
LECTURE 9

LECTURE BY: PROFESSOR DAVID NADLER
NOTES BY: JACKSON VAN DYKE

1. Comments and corrections from last time

Recall semi-simple Lie algebras are direct sums of simple Lie algebras. Equiva-
lently, rad (g), the sol-radical (maximal solvable ideal) is 0. Similarly g is reductive
iff rad (g) = z is equal to its center.

We also said something about a Lie algebra being split by its center, which is
not true in general. To see this, consider the following example:

Example 1. Let g = C 〈x, y, κ〉 such that [x, y] = κ, [x, κ] = [y, κ] = 0. Clearly
z = C 〈κ〉, but there is no complement to the center which is closed under the
bracket.

2. Representations of sl (2,C)

2.1. Motivation. Recall we found that all dimension 1 Lie algebras are abelian,
or just C, and for dimension 2, we have either g ∼= C2, or

g ∼=
〈(

a u
0 −a

)
| a, u ∈ C

〉
Now we move on to three dimensions.

We could play a similar game in dimension 3, but the interesting thing about 3
dimensions is that we get our first simple Lie algebra: sl (2,C).

2.2. Preliminaries. We will think of sl (2,C) as having the following basis:

H =

(
1 0
0 −1

)
X =

(
0 1
0 0

)
Y =

(
0 0
1 0

)
where the brackets are:

[H,X] = 2X [H,Y ] = 2Y [X,Y ] = H

Exercise 1. Check these by hand.

Note sl (2,C) by definition comes as 2 × 2 traceless matrices. Our generic goal
here is to classify the matrix representations of Lie algebras such as sl (2,C).

Recall:

Definition 1. A representation of a Lie algebra g is a Lie algebra map ρ : g →
gl (V ) for a vector space V/C. Recall gl (V ) = End (V ).

We will write the category of such representations as Rep (g). This is an abelian
category, which basically means we can do all of our friendly vector space operations
to these things.
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Example 2. We always have the trivial one which is just V = C 1-dimensional
and ρ the zero map.

Example 3. We also always have the adjoint representation where V = g, and
ρ = ad.

We will focus on the theory of finite dimensional representations, the category of
which we write as Repfd (g). Note that this just means dimV is finite. This doesn’t
mean infinite dimensional ones aren’t worth considering, but they have their own
beautiful1 story.

2.3. Producing some representations. We could start deductively, but we will
instead start with some examples, and then see why we happen to end up with
everything.

Example 4. Let V0 = C be the trivial representation, so ρ0 = 0. Let V1 = C2,
and ρ1 be the inclusion sl (2,C) ↪→ gl (2,C).

Now we will “generate” more representations using linear algebra. One thing
we can always do, is take direct sums of representations. We will write (V1, ρ1) ⊕
(V2, ρ2) = (V1 ⊕ V2, ρ1 ⊕ ρ2) where ρ1⊕ρ2 acts via block matrices. This isn’t really
so interesting though.

We can also take the tensor product, which is very very interesting.2

(V1, ρ1)⊗ (V2, ρ2) = (V1 ⊗ V2, ρ1 ⊗ ρ2)

The definition of this map is as follows:

ρ1 ⊗ ρ2 (x) = ρ1 (x)⊗ idV2
+ idV1

⊗ρ2 (x)

This definition effectively results from the Leibniz rule for differentiating the natural
Lie group action on the tensor product. In particular, if we replace x with some
γ (t), we get

ρ1 ⊗ ρ2 (γ (t)) (v1 ⊗ v2) = ρ1 (γ (t)) v1 ⊗ ρ2 (γ (t)) v2

and differentiating gives us the above definition.
Now let’s calculate some tensor products.

Exercise 2. Tensoring with the trivial representation is the identity functor on
Rep.

Let’s tensor the standard representation (V1, ρ1) with itself. First let V1 =
C 〈e1, e2〉 where ei is the usual basis (1, 0) (0, 1). Then

V1 ⊗ V1 = C 〈e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2〉 .

Now we calculate the action:

H (e1 ⊗ e1) = (He1)⊗ e1 + e1 ⊗ (He1) = e1 ⊗ e1 + e1 ⊗ e1 = 2 (e1 ⊗ e1)

and similarly:

H (e2 ⊗ e2) = −2 (e2 ⊗ e2) H (e1 ⊗ e2) = H (e2 ⊗ e1) = 0

1And combinatorially complicated.
2 Professor Nadler says that this if we remember only one thing, this should maybe be it.
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Now since X annihilates e1, we can calculate

X (e1 ⊗ e1) = 0 X (e1 ⊗ e2) = e1 ⊗ e1
X (e2 ⊗ e1) = e1 ⊗ e1 X (e2 ⊗ e2) = e1 ⊗ e2 + e2 ⊗ e1

and finally for Y , we have

Y (e1 ⊗ e1) = e2 ⊗ e1 + e1 ⊗ e2 Y (e1 ⊗ e2) = e2 ⊗ e2
Y (e2 ⊗ e1) = e2 ⊗ e2 Y (e2 ⊗ e2) = 0

If we order our basis as follows:

e1 ⊗ e1 e1 ⊗ e2 e2 ⊗ e1 e2 ⊗ e2

we can explicitly write:

H =


2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

 X =


0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0

 Y =


0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0


Now we want to see if V1 ⊗ V1 has any nontrivial proper subrepresentation. We

can see that:

C 〈e1 ⊗ e1, e2 ⊗ e2, e1 ⊗ e2 + e2 ⊗ e1〉 = Sym2 (V1)

is such a subrepresentation.

Remark 1. Recall that:

Sym2 (V ) := V ⊗ V/ (v ⊗ w − w ⊗ v)

for any vector space V . In general this is defined as:

Symn (V ) = V ⊗n/ (· · · ⊗ vi ⊗ vi+1 ⊗ · · · − · · · ⊗ vi+1 ⊗ vi ⊗ · · · )

Does Sym2 (V1) have a complement? I.e. the following sequence is exact, but is
it split?

0→ Sym2 (V1)→ V1 ⊗ V1 → V1 ⊗ V1/ Sym2 (V1)→ 0

Remark 2. Recall that (over C) we always have the following splitting:

(1) V ⊗2 = Sym2 (V )⊕ ∧2V

which consists of the symmetric tensors, and the skew-symmetric tensors.

Exercise 3. Show that the splitting in (1) respects the bracket structure for any V .

Solution. Take an arbitrary g representation (V, ρ) and consider the representation(
V ⊗2, ρ⊗2

)
. First consider v ⊗ w ∈ Sym2 V . For any X ∈ g, we have:

(ρ⊗ ρ) (X) (v ⊗ w) = ρ (v)⊗ w + v ⊗ ρ (w)

(ρ⊗ ρ) (X) (w ⊗ v) = ρ (w)⊗ v + w ⊗ ρ (v)

But since v ⊗ w = w ⊗ v, these are actually equal, so this is in Sym2 V as well.
Effectively the same argument holds for ∧2V by linearity.
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So this does indeed have a complement, and this gives us another subalgebra

∧2 (V ) = C 〈e1 ⊗ e2 − e2 ⊗ e1〉

Now the question is, do we already know these by another name?
We know Sym2 (V1) is 3-dimensional, and ∧2 (V1) is 1-dimensional. As it turns

out, we can check manually, that ∧2 (V1) = V0 is the trivial representation, but we
also have the following:

Exercise 4. Any 1-dimensional representation of a semi-simple Lie algebra is triv-
ial.

Solution. Consider the case of a simple Lie algebra. The kernel of ρ must contain
the bracket, but if g is simple, [g, g] = g, so ρ must be trivial. But for semi-simple,
we also have [g, g] = g so it holds for this case as well.

Now notice that Sym2 (V1) is just the adjoint representation. In fact, we can
write down an isomorphism explicitly:

H 7→ − (e1 ⊗ e2 + e2 ⊗ e1) X 7→ e1 ⊗ e1 Y 7→ −e2 ⊗ e2
Now we just have to check this map respects the action of the basis elements H, X,
and Y . This map clearly respects the H action since the eigenvalues match. For
the X action we can calculate:

adX X = 0 = X (−e1 ⊗ e1)

adX Y = H 7→ − (e1 ⊗ e2 − e2 ⊗ e1) = X (−e2 ⊗ e2)

adX H = −2X 7→ −2e1 ⊗ e1 = X (− (e1 ⊗ e2 + e2 ⊗ e1))

Finally, we have to check the action of Y :

adY (Y ) = 0 = Y (−e2 ⊗ e2)

adY (X) = − adX (Y ) = −H 7→ e2 ⊗ e2 + e1 ⊗ e2 = Y (e1 ⊗ e1)

adY (H) = − adH (Y ) = 2Y 7→ −2e2 ⊗ e2 = Y (− (e1 ⊗ e2 + e2 ⊗ e1))

So this does indeed preserve the action of the basis of sl (2,C).

2.4. General story.

Definition 2. A semi-simple category is a category such that all objects are a
direct sum of irreducible objects.

Here irreducible means there are no nontrivial proper subrepresentations.

Theorem 1. The category of finite dimensional representations, Repfd (sl (2,C)),
is a semi-simple category. The irreducible representations are all of the form Vn =
Symn (V1) for n ∈ N.

Note that V0 is trivial, V1 is standard, V2 is adjoint, and the rest don’t have
names.

Lemma 1 (Schur). Let V1 and V2 be irreducible representations of some Lie alge-
bras g, then

HomRep(g) (V1, V2) =

{
〈0〉 V1 6∼= V2

C V1 ∼= V2
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Exercise 5. Prove this. This doesn’t have much to do with Lie algebras and is
more related to abelian categories.

Remark 3. Some aspects of this theorem generalize, for example Repfd (g) is a
semisimple category iff g is semisimple.

We now explain some structure we will use in the proof next time. Our strategy
for understanding all representations, is to first hope and pray it is abelian, and if
not we can just look at the diagonals and build up from there. Accordingly we first
focus on a subalgebra h = C 〈H〉 ⊆ sl (2,C). This is a 1-dimensional abelian Lie
algebra, and

Repfd (h) = C [H] -Modfd

so every such representation is just a choice of a vector space, and a choice of
endomorphism H

�

V .
Recall the classification of such things uses Jordan forms, so block matrices with

a generalized eigenvalue along the diagonal, and 1 along the super diagonal. We can
picture this as a complex plane, where we have attached a generalized eigenspace
at each λi:

V =
⊕
λi

Vλi

Next time, we will take sl (2,C) and see how the other operators interact with this
picture.
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