THE TORIC CODE

TALK BY: RICKY WEDEEN

Let X be a CW complex, G a finite group. Write X^i for the *i*-skeleton. Write Bun_G (X^1, X^0) for the collection of principal G bundles:

$$\begin{array}{ccc} & P \\ & \stackrel{s}{\nearrow} \downarrow & \cdot \\ X^0 & \hookrightarrow X' \end{array}$$

This forms a groupoid. For (P, s) and $(P', s') \in \operatorname{Bun}_g(X^1, X^0)$, a morphism $f : (P, s) \to (P', s')$ is a map $P \to P'$ such that the following diagram commutes:

$$\begin{array}{ccc} P \xrightarrow{f} P' \\ & \swarrow & \downarrow & \swarrow \\ X^0 \hookrightarrow X' \end{array} .$$

Note that

$$\pi_0 \operatorname{Bun}_G (X^1, X^0) \simeq \prod_{\text{edge}} G$$
.

Our Hilbert space will be

$$\mathcal{H} = \operatorname{Fun}\left(\pi_0 \operatorname{Bun}_G\left(X^1, X^0\right), \mathbb{C}\right)$$

which, as a vector space, is given by

$$\bigotimes_{\text{edges}} \mathbb{C}\left[G\right]$$

Now we define a bunch of local operators.

(1) For $v \in X^0$, define

$$\operatorname{Bun}_{G}\left(X^{1}, X^{0}\right) \xrightarrow{\varphi_{v}^{g}} \operatorname{Bun}_{G}\left(X^{1}, X^{0}\right)$$

$$(P,s)\longmapsto (P,s')$$

where

$$s'\left(v\right) = s\left(v\right) \cdot g^{-1} \ .$$

Now define

$$A_v^g \coloneqq \left(\varphi_v^g\right)^* : \mathcal{H} \to \mathcal{H}$$

and then define

$$A_v = \frac{1}{|G|} \sum_{g \in G} A_v^g$$

Date: February 11, 2020.

Notes by: Jackson Van Dyke; all errors introduced are my own.

This can be interpreted as the projection onto state space that is gauge invariant at v.

(2) Let f be a 2-cell. Then define $B_g^h \in \text{End}(\mathcal{H})$ to send

 $\psi \mapsto \delta_{h, \mathrm{hol}_f(h)} \psi$

and define $B_f \coloneqq B_f^{\mathrm{id}}$.

Claim 1. The for $v \in \partial f$, $\{A_v, B_f\}$ pairwise commute.

Now define $H \in \text{End}(\mathcal{H})$ by

(1)
$$H = \sum_{v} (1 - A_{v}) + \sum_{f} (1 - B_{f})$$

The ground state is:

(2)
$$GS := \ker H = \left(\bigcap_{v} \ker (1 - A_{v})\right) \cap \left(\bigcap_{f} \ker (1 - B_{f})\right) .$$

 $\psi \in GS$ implies it factors as:

$$\operatorname{Bun}_{G}\left(X^{1}, X^{0}\right) \xrightarrow{\qquad} \mathbb{C}$$
$$\overset{}{\xrightarrow{\qquad}} \operatorname{Bun}_{G}\left(X^{1}\right)$$

so it doesn't depend on the trivialization at any point in X^0 , it is really a function on principal bundles over X^1 .

Now it doesn't have any holonomy at anything in the 2-skeleton, so it can be extended, and there are no obstructions to extending in higher dimensions since G is a finite group. Therefore ψ is nonzero only on $P \to X^1$ which extend to $P \to X$. Therefore the ground state is

(3)
$$GS = \operatorname{Map}\left(\operatorname{Bun}_{g}\left(X\right), \mathbb{C}\right) = \operatorname{Map}\left(H^{1}\left(X; G\right), \mathbb{C}\right)$$

since $\operatorname{Bun}_{q}(X) \simeq H^{1}(X;G)$.

Example 1. On Σ_g , for $G = \mathbb{Z}/2$,

$$GS = \operatorname{Map}\left(\left(\mathbb{Z}/2\right)^{2g}, \mathbb{C}\right)$$

which has dimension 4^g .

A site is a pair (v,f) with $v\in\partial f.$ An elementary excitation should be a state

$$\psi \in \left(\bigcap_{v' \neq v} \ker \left(1 - A_v\right)\right) \cap \left(\bigcap_{f' \neq f} \ker \left(1 - B_g\right)\right)$$

Let $a = (v_1, f_1)$ and $b = (v_2, f_2)$ be two sites. We will write $\mathcal{L}(a, b)$ for the corresponding 2-particle states. Define this to be

(4)
$$\mathcal{L}(a,b) \coloneqq \left(\bigcap_{v \neq v_1, v_2} \ker (1 - A_v)\right) \cap \left(\bigcap_{f \neq f_1, f_2} \ker (1 - B_f)\right) .$$

Consider the algebra generated by $A_{v_1}^g, B_{f_1}^h$ where

$$A^g_{v^1} \cdot A^h_{v_1} = A^{gh}_{v_1} \qquad , \qquad B^g_{f_1} \cdot B^h_{f_1} = \delta_{g,h} B^h_f \ .$$

 $\mathbf{2}$

THE TORIC CODE

and

$$A^g_{v_1} \cdot B^h_{f_1} = B^{ghg^{-1}}_f A^g_v \; .$$

These are the relations of the quantum double D(G). We start with the group algebra $\mathbb{C}[G]$. This is a Hopf algebra. Then we have the function algebra $\mathcal{F}(G)$, which is functions¹ on G. The Hopf algebra structure is given by:

	$\mathbb{C}\left[G\right]$	$\mathcal{F}\left(G ight)$	$D(G) \simeq \mathbb{C}[G] \otimes \mathcal{F}(G)$
mult.	$x\otimes y\mapsto xy$	$\delta_x \otimes \delta_y \mapsto \delta_{x,y} \delta_y$	$ \begin{array}{c} (\delta_g \otimes x) \otimes (\delta_h \otimes y) \\ \mapsto \delta_{g,xhx^{-1}} \left(\delta_g \otimes xy \right) \end{array} $
unit	e	$1 \mapsto \sum_{g \in G} \delta_g$	
comult.	$x \mapsto x \otimes x$	$\delta_x \mapsto \sum_{gh=x} \delta_g \otimes \delta_h$	
counit	$\epsilon: x \mapsto 1$	$\epsilon: \delta_G \mapsto \delta_{g,1}$	
antipode	$\gamma: x \mapsto x^{-1}$	$\gamma: \delta_g \mapsto \delta_{g^{-1}}$	

Now we send

$$\delta_h \otimes g \mapsto B^h_{f_1} \cdot A^g_{v_1}$$
 .

For a and b two sites, we have

$$D(G) \xrightarrow{\varphi_a} \operatorname{End} \left(\mathcal{L} \left(a, b \right) \right)$$

and

$$D(a) \coloneqq \operatorname{im}(\varphi_a)$$
 $D(b) \coloneqq \operatorname{im}(\varphi_b)$.

The takeaway is that irreducible representations of D(a) are elementary particles (anyons) at the site a.

Claim 2. $\operatorname{Rep}_{f}(D(G))$ is semisimple.

Let $V \in \text{Obj}(\operatorname{\mathbf{Rep}}_{f}(D(G))), v \in V.$

Fact 1. The irreps of D(G) are classified by $V_{\overline{g},\pi}$ where π is an irreducible representation of Z(g).

Example 2. For $G = \mathbb{Z}/2$, \bar{g} can be $\{0\}$ or $\{1\}$, and π can be 0 or 1. So our irreducible representations are

$V_{0,0}$	$V_{0,1}$	$V_{1,0}$	$V_{1,1}$
Ø	e	m	$e \times m$

This can be viewed as a field theory in the sense that it sends S^{1} to $\operatorname{Rep}(D(G))$, which is equivalent to $\operatorname{Vect}(G/G)$.

 $^{^1}$ This is kind of the same as $\mathbb{C}\left[G\right]$ but different as a Hopf algebra.