
THE TORIC CODE

TALK BY: RICKY WEDEEN

Let X be a CW complex, G a finite group. Write Xi for the i-skeleton. Write
BunG

(
X1, X0

)
for the collection of principal G bundles:

P

X0 X ′

s .

This forms a groupoid. For (P, s) and (P ′, s′) ∈ Bung
(
X1, X0

)
, a morphism f :

(P, s) → (P ′, s′) is a map P → P ′ such that the following diagram commutes:

P P ′

X0 X ′

f

s .

Note that

π0 BunG
(
X1, X0

)
≃
∏
edge

G .

Our Hilbert space will be

H = Fun
(
π0 BunG

(
X1, X0

)
,C
)

which, as a vector space, is given by⊗
edges

C [G] .

Now we define a bunch of local operators.

(1) For v ∈ X0, define

BunG
(
X1, X0

)
BunG

(
X1, X0

)
(P, s) (P, s′)

φg
v

where

s′ (v) = s (v) · g−1 .

Now define

Ag
v := (φg

v)
∗
: H → H

and then define

Av =
1

|G|
∑
g∈G

Ag
v .
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This can be interpreted as the projection onto state space that is gauge
invariant at v.

(2) Let f be a 2-cell. Then define Bh
g ∈ End (H) to send

ψ 7→ δh,holf (h)ψ

and define Bf := Bid
f .

Claim 1. The for v ∈ ∂f , {Av, Bf} pairwise commute.

Now define H ∈ End (H) by

(1) H =
∑
v

(1−Av) +
∑
f

(1−Bf )

The ground state is:

(2) GS := kerH =

(∩
v

ker (1−Av)

)
∩

∩
f

ker (1−Bf )

 .

ψ ∈ GS implies it factors as:

BunG
(
X1, X0

)
C

BunG
(
X1
)

so it doesn’t depend on the trivialization at any point in X0, it is really a function
on principal bundles over X1.

Now it doesn’t have any holonomy at anything in the 2-skeleton, so it can be
extended, and there are no obstructions to extending in higher dimensions since G
is a finite group. Therefore ψ is nonzero only on P → X1 which extend to P → X.
Therefore the ground state is

(3) GS = Map (Bung (X) ,C) = Map
(
H1 (X;G) ,C

)
.

since Bung (X) ≃ H1 (X;G).

Example 1. On Σg, for G = Z/2,

GS = Map
(
(Z/2)2g ,C

)
which has dimension 4g.

A site is a pair (v, f) with v ∈ ∂f . An elementary excitation should be a state

ψ ∈

 ∩
v′ ̸=v

ker (1−Av)

 ∩

 ∩
f ′ ̸=f

ker (1−Bg)

 .

Let a = (v1, f1) and b = (v2, f2) be two sites. We will write L (a, b) for the
corresponding 2-particle states. Define this to be

(4) L (a, b) :=

 ∩
v ̸=v1,v2

ker (1−Av)

 ∩

 ∩
f ̸=f1,f2

ker (1−Bf )

 .

Consider the algebra generated by Ag
v1 , B

h
f1

where

Ag
v1 ·Ah

v1 = Agh
v1

, Bg
f1

·Bh
f1 = δg,hB

h
f .
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and
Ag

v1 ·B
h
f1 = Bghg−1

f Ag
v .

These are the relations of the quantum double D (G). We start with the group
algebra C [G]. This is a Hopf algebra. Then we have the function algebra F (G),
which is functions1on G. The Hopf algebra structure is given by:

C [G] F (G) D (G) ≃ C [G]⊗F (G)

mult. x⊗ y 7→ xy δx ⊗ δy 7→ δx,yδy
(δg ⊗ x)⊗ (δh ⊗ y)
7→ δg,xhx−1 (δg ⊗ xy)

unit e 1 7→
∑

g∈G δg . . .

comult. x 7→ x⊗ x δx 7→
∑

gh=x δg ⊗ δh
counit ϵ : x 7→ 1 ϵ : δG 7→ δg,1

antipode γ : x 7→ x−1 γ : δg 7→ δg−1

Now we send
δh ⊗ g 7→ Bh

f1 ·A
g
v1 .

For a and b two sites, we have

D (G) End (L (a, b))
φa

φb

and

D (a) := im (φa) D (b) := im (φb) .

The takeaway is that irreducible representations ofD (a) are elementary particles
(anyons) at the site a.

Claim 2. Repf (D (G)) is semisimple.

Let V ∈ Obj
(
Repf (D (G))

)
, v ∈ V .

Fact 1. The irreps of D (G) are classified by Vḡ,π where π is an irreducible repre-
sentation of Z (g).

Example 2. For G = Z/2, ḡ can be {0} or {1}, and π can be 0 or 1. So our
irreducible representations are

V0,0 V0,1 V1,0 V1,1

∅ e m e×m .

This can be viewed as a field theory in the sense that it sends S1 to Rep (D (G)),
which is equivalent to Vect (G/G).

1 This is kind of the same as C [G] but different as a Hopf algebra.


