g] =
⊕
i

[gi, gi]

but since the gi are simple, they cannot have nonzero proper ideals, so the [gi, gi]
have to be trivial or the whole algebra, but if they were trivial then gi would be
abelian, which is also not allowed. Therefore [gi, gi] = gi so [g, g] = g which prevents
[g, g] from being nilpotent, and therefore prevents g from being solvable. �

3This is also called the sol-radical, and is written S (g).
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Corollary 1. The intersection of reductive and solvable Lie algebras consists of all
abelian Lie algebras.

Along a similar vein, we have the Levi decomposition, which says that the fol-
lowing sequence is split-exact:

0→ rad (g)→ g→ gss → 0

This sits in contrast with the following sequence which is always exact, but not
necessarily split exact:

0→ nil (g)→ g→ gred → 0

where nil (g) is the nilradical of g (the maximal nilpotent ideal) and gred is some
reductive Lie algebra.

Proposition 2. If nilg 6⊆ radg then g is solvable.

Proof. Take nilg⊕ radg, this is solvable and strictly contains nilg so it must be the
whole thing and therefore must be solvable. �

4. Classification by dimension

We will classify one and two dimensional Lie algebras, and then we will focus on
simple Lie algebras. In dimension 1, we have abelian C, but every Lie algebra of
dimension 1 is abelian.

In dimension 2, this can just be written g = C 〈x, y〉. By definition, we know
[x, x] = [y, y] = 0, and then we want to consider [x, y] = − [y, x] = ax+ by = z.

[x, ax+ by] = b (ax+ by) [y, ax+ by] = −a (ax+ by)

which means C 〈ax+ by〉 ⊆ g is a Lie ideal, so either a = b = 0 or one of a, b 6= 0.
In the first case we just have g = C⊕g′, but then g′ is of dimension 1, which means
g is abelian. Otherwise this is just some line, and WLOG we let b 6= 0. Now for
g = C 〈x, z〉 we get [x, z] = bz so setting x′ = x/b, we get [x′, z] = z. In other
words, any two-dimensional Lie algebra is either abelian, or has a basis {x′, z} such
that [x′, z] = z. As it turns out, this case is just:〈(

s u
0 −s

)
| s, u ∈ C

〉
and in particular,

z =

(
0 1
0 0

)
x′ =

(
1/2 0
0 −1/2

)
In three dimensions we encounter our first simple Lie algebra, which is sl (2,C).
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