THE TORIC CODE

TALK BY: RICKY WEDEEN

Let X be a CW complex, G a finite group. Write X^{i} for the i-skeleton. Write $\operatorname{Bun}_{G}\left(X^{1}, X^{0}\right)$ for the collection of principal G bundles:

$$
X^{0} \stackrel{s}{ } \stackrel{P}{\hookrightarrow} \stackrel{P}{\downarrow} .
$$

This forms a groupoid. For (P, s) and $\left(P^{\prime}, s^{\prime}\right) \in \operatorname{Bun}_{g}\left(X^{1}, X^{0}\right)$, a morphism f : $(P, s) \rightarrow\left(P^{\prime}, s^{\prime}\right)$ is a map $P \rightarrow P^{\prime}$ such that the following diagram commutes:

Note that

$$
\pi_{0} \operatorname{Bun}_{G}\left(X^{1}, X^{0}\right) \simeq \prod_{\text {edge }} G
$$

Our Hilbert space will be

$$
\mathcal{H}=\operatorname{Fun}\left(\pi_{0} \operatorname{Bun}_{G}\left(X^{1}, X^{0}\right), \mathbb{C}\right)
$$

which, as a vector space, is given by

$$
\bigotimes_{\text {edges }} \mathbb{C}[G]
$$

Now we define a bunch of local operators.
(1) For $v \in X^{0}$, define

$$
\begin{gathered}
\operatorname{Bun}_{G}\left(X^{1}, X^{0}\right) \xrightarrow{\varphi_{v}^{g}} \operatorname{Bun}_{G}\left(X^{1}, X^{0}\right) \\
(P, s) \longmapsto\left(P, s^{\prime}\right)
\end{gathered}
$$

where

$$
s^{\prime}(v)=s(v) \cdot g^{-1}
$$

Now define

$$
A_{v}^{g}:=\left(\varphi_{v}^{g}\right)^{*}: \mathcal{H} \rightarrow \mathcal{H}
$$

and then define

$$
A_{v}=\frac{1}{|G|} \sum_{g \in G} A_{v}^{g}
$$

Date: February 11, 2020.
Notes by: Jackson Van Dyke; all errors introduced are my own.

This can be interpreted as the projection onto state space that is gauge invariant at v.
(2) Let f be a 2-cell. Then define $B_{g}^{h} \in \operatorname{End}(\mathcal{H})$ to send

$$
\psi \mapsto \delta_{h, \operatorname{hol}_{f}(h)} \psi
$$

and define $B_{f}:=B_{f}^{\mathrm{id}}$.
Claim 1. The for $v \in \partial f,\left\{A_{v}, B_{f}\right\}$ pairwise commute.
Now define $H \in \operatorname{End}(\mathcal{H})$ by

$$
\begin{equation*}
H=\sum_{v}\left(1-A_{v}\right)+\sum_{f}\left(1-B_{f}\right) \tag{1}
\end{equation*}
$$

The ground state is:

$$
\begin{equation*}
G S:=\operatorname{ker} H=\left(\bigcap_{v} \operatorname{ker}\left(1-A_{v}\right)\right) \cap\left(\bigcap_{f} \operatorname{ker}\left(1-B_{f}\right)\right) \tag{2}
\end{equation*}
$$

$\psi \in G S$ implies it factors as:

so it doesn't depend on the trivialization at any point in X^{0}, it is really a function on principal bundles over X^{1}.

Now it doesn't have any holonomy at anything in the 2 -skeleton, so it can be extended, and there are no obstructions to extending in higher dimensions since G is a finite group. Therefore ψ is nonzero only on $P \rightarrow X^{1}$ which extend to $P \rightarrow X$. Therefore the ground state is

$$
\begin{equation*}
G S=\operatorname{Map}\left(\operatorname{Bun}_{g}(X), \mathbb{C}\right)=\operatorname{Map}\left(H^{1}(X ; G), \mathbb{C}\right) \tag{3}
\end{equation*}
$$

since $\operatorname{Bun}_{g}(X) \simeq H^{1}(X ; G)$.
Example 1. On Σ_{g}, for $G=\mathbb{Z} / 2$,

$$
G S=\operatorname{Map}\left((\mathbb{Z} / 2)^{2 g}, \mathbb{C}\right)
$$

which has dimension 4^{g}.
A site is a pair (v, f) with $v \in \partial f$. An elementary excitation should be a state

$$
\psi \in\left(\bigcap_{v^{\prime} \neq v} \operatorname{ker}\left(1-A_{v}\right)\right) \cap\left(\bigcap_{f^{\prime} \neq f} \operatorname{ker}\left(1-B_{g}\right)\right)
$$

Let $a=\left(v_{1}, f_{1}\right)$ and $b=\left(v_{2}, f_{2}\right)$ be two sites. We will write $\mathcal{L}(a, b)$ for the corresponding 2-particle states. Define this to be

$$
\begin{equation*}
\mathcal{L}(a, b):=\left(\bigcap_{v \neq v_{1}, v_{2}} \operatorname{ker}\left(1-A_{v}\right)\right) \cap\left(\bigcap_{f \neq f_{1}, f_{2}} \operatorname{ker}\left(1-B_{f}\right)\right) . \tag{4}
\end{equation*}
$$

Consider the algebra generated by $A_{v_{1}}^{g}, B_{f_{1}}^{h}$ where

$$
A_{v^{1}}^{g} \cdot A_{v_{1}}^{h}=A_{v_{1}}^{g h} \quad, \quad B_{f_{1}}^{g} \cdot B_{f_{1}}^{h}=\delta_{g, h} B_{f}^{h}
$$

and

$$
A_{v_{1}}^{g} \cdot B_{f_{1}}^{h}=B_{f}^{g h g^{-1}} A_{v}^{g}
$$

These are the relations of the quantum double $D(G)$. We start with the group algebra $\mathbb{C}[G]$. This is a Hopf algebra. Then we have the function algebra $\mathcal{F}(G)$, which is functions ${ }^{1}$ on G. The Hopf algebra structure is given by:

	$\mathbb{C}[G]$	$\mathcal{F}(G)$	$D(G) \simeq \mathbb{C}[G] \otimes \mathcal{F}(G)$
mult.	$x \otimes y \mapsto x y$	$\delta_{x} \otimes \delta_{y} \mapsto \delta_{x, y} \delta_{y}$	$\left(\delta_{g} \otimes x\right) \otimes\left(\delta_{h} \otimes y\right)$ $\mapsto \delta_{g, x h x-1}\left(\delta_{g} \otimes x y\right)$
unit	e	$1 \mapsto \sum_{g \in G} \delta_{g}$	\ldots
comult.	$x \mapsto x \otimes x$	$\delta_{x} \mapsto \sum_{g h=x} \delta_{g} \otimes \delta_{h}$	
counit	$\epsilon: x \mapsto 1$	$\epsilon: \delta_{G} \mapsto \delta_{g, 1}$	
antipode	$\gamma: x \mapsto x^{-1}$	$\gamma: \delta_{g} \mapsto \delta_{g^{-1}}$	

Now we send

$$
\delta_{h} \otimes g \mapsto B_{f_{1}}^{h} \cdot A_{v_{1}}^{g}
$$

For a and b two sites, we have

$$
D(G) \xrightarrow[\varphi_{b}]{\varphi_{a}} \operatorname{End}(\mathcal{L}(a, b))
$$

and

$$
D(a):=\operatorname{im}\left(\varphi_{a}\right) \quad D(b):=\operatorname{im}\left(\varphi_{b}\right)
$$

The takeaway is that irreducible representations of $D(a)$ are elementary particles (anyons) at the site a.

Claim 2. $\boldsymbol{R e p}_{f}(D(G))$ is semisimple.
Let $V \in \operatorname{Obj}\left(\operatorname{Rep}_{f}(D(G))\right), v \in V$.
Fact 1. The irreps of $D(G)$ are classified by $V_{\bar{g}, \pi}$ where π is an irreducible representation of $Z(g)$.

Example 2. For $G=\mathbb{Z} / 2, \bar{g}$ can be $\{0\}$ or $\{1\}$, and π can be 0 or 1 . So our irreducible representations are

$V_{0,0}$	$V_{0,1}$	$V_{1,0}$	$V_{1,1}$
\emptyset	e	m	$e \times m$

This can be viewed as a field theory in the sense that it sends S^{1} to $\boldsymbol{\operatorname { R e p }}(D(G))$, which is equivalent to $\operatorname{Vect}(G / G)$.

[^0]
[^0]: ${ }^{1}$ This is kind of the same as $\mathbb{C}[G]$ but different as a Hopf algebra.

