THE TORIC CODE

TALK BY: RICKY WEDEEN

Let X be a CW complex, G a finite group. Write X? for the i-skeleton. Write
Bung (Xl, XO) for the collection of principal G bundles:

P
>
X0 — X'
This forms a groupoid. For (P,s) and (P’,s’) € Buny (X!, X°), a morphism f :
(P,s) — (P',s') is a map P — P’ such that the following diagram commutes:
p-Lp
Al
X0 s X/
Note that
7o Bung X1 XO H G.
edge
Our Hilbert space will be

H = Fun (7r0 Bung (XI,XO) 7(C)

which, as a vector space, is given by

Q) C[a]

edges
Now we define a bunch of local operators.
(1) For v € XY, define

Bung (X', X%) % Bung (X', X°)

(P,s) (P, ¢')

where
Now define

and then define

A |G\ZA

geG
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This can be interpreted as the projection onto state space that is gauge
invariant at v.

(2) Let f be a 2-cell. Then define B" € End (H) to send
Y = O hol; ()Y
and define By := B}d.
Claim 1. The for v € 9f, {A,, By} pairwise commute.
Now define H € End (H) by

(1) H=>"(1-A4A,)+Y (1-By)
v f

The ground state is:

(2) GS =kerH = (ﬂ ker (1 — Av)> N mker (1 - By)

f
1 € GS implies it factors as:

Bung (Xl,XO) C
— 7

Bung (Xl)

so it doesn’t depend on the trivialization at any point in X0, it is really a function
on principal bundles over X1!.

Now it doesn’t have any holonomy at anything in the 2-skeleton, so it can be
extended, and there are no obstructions to extending in higher dimensions since G
is a finite group. Therefore 1) is nonzero only on P — X' which extend to P — X.
Therefore the ground state is

(3) GS = Map (Bun, (X),C) = Map (H' (X;G),C) .
since Bun, (X) ~ H* (X;G).
Example 1. On X , for G =7Z/2,
GS = Map ((Z/Q)Qg 7(C)
which has dimension 49.

A site is a pair (v, f) with v € 9f. An elementary excitation should be a state

RS ﬂker(l—AU) N ﬂker(l—Bg)
v F#f

Let a = (v, f1) and b = (ve, f2) be two sites. We will write £ (a,b) for the
corresponding 2-particle states. Define this to be

(4) L(ab)={ (] ker(1=A)|n| [ ker(1-By)
v;évl,vz f?éfl ’f2
Consider the algebra generated by AY 3?1 where

vy

h _ Agh h __ h
Azl : Avl - Agl ’ B.?l Bfl - 5g,th :
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and -
h ghg™
A3, - BY, :B;Z 9 A9 .
These are the relations of the quantum double D (G). We start with the group
algebra C[G]. This is a Hopf algebra. Then we have the function algebra F (G),
which is functions'on G. The Hopf algebra structure is given by:

! [ CGT ] 7 (G) [D(G)~C[GIeF(G) ]

0g ®x) ® (0 ®y)
mult. TRY— 2y 0z ® 6y = 51,y5y ’L%g,xhz)*l (59 ® ij)
unit e 1~ dec Og e
comult. T=TRT | 0y Zgh::p 09 @ On
counit e:x— 1 €:0g — g1
antipode || v: 2z +— 27! Y0 g1

Now we send
5h®g»—>B}”1 ~Agl .
For a and b two sites, we have
D (G) £% End (L (a,b))
~ P
and
D (a) :=im (pa) D (b) :=im (¢s) -
The takeaway is that irreducible representations of D (a) are elementary particles
(anyons) at the site a.

Claim 2. Repy (D (G)) is semisimple.
Let V € Obj (Rep; (D (G))),ve V.

Fact 1. The irreps of D (G) are classified by V . where w is an irreducible repre-
sentation of Z (g).

Example 2. For G = Z/2, g can be {0} or {1}, and 7 can be 0 or 1. So our
irreducible representations are

Vo0 Vo, Vio Via

@ € m exXm

This can be viewed as a field theory in the sense that it sends S* to Rep (D (GQ)),
which is equivalent to Vect (G/G).

L This is kind of the same as C [G] but different as a Hopf algebra.



