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This is based on this talk and its sequels.
Let Bord3

1 denote the following 2-category of bordisms. This is a symmetric
monoidal category under the operation of disjoint union. This has 1-manifolds as
objects, morphisms between two objects are 2-manifolds with the objects as its
boundary. Then 2-morphisms between 1-morphisms are given by 3-manifolds with
the surfaces as its boundary.

Let LinCat denote the category of linear categories. The objects are categories
such that the Hom sets in the category are complex vector spaces, composition is lin-
ear, and there are coproducts The morphisms are linear functors, and 2-morphisms
are natural transformations. The unit in LinCat isVectC. The 2-category LinCat
categorifies VectC in the sense that

(1) EndLinCat (VectC) ≃ VectC

where F 7→ F (C).
A 3− 2− 1 topological quantum field theory (TQFT) is a functor

(2) Bord3
1

Z−→ LinCat .

Since the image of the empty 1-manifold Z (∅1) = VectC, we have that for a closed
surface Σ, Z (Σ) ∈ EndLinCat (VectC) ≃ VectC so we get the classical notion of a
TQFT.

For A a C algebra, a prototype for an element of LinCat is A-Mod.

Question 1. (1) Which linear categories can we assign to S1?
(2) Which A can be chosen for Z

(
S1

)
= A-Mod?

Write C = Z
(
S1

)
. Then the following are true:

(i) This is monoidal.
(ii) All objects of C have duals:

(3) 1 x⊗ x∨ 1 .

(iii) C is semisimple (all x are of the form
n⊕

i=1

yki
i = x).

(iv) C has finitely many simple objects.

This is monoidal because of the pair of pants. Semisimplicity follows from the
mark of Zorro stuff.
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Now start with a C-algebra A, set C = A-Mod. The monoidal structure tells us
that we have a map

(4) A-Mod⊗A-Mod → A-Mod .

Because the following diagram commutes:

(5)

A-Mod⊗A-Mod A-Mod

VectC ⊗VectC VectC

.

We need an A-Mod structure on M ⊗C N . This is encoded by a map

(6) A
∆−→ A⊗A .

Now we have the assignment of an A-module M to its dual M∨, which had under-
lying vector space HomC (M,C). The action of A is given by a map s : A → A,
called the antipode. Explicitly, the action is given by:

(7) (a · f) (m) = f (s (a)m) .

Associativity of the action tells us that:

(8) s (ab) = s (b) s (a) .

Eventually, if we continued in this way, we would find that this is a Hopf algebra.
Our first guess for how to find these might be that we should start with a Lie

algebra and form the universal enveloping algebra:

(9) U (g) = Tg/ ([x, y] = xy − yx) .

The above maps are given by:

(10)

Ug Ug⊗ Ug

x x⊗ 1 + 1⊗ x

Ug Ug

x −x

Ug C

x 0

1 1

∆

s

.

The issue is that this has infinitely many simple objects.

Example 1. For example, we can take g = sl2. Recall this is generated by

E =

(
1 0
0 0

)
F =

(
0 0
0 1

)
H =

(
1 0
0 −1

)
(11)
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so a presentation is given by

(12) g = ⟨E,F,H | [H,E] = 2E, [H,F ] = −2F, [E,F ] = H⟩ .

For all n ≥ 0, we get Ln an n + 1 complex dimensional irreducible representation
of g, which looks like

(13)

• • • • •
1 2

4

3

3

4

2 1

.

E sends me to the right, and F sends me to the left, and H sends me on the loops.

Now the solution is that we need to go quantum. Dynkin diagrams classify all
finite dimensional semisimple Lie algebras. In fact, they give us a general presen-
tation in terms of (aij), the Cartan matrices, and di the edge count.

For q ∈ C× we will deform the universal enveloping algebra to get a new algebra
over C, Uq (g). The adjoint action of the Ei on Ej becomes

(14)

|ai,j |+1∑
r=0

(−1)
r

(
|aij |+ 1

r

)
E

|aij |+1−r
i EjE

r
i

and likewise for the Fi. The relation [Hi, Ei] = aijEj becomes

(15) HiEj = Ei (Hi + aijI) .

The point here is that we want to identify the Hi’s as functionals on the weights,
and read the above as saying that

(16) HiEj = Eiτj (Hi)

where τj sends α to Hiα+ αj .
Now introduce quantum integers:

(17) [n]q =
qn − q−n

q − q−1
= q−n+1 + q−n+3 + . . .+ qn−3 + qn−1 .

Then define the quantum factorial to be

(18) [nq]! = [n]q . . . [1]q

and the quantum binomial coefficient to be:

(19)

[
n
k

]
q

=
[n]q

[k]q [n− k]q
.

Then this gives us all of the ingredients to fill the dictionary table 1.
Now this is still a Hopf algebra. In particular,

∆ : Uqg⊗ Uqg⊗ Uqg s : Uqg → Uqg ϵ : Uqg → C(20)

∆ (Ki) = Ki ⊗Ki s (Ki) = K−1
i s (Fi) = −KiFi(21)

∆ (Ei) = Ei ⊗Ki + 1⊗ Ei s (Ei) = −EiK
−1
i ϵ (Ei) = 0(22)

∆ (Fi) = Fi ⊗ 1 +Ki s (Fi) = −KiFi ϵ (Fi) = 0 .(23)
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Table 1. The dictionary between Morse homology and Floer homology.

Classical g Quantum Uq (g)

Generators Ei, Fi, Hi. Ei, Fi, Ki = qdiHi , K−1
i

[Hi,Hj ] = 0 ,
[Hi, Ei] = aijEj ,
[Hi, Fi] = −aijFj ,
[Hi, Fi] = δijHi

KiKj = KjKi

KiEjK
−1
i = qdiaijEj

KiFjK
−1
i = q−diaijFj

ad (Ei)
|aij |+1

(Ej) = 0 ,

ad (Fi)
|aij |+1

(Fj) = 0
same but with quantum numbers

Example 2. For g = sl2, Uqsl2 admits analogous representations to the Lns. Now
these look like

(24)

• • • • •

q−4

[1]q

q−2

[2]q

[4]q

q0

[3]q

[3]q

q2

[4]q

[2]q

q4

[1]q

where F still moves to the left, E moves to the right, and H brings us on the loops.

In the classical picture, we look at the weight lattice Λ and we pick a dominant
weight λ ∈ Λ+ and take the quotient of the associated Verma module

(25) Mλ = Ug⊗Ub Cλ

where b = Span {Ei,Hi}, to get Lλ.
In the quantum picture, we can still define Mλ = Uqg⊗Uqb Cλ, but its quotient

may no longer all be irreducible. Call these quotient Weyl modules Wλ. These lead
to the study of tilting modules.


