GETTING STARTED WITH ETgX AND VIM

JACKSON VAN DYKE

CONTENTS

1. Introduction

2. Setting up ITEX

2.1. Installation

2.2. Macros

3. Setting up Vim

3.1. Installation

3.2, Writing a vimrc

3.3. Packages for Vim
3.4. Using Vim

3.5. Opening a document
3.6. Modes

3.7. Remapping your caps lock key
4. Displaying the PDF
4.1. Using Skim

4.2. Using Zathura

4.3. Making a choice

5. Writing a document

o R R R W W W WD NN DN

I wrote this document to archive the process of setting up my workflow for
taking notes and writing papers in case I needed to reference it for some reason in
the future. I figured there’s no reason not to share it, in case someone might find it
useful. This is by no means exhaustive, and is meant as a jumping-off-point. The
actual documentation of the various software/packages should be the reader’s next
stop. The .tex file for this document is available at this repository.

If you just want my style files, these can found at this repository, and if you just
want my vimrc, this can be found at this repository.

This guide is written primarily for a mac, though most of what is written here
would work fine for any Unix machine.

1. INTRODUCTION

ETEX is a tool used to prepare documents. It is the standard such tool in the
mathematical community, and many other academic communities. One appealing
aspect of WTEX is that the .tex document comes in the form of a plaintext docu-
ment which is “modular”. One sense in which this is true is that it can be compiled

Date: August 11, 2022.

https://github.com/jacksontvd/getting_started_latex_vim
https://github.com/jacksontvd/tex
https://github.com/jacksontvd/vim

2 JACKSON VAN DYKE

using any ‘document class’. This means that if you decide to write a paper hoping
to submit it to one journal which wants the paper to look one way, and later decide
to submit the paper to another journal which wants it to look another way, the
structure of the actual pdf document can be changed immediately. This is just one
example of the many things which make I#TEX so great. For more information and
a much better technical introduction to how this thing actually works, I suggest
the The Texbook, by D.E. Knuth.

Vim is a text editor which uses keystrokes (rather than menus and the cursor)
to navigate and edit text documents. In other words you use combinations of keys
on your keyboard to toggle through lines, copy, paste, find, etc. It can be used
from a command line interface or as a standalone applications in a graphical user
interface. So you can edit documents using Vim directly in the terminal or by
opening the Vim application as you would open Microsoft Word. The fact that it
uses keystrokes makes it hard to learn, but much faster once you do. It is also highly
customizable with what it called a vimrc. We will learn about this in section 3.2.

2. SETTING UP ETEX

2.1. Installation. Download from, and follow instructions from this webpage.

2.2. Macros. KTEX macros should be thought of as custom ‘settings’. The follow-
ing is a basic example of this:

\newcommand{\RR}{\mathbb{R}}

This means that whenever one types \RR it is interpreted as \mathbb{R}. All such
rules are collected in what is called a style file (a file with ending .sty) which lives
in the directory

~/Library/texmf/tex/latex/

or the directory of whatever file you are editing. This is also where class files live.
See this repository for mine.

3. SETTING UP VIM

3.1. Installation. Vim should come with your machine, but to make sure you have
the latest version, or to install it for the first time, it is easiest to use homebrew.
L.e. open your terminal and run the following command:

brew install vim

3.2. Writing a vimrc. The content of a vimrc file should be thought of as custom
settings for Vim. When starting out it is tempting to copy and past someone else’s.
If you would like to do this, mine can be found at this repository. I would however
suggest building up your own gradually, adding things as you need them. Google
is helpful for this. By default your vimrc just lives in /User/ but I prefer to have
it in ~/.vim so it is easier to push to my backup repository.

3.3. Packages for Vim. There are countless packages available for Vim. I mention
the main ones I use. Consult the documentation directly for more information.

(1) Pathogen: In short, this package creates a directory such that whenever
a package is placed in it, the package is loaded. There are alternatives to
this.

https://www-cs-faculty.stanford.edu/~knuth/
http://www.tug.org/mactex/
https://github.com/jacksontvd/tex/tree/master/tex/latex
https://github.com/jacksontvd/vim
https://github.com/jacksontvd/vim

GETTING STARTED WITH IKTgX AND VIM 3

(2) Nerd commenter: This package lets one comment lines quickly. It detects
the document type so one doesn’t have to keep track of which symbols com-
ment lines in which document type, and instead one can have a designated
keystroke combination which comments lines in any language.

(3) Spell: Offers spell checking, and spell correction.

(4) Ulti-Snips: Snippets are far too complicated to get into in depth, but they
basically allow you to type an abbreviation for something, hit a special
key (by default <tab>) and this abbreviation will expand to the larger
predesignated thing. As one can imagine, this is extremely useful for typing
things quickly. Especially in I TEX. To write and customize snippets:
:UltiSnipsEdit texmath

(5) Vimtex: This is, in my opinion, the best package supporting writing KTEX
with Vim. The alternative, Vim-LaTeX, is much heavier and isn’t as flexi-
ble. In combination with Ulti-Snips, vimtex can do much more.

(6) Vim-tex-fold: Supports folding of a ITEX document in Vim. This means
that, for example, sections will be collapsed to a single line on ones display
when they are not being edited.

3.4. Using Vim. I won’t even attempt to give a full overview of how to use vim.
There are many better sources online. I will give the bare minimum.

3.5. Opening a document. Open your terminal and navigate to the directory
containing the document you want to edit. Call it example.tex. Run the following
command:

vim example.tex

This will open the document in the terminal window.
3.6. Modes.

3.6.1. Normal mode. Vim can be in different “modes”. The default being called
“normal mode”. In this mode you can navigate the document, delete things (char-
acters, words, lines, etcetera), copy (called “yank” for vim), paste, etcetera. To
move the cursor one symbol to the right, use the ‘1’ key; to move the cursor one
symbol to the left, use the ‘h’ key; to move one line down, use the ‘j’ key; and to
move one line up, use the ‘k’ key.

3.6.2. Insert mode. To actually type text, you need to enter the “insert mode” by

pressing the ‘i’ key. Once in this mode the h,j.k, and | keys no longer navigate since

they now need to perform their original function of entering the letters h,j,k, and 1.
To get back to normal mode, press the escape key.

3.7. Remapping your caps lock key. When using vim one presses the escape
key constantly to return to normal mode. The result is the famous “vim pinkey”.
To avoid stretching for the escape button so much, some people (including me)
remap the caps lock key to be a second escape key instead.
To do this on mac:

(1) go to system preferences,

(2) click on “keyboard”,
(3) click on the “keyboard” tab,
(4) click on “modifier keys” in the bottom right, and

4 JACKSON VAN DYKE

(5) choose “escape” from the drop-down menu next to “caps lock”.

4. DISPLAYING THE PDF

When editing notes quickly, it is useful to let the compiler run every time the
document is saved. This is the default behavior of vim-tex. This means the PDF
viewer one is using must change as the file changes. Most PDF viewers do not
support this. In my opinion there are only two effective options for PDF viewers
on a mac that support live updating: Skim and Zathura.

4.1. Using Skim. To install Skim enter the following into the command line:
brew cask install skim

4.2. Using Zathura. To tap, install, and link Zathura/the required plugins enter
the following into the command line:

brew tap zegervdv/zathura

brew install zathura --with-synctex

brew install zathura-pdf-poppler

brew install xdotool

mkdir -p $(brew --prefix zathura)/lib/zathura

1n -s $(brew —-prefix zathura-pdf-poppler)/libpdf-poppler.dylib
$(brew --prefix zathura)/lib/zathura/libpdf-poppler.dylib

4.3. Making a choice. If using vim-tex, once you have determined which viewer
you would like to use, add one of the following lines to your vimrc:

let g:vimtex_view_method=‘zathura’
let g:vimtex_view_method=‘skim’

and the pdf file will automatically open in your chosen viewer when it is compiled.
Use \11 to compile a document in vim-tex. See the documentation of vim-tex for
more information on PDF viewer support and compiling documents.

5. WRITING A DOCUMENT

This section assumes my vimrc and IXTEXmacros are being used. The preamble
and document environment (specifically for taking notes) is triggered by

notes<tab>

with Ulti-Snips placeholders (toggled through with <ctrl>j>) at all of the places
where things should be added.
To navigate to line 10:

10gg
To find ”foo”:
/foo
To begin compiling;:
\11
To suggest a completion of a word:
<ctrl>n
To guess the correct spelling of the last misspelled word:
<ctrl>p
To add a word to the dictionary:

GETTING STARTED WITH IKTgX AND VIM

zg

To remove a word from the dictionary:
zug

To reset folds:
zX

To fold current fold:
za

To unfold everything:
zR

Toggle whether current line is commented:
\c<space>

Build an environment out of whatever is in the current line:
<ctrl>b

Move one tab to the right:
gt

Move one tab to the left:
gT

To write and customize snippets:
:UltiSnipsEdit texmath

To find all instances of foo, and replace them with bar:
:%s/foo/bar/g

To find all instances of foo and run [command]:
g/foo/ [command]

	1. Introduction
	2. Setting up LaTeX
	2.1. Installation
	2.2. Macros

	3. Setting up Vim
	3.1. Installation
	3.2. Writing a vimrc
	3.3. Packages for Vim
	3.4. Using Vim
	3.5. Opening a document
	3.6. Modes
	3.7. Remapping your caps lock key

	4. Displaying the PDF
	4.1. Using Skim
	4.2. Using Zathura
	4.3. Making a choice

	5. Writing a document

