
COUNTEREXAMPLES TO HKR IN POSITIVE

CHARACTERISTIC

ROK GREGORIC

1. Hochschild homology

Fix a field k (not necessarily of characteristic 0) and R a k-algebra (automatically
flat for fields). Define:

(1) HH (R/k) := R
L
⊗R⊗kR R

Let M ∈ Mod-A and N ∈ A-Mod. Recall the ordinary tensor product is
defined as the co-equalizer of:

(2) M ⊗A⊗N M ⊗N

where

(3)
x⊗ a⊗ y xa⊗ y

x⊗ a⊗ y x⊗ ay

d0

d1

.

This is equivalent to

(4) M ⊗A N = coker
(
M ⊗A⊗N

d0−d1−−−−→ M ⊗N
)

.

Now we can define the derived tensor product in the analogous way:

(5) M
L
⊗R N ≃

(
. . .

d−→ M ⊗R⊗R → N
d−→ M ⊗R⊗N

d−→ M ⊗N
)

where

(6) x⊗ a⊗ b⊗ y 7→ xa⊗ b⊗ y − x⊗ ab⊗ y + x⊗ a⊗ by .

Note that

(7) Hi

(
M

L
⊗ N

)
= TorRi (M,N) .

To get to HH, set M = N = R, A = R⊗R. Then the Hochschild complex looks
like:

(8) . . . → R⊗R (R⊗R)⊗R (R⊗R)⊗R R → R⊗R (R⊗R)⊗R R → R⊗R R
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which can be rewritten as:

(9)

. . . R⊗R⊗R R⊗R R

x⊗ y ⊗ z xy ⊗ z − x⊗ yz + zx⊗ y

x⊗ y xy − yx = 0

0

.

Now we can read off that

HH0 (R) ≃ R(10)

HH1 (R) ≃ R⊗R/ (xy ⊗ z − x⊗ yz + zx⊗ y) .(11)

So this relation says that:

(12) x⊗ yz = xy ⊗ z + xz ⊗ y .

Now recall Kähler differentials are given by:

(13) Ω1
Rk ≃ {x dy |x d (yz) = xy dz + xz dy } .

Now these look awfully familiar, since they are the same. We get an isomorphism
by sending x⊗ y 7→ x dy .

This required no assumptions on the ring, or on the characteristic. If R/k is
smooth, we get more:

(14) HHi (R/k) ∼= Ωi
R/k .

Now let k have characteristic 0. Then we can define a homomorphism

(15)

R⊗(i+1) Ωi
R

x0 ⊗ x1 ⊗ . . .⊗ xi
1
i!x0 dx1 ∧ dX2 ∧ . . . ∧ dxi

⊗7→d

.

If ch k = p ⪈ 0, and i ≥ p this doesn’t make any sense. In characteristic 0:

(16) HH (R/k) =
⊕
i

Ωi
R [i] .

2. Derived Hochschild homology

Why do we want to move to the derived world? We want to remove this smooth-
ness hypothesis. Kähler differentials Ω1

−/k over k suffer from a defect. If we have a

morphism of schemes X
f−→ Y (over S) then this induces an exact sequence

(17) f∗Ω1
Y/S Ω1

X/S Ω1
X/Y 0 .

But this isn’t short-exact, i.e. the first map isn’t necessarily injective, unless we
are in the smooth case. So let’s “upgrade” Kähler differentials to the cotangent
complex LX . This is a complex of quasi-coherent sheaves on X. This is a complex
such that

• H0
(
LX/S

)
≃ Ω1

X/S ;

• for a smooth resolution of X, there is a compatible one of LX ;
• when X/S is smooth, LX/S ≃ Ω1

X/S ;
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• some kind of exactness, i.e. for X
f−→ Y → S,

(18) f∗LY/S → LX/S → LX/Y

is a fiber sequence (derived analogue of short exact sequence); and
• it satisfies the base change property, so for a cartesian square

(19)
X X ′

Y Y ′

f

we have

(20) LX/Y ≃ f∗ (LX′/Y ′
)
.

The point is, that in derived algebraic geometry, trying to form Ω1 leads to L.

2.1. HKR for non-smooth schemes. Now it is important that k is of charac-
teristic 0.

HH (X) ≃
⊕
i≥0

∧i
OX

LX [i](21)

≃ Sym∗
OX

(LX [1]) .(22)

Note that

(23) Symi (M [1]) ≃
(
∧iM

)
[i] .

If we are in the affine case X = SpecA we have

(24) HH (A) ≃ A
L
⊗A⊗A A

which in DAG corresponds geometrically toX×X×XX. The multiplicationA⊗A →
A corresponds to the diagonal ∆ : X → X ×X, so we get a cartesian diagram:

(25)

X ×X×X X X

X X ×X

∆

∆

.

So we have that

(26) HH (X) ≃ O (X ×X×X X)

is functions on the derived self-intersection of the diagonal.

Remark 1. This interpretation bears some resemblance to the Euler characteristic
of a manifold. One way to calculate it is to count the self intersection of the diagonal
with itself, maybe with signs.

Another way of viewing this is as follows. Consider the following homotopy
pushout:

(27)

pt⨿ pt pt

pt S1 ≃ pt
⨿

pt
⨿

pt pt

.

This is S1 because a point is as good as an interval up to homotopy, so we can view
this as gluing two intervals along their endpoints.
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Now we can interpret HKR in this language. What we have figured out is that

(28) O (LX) ≃ HH(X) .

Then the loop space has an operation given by concatenation. So LX is some kind
of (derived) group (scheme) over X. Now when we take the tangent complex and
restrict to X, we get

(29) TLX |X ≃ T [−1]X

Now HKR is the statement that the exponential map

(30) SpecX Sym∗
OX

(LX [−1]) = T [−1]X
exp−−→ LX

is an isomorphism.

Sketch proof of HKR. Assume X is affine.1 We have the free loop space which is
the stack of maps:

LX ≃ Map
DSch

(BZ, X)(31)

≃ Map
DSch

(SpecO (BZ) , X)(32)

and O (BZ) ≃ C∗ (S1; k
)
. In characteristic 0, these chains are formal, so

C∗ (S1; k
)
≃ H∗ (S1; k

)
(33)

≃ k ⊕ k [−1](34)

≃ k [ϵ] /
(
ϵ2
)

(35)

where ϵ has degree 1, so

(36) LX ≃ Map
DSch

(
Spec

(
k [ϵ] /

(
ϵ2
))

, X
)
≃ T [−1]X .

If ϵ had degree 0, we would get the 0-shifted tangent complex. □

Remark 2 (Sam). Embed the additive group Z to the additive group scheme Ga,
then we have the map from the formal group (formal completion at the origin to
Ga), so we get:

(37)

Z Ga

Ĝa

.

Then we can take B of this to get

(38)

BZ BGa

BĜa

1There is a descent procedure which reduces the general question to this.
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Claim 1. For X a variety over a field of characteristic 0 we have:

(39)

Map (BZ, X) Map (BGa, X)

Map
(
BĜa, X

)
≃

≃

So we have shown that

(40) XS1

≃ T [−1]X

by showing that they are both isomorphic to a third thing.2

The map Z → Ga would factor through Z/p in characteristic p, so it is unlikely
to be true.

3. Hochschild homology in positive characteristic

To be continued. . .

2This was a lesson Dennis Gaitsgory taught Sam.
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