Algebraic Topology

Lectures by: Professor Cameron Gordon

Fall 2019; Notes by: Jackson Van Dyke; All errors introduced are my own.

Contents

Introduction 4

1. Introduction 4
2. A bit more specific 5
Chapter 1. Homotopy 8
Chapter 2. The fundamental group 14
3. Fundamental group of S^{1} 16
4. Induced homomorphisms 19
5. Dependence of π_{1} on the basepoint 21
6. Fundamental theorem of algebra 23
7. Cartesian products 24
8. Retractions 24
Chapter 3. Van Kampen's theorem 25
9. Basic combinatorial group theory 25
10. Statement of the theorem 30
11. Cell complexes 31
12. Knot groups 36
Chapter 4. Covering spaces 41
13. Covering transformations 48
14. Existence of covering spaces 54
15. Coverings of cell complexes 57
16. Free groups and 1-complexes 58
17. Surfaces 61
Chapter 5. Homology 64
18. Elementary computations 67
19. Homology exact sequence of a pair 69
20. Excision 75
Chapter 6. Computations and applications 81
21. Degree 82
22. Homology of cell complexes and the Euler characteristic 84
23. Separation properties of cells and spheres in spheres 88
24. Lefschetz fixed point theorem 91
25. Transfer homomorphism 92
26. Borsuk-Ulam theorem 94
27. Real division algebras 96

Introduction

Hatcher is the reference for the course. We won't follow too closely.

1. Introduction

Lecture 1; August 29, 2019

Today will be an introductory account of what algebraic topology actually is. In topology the objects of interest are topological spaces where the natural equivalence relation is a homeomorphism, i.e. a bijection $f: X \rightarrow Y$ such that f and f^{-1} are continuous. Somehow the goal is classifying topological spaces up to homeomorphism, so the basic question is somehow:

Question 1. Given topological spaces X and Y, is $X \cong Y$?
In these terms, algebraic topology is somehow a way of translating this into an algebraic question. More specifically, algebraic topology is the construction and study of functors from Top to some categories of algebraic objects (e.g. groups ${ }^{0.1}$, abelian groups, vector spaces, rings, modules, ...). Recall this means we have a map from topological spaces $X \rightarrow A(X)$ for some algebraic object $A(X)$. In addition, for every $f: X \rightarrow Y$ we get a morphism $f_{*}: A(X) \rightarrow A(Y)$. Then these have to satisfy the conditions that

$$
\begin{equation*}
(g f)_{*}=g_{*} f_{*}, \quad(i d)_{*}=\mathrm{id} \tag{0.1}
\end{equation*}
$$

EXERCISE 1.1. Show that $X \cong Y$ implies that $A(X) \cong A(Y)$.
Example 0.1 (Fundamental group). Let X be a topological space. We will construct a group $\pi_{1}(X)$.

Example 0.2 (Higher homotopy groups). There is also something, $\pi_{n}(X)$, called the nth homotopy group. As it turns out for $n \geq 2$ this is abelian.

Example 0.3 (Singular homology). We will define abelian groups $H_{n}(X)$ (for $n \geq 0$) called the nth singular homology group.

We will also define real vector spaces $H_{n}(X ; \mathbb{R})$ for $n \geq 0$ which are the nth singular homology with coefficients in \mathbb{R}.

EXAMPle 0.4 (Cohomology). We will also have the nth (singular) cohomology rings $H^{*}(X)$. These is actually a graded ring.

Warning 0.1. Above we actually should have said we're dealing with what are covariant functors, but in this case we are actually dealing with a contravariant functor. This just means we have:

$$
\begin{equation*}
f: X \rightarrow Y \sim f^{*}: H^{*}(Y) \rightarrow H^{*}(X) \tag{0.2}
\end{equation*}
$$

[^0]REmark 0.1. The point here is that problems about topological spaces and maps are "continuous" and "hard". But on the algebraic side these problems become somehow "discrete" and "easy".

2. A bit more specific

Recall in \mathbb{R}^{n} we define:

$$
\begin{equation*}
D^{n}=\left\{x \in \mathbb{R}^{n} \mid\|x\| \leq 1\right\} \quad S^{n-1}=\left\{x \in \mathbb{R}^{n} \mid\|x\|=1\right\} \tag{0.3}
\end{equation*}
$$

Example 0.5 . Two examples of surfaces are S^{2} and $T^{2}=S^{1} \times S^{1}$. They clearly aren't homeomorphic, but how are we supposed to prove such a fact? We will see that $\pi_{1}\left(S^{2}\right)=1$ whereas $\pi^{1}\left(T^{2}\right)=\mathbb{Z} \times \mathbb{Z}$. Since these are not isomorphic, the spaces cannot be homeomorphic.

2.1. Retraction. Let $A \subset X$ be a space and a subspace.

Definition 0.1. A retraction from X to A is a map $r: X \rightarrow A$ such that $\left.r\right|_{A}=\mathrm{id}_{A}$, i.e. the following diagram commutes:

Note that r is certainly surjective since id is.
Example 0.6. If X is any nonempty space, $x_{0} \in X$, define $r: X \rightarrow\left\{x_{0}\right\}$ as $r(x)=x_{0}$. So every nonempty space always retract onto a point.

Example 0.7. Think of $A \subset A \times B$ by fixing some $b_{0} \in B$ and sending

$$
\begin{equation*}
A \longleftrightarrow B \tag{0.5}
\end{equation*}
$$

$$
a \longmapsto\left(a, b_{0}\right)
$$

Then $r: A \rightarrow B \rightarrow$ defined by $r(a, b)=a$ is a retraction.
Recall that for $f: X \rightarrow Y$ for X path connected, then $f(X)$ is also path connected. Recall that $D^{1}=[-1,1] \subset \mathbb{R}$ is path connected, whereas $S^{0}=\{ \pm 1\}$ is not. Therefore there cannot be a retraction $D^{1} \rightarrow S^{0}$. This is a basic fact, but it motivates a more general statement which is not so clear.

Suppose there exists a retraction $r: D^{1} \rightarrow S^{0}$. Then this means the following diagram commutes:

If we apply the functor H_{0}, we will see that

$$
\begin{equation*}
H_{0}(X) \cong \bigoplus_{\text {path components of } X} \mathbb{Z} \tag{0.7}
\end{equation*}
$$

So if we apply H_{0} to the diagram we get:

but this is clearly impossible.
In the same way we will see the much harder fact:
FACT 1 (Brouwer). There does not exist a retraction $D^{n} \rightarrow S^{n-1}$ (for $n \geq 2$).
We will see this by applying H_{n-1}. The idea is that

$$
\begin{equation*}
H_{n-1}\left(D^{n}\right)=0 \quad H_{n-1}\left(S^{n-1}\right)=\mathbb{Z} \tag{0.9}
\end{equation*}
$$

which means we would have the diagram:

which is a contradiction.
This turns out to imply the famous:
ThEOREM 0.1 (Brouwer fixed point theorem). Every map $f: D^{n} \rightarrow D^{n}(n \geq 1)$ has a fixed point (i.e. a point $x \in D^{n}$ such that $f(x)=x$). In this case one says that D^{n} has the fixed point property (FPP).

Proof. Suppose there exists an $f: D^{n} \rightarrow D^{n}$ such that $\forall x \in D^{n} f(x) \neq x$. Now draw a straight line from x to $f(x)$ and continue it to the boundary S^{n-1}. Call this point $g(x)$. Then this defines a map $g: D^{n} \rightarrow S^{n-1} . g$ is continuous and $\left.g\right|_{S^{n-1}}=\mathrm{id}$. Therefore g is a retraction $D^{n} \rightarrow S^{n-1}$ which we saw cannot exist.
2.2. Dimension. We know \mathbb{R}^{n} somehow has dimension n. But what does this really mean? The intuition is that \mathbb{R}^{2} somehow has more points than \mathbb{R}. But then in 1877 Cantor proved that there is in fact a bijection $\mathbb{R} \rightarrow \mathbb{R}^{2}$. But this is highly non-continuous, so this tells us continuity should have something to do with it. But then in 1890 Peano showed that there exists a continuous surjection $\mathbb{R} \rightarrow \mathbb{R}^{2}$ as well. In 1910, using homology, Brouwer proved: ${ }^{0.2}$

Theorem 0.2. For $m<n \nexists$ continuous injection $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
We will prove this. A corollary of this is the famous invariance of dimension. I.e. $\mathbb{R}^{m} \cong \mathbb{R}^{n}$ iff $m=n$. The proof uses separation properties of the $n-1$-sphere in \mathbb{R}^{n}, thus in turn it uses H_{*}.

Exercise 2.1. Find an easy proof for $m=1$.
THEOREM 0.3 (Jordan curve theorem). For a subset $C \subset \mathbb{R}^{2}$ such that $C \simeq S^{1}$ then $\mathbb{R}^{2} \backslash C$ has exactly 2 components A and B. In addition $C=\operatorname{Fr}(A)=\operatorname{Fr}(B)$. (Recall the frontier is defined as $\operatorname{Fr}(X)=\bar{X} \cap \overline{(Y \backslash X)}$ for any $X \subset Y$.)

[^1]Theorem 0.4 (Schönflies). Let A, B, and C be as above and assume A is a bounded component of $\mathbb{R}^{2} \backslash X$. Then $\bar{A} \cong D^{2}$.

The higher dimensional analog of JCT is true (Brouwer). The proof will use H_{*}. The generalization is that for $\Sigma \subset \mathbb{R}^{n}$ then $\Sigma \cong S^{n-1}$. As it turns out the higher dimensional analog of the Schönflies theorem is false. The counterexample is the famous Alexander horned space. I.e. there exists $\Sigma \subset \mathbb{R}^{3}, \Sigma \cong S^{2} ; A$ and bounded component of $\mathbb{R}^{2} \backslash \Sigma$ and $\bar{A} \not \approx D^{3}$.

Recall
Theorem 0.5 (Heine-Borel). $X \subset \mathbb{R}^{n}$ compact is equivalent to X being closed and bounded.

So consider $\emptyset \neq X \subset \mathbb{R}$ compact and connected. This is equivalent to being an interval $X=[a, b](a \leq b)$. In \mathbb{R}^{2} things get much worse. In particular there exists a compact, connected subset such X that $\mathbb{R}^{2} \backslash X$ has exactly three components A, B, and C, and in particular every neighborhood of every point in X meets all three components. This is known as the 'lakes of Wada'. We start with an island with two lakes, and then start digging canals which somehow get closer and closer to the lakes. In the end every point of what is left is arbitrarily close to all three lakes.

Question 2 (Open question). Let X be a compact connected subset of \mathbb{R}^{2} such that $\mathbb{R}^{2} \backslash X$ is connected. Does X have the fixed point property?

CHAPTER 1

Homotopy

Let $I=[0,1]$.
Definition 1.1. Let $f, g: X \rightarrow Y$. Say f is homotopic to g (and write $f \simeq g$) iff there exists a map $F: X \times I \rightarrow Y$ such that for all $x \in X$

$$
\begin{equation*}
F(x, 0)=f(x) \quad F(x, 1)=g(x) \tag{1.1}
\end{equation*}
$$

Define $F_{t}: X \rightarrow Y$ by $F_{t}(x)=F(x, t)$. Then F_{t} is a continuous 1-parameter family of maps $X \rightarrow Y$ such that $F_{0}=f$ and $F_{1}=g$.

Figure 1.

Example 1.1. Let $F: S^{n-1} \times I \rightarrow \mathbb{R}^{n}$ be defined by $F(x, t)=(1-t) x$. Then F_{0} is the inclusion inclusion $S^{n-1} \hookrightarrow \mathbb{R}^{n}$ and F_{1} is the constant map $S^{n-1} \rightarrow$ origin.

Lecture 2;
September 3, 2019
Lemma 1.1. Homotopy is an equivalence relation on the set of all maps $X \rightarrow Y$.
Proof. (i) $f \simeq f$: Let F be the constant homotopy, i.e. $F(x, y)=f(x)$ for all $t \in I$ and for all $x \in X$.
(ii) $f \simeq g \Longrightarrow g \simeq f$: Suppose $f \simeq_{F} g$. Let \bar{F} be the reverse homotopy $\bar{F}(x, t)=$ $F(x, 1-t)$. Then $g \simeq_{\bar{F}} f$.
(iii) $f \simeq g, g \simeq h \Longrightarrow f \simeq h$: Define $H: X \times I \rightarrow Y$ by

$$
H(x, t)= \begin{cases}F(x, 2 t) & 0 \leq t \leq 1 / 2 \tag{1.2}\\ G(x, 2 t-1) & 1 / 2 \leq t \leq 1\end{cases}
$$

Then by exercise 2 on homework $1 H$ is continuous and therefore $f \simeq_{H} h$.

Lemma 1.2 (compositions of homotopic maps are homotopic). If $f \simeq f^{\prime}: X \rightarrow Y$, $g \simeq g^{\prime}: Y \rightarrow Z$, then $g f \simeq g^{\prime} f^{\prime}: X \rightarrow Z$.

Proof. Suppose $f \simeq_{F} f^{\prime}, g \simeq_{G} g^{\prime}$. Then the composition

$$
\begin{equation*}
X \times I \xrightarrow{F} Y \xrightarrow{g} Z \tag{1.3}
\end{equation*}
$$

is a homotopy from $g f$ to $g f^{\prime}$. Then the composition

$$
\begin{equation*}
X \times I \xrightarrow{f^{\prime} \times \mathrm{id}} Y \times I \xrightarrow{G} Z \tag{1.4}
\end{equation*}
$$

is a homotopy from $g f^{\prime}$ to $g^{\prime} f^{\prime}$. By transitivity of equivalence relations from Lemma 1.1.
Let $[X, Y]$ be the set of homotopy classes of maps from $X \rightarrow Y$.
Remark 1.1. We should probably assume $X \neq \emptyset \neq Y$.
Lemma 1.2 then tells us that composition defines a function

$$
\begin{equation*}
[X, Y] \times[Y, Z] \rightarrow[X, Z] \tag{1.5}
\end{equation*}
$$

0.1. Homotopy equivalence.

Definition 1.2. X is homotopy equivalent to Y (or of the same homotopy type as Y) written $X \simeq Y$ if there exist maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $g f \simeq \operatorname{id}_{X}$ and $f g \simeq \operatorname{id}_{Y}$. Then we say f is a homotopy equivalence and g is a homotopy inverse of f.

EXAMPLE 1.2. A homeomorphism is a homotopy equivalence, but in general this is much weaker.

Lemma 1.3. Homotopy equivalence is an equivalence relation.
Proof. \quad (i) $X \simeq X: f=g=\operatorname{id}_{X}$, Lemma 1.1.
(ii) $X \simeq Y \Longrightarrow Y \simeq X$: by definition.
(iii) $X \simeq Y, Y \simeq Z \Longrightarrow X \simeq Z$: So we have

$$
\begin{equation*}
X \underset{f^{\prime}}{\stackrel{f}{\gtrless}} Y \tag{1.6}
\end{equation*}
$$

where $f^{\prime} f \simeq \operatorname{id}_{X}, f f^{\prime} \simeq \mathrm{id}_{Y}$ and similarly

$$
\begin{equation*}
Y \underset{g^{\prime}}{\stackrel{g}{\gtrless}} Z \tag{1.7}
\end{equation*}
$$

where $g^{\prime} g \simeq \mathrm{id}_{X}, g g^{\prime} \simeq \mathrm{id}_{Y}$. Then we compose:

$$
\begin{equation*}
X \underset{f^{\prime} o^{\prime}}{\stackrel{g f}{\gtrless}} Y \tag{1.8}
\end{equation*}
$$

and we have that

$$
\left(f^{\prime} g^{\prime}\right) g f=f^{\prime}\left(g^{\prime} g\right) f \simeq f^{\prime} \operatorname{id}_{Y} f=f^{\prime} f \simeq \operatorname{id}_{X}
$$

(from Lemma 1.2) and similarly

$$
(g f)\left(f^{\prime} g^{\prime}\right) \simeq \operatorname{id}_{X}
$$

so $g f: X \rightarrow Z$ is a homotopy equivalence.

Lemma 1.4. $X \simeq X^{\prime}, Y \simeq Y^{\prime} \Longrightarrow X \times Y \simeq X^{\prime} \times Y^{\prime}$.
Proof. (exercise)

Remark 1.2. Many functors in algebraic topology (e.g. π_{1}, H_{n}, \ldots) have the property that $f \simeq g \Longrightarrow f_{*}=g_{*}$. In other words they factor through the homotopy category where the objects are topological spaces and morphisms are just homotopy classes of maps:

$$
f: X \rightarrow Y \longrightarrow f_{*}: A(X) \rightarrow A(Y)
$$

Definition 1.3. Let $A \subset X, f, g: X \rightarrow Y$ such that $\left.f\right|_{A}=\left.g\right|_{A}$. Then $f \simeq g$ (rel. A) iff there exists $f \simeq_{F} g$ such that

$$
\begin{equation*}
\left.F_{t}\right|_{A}=\left.f\right|_{A}\left(=\left.g\right|_{A}\right) \tag{1.12}
\end{equation*}
$$

for all $t \in I$.
Homotopy equivalence rel. A is an equivalence relation on the set

$$
\begin{equation*}
\left\{f: X \rightarrow Y|f|_{A} \text { is a fixed map. }\right\} \tag{1.13}
\end{equation*}
$$

Let $i: A \rightarrow X$ be the inclusion. Then i being a homotopy equivalence means there exists some $f: X \rightarrow A$ such that
(i) if $\simeq \operatorname{id}_{X}$, and
(ii) $f i \simeq \operatorname{id}_{A}$.

Now we can strengthen this in multiple ways.
DEFINITION 1.4. If we strengthen (ii) to say $f i=\operatorname{id}_{A}$ (i.e. f is a retraction) then $\operatorname{id}_{X} \simeq_{F}$ if is a deformation retraction of X onto A. In other words we have

$$
\begin{equation*}
F: X \times I \rightarrow X \tag{1.14}
\end{equation*}
$$

such that $F_{0}=\operatorname{id}_{X}, F_{1}(x) \in A$ for all $x \in A$, and $\left.F_{1}\right|_{A}=\operatorname{id}_{A}\left(\right.$ since $\left.F_{1}=i f\right)$.
DEFINITION 1.5. If in addition we strengthen (i) to say that $\mathrm{id}_{X} \simeq_{F}$ if (rel A) then F is a strong deformation retraction (of X onto A). In other words we have $F: X \times I \rightarrow X$ such that

$$
\begin{equation*}
F_{0}=\operatorname{id}_{X} \quad \forall x \in X, F_{1}(x) \in A \quad \forall t \in I, \forall a \in A, F_{t}(a)=a \tag{1.15}
\end{equation*}
$$

The idea here is that X strong deformation retracts to A implies X deformation retracts to A which implies $i: A \hookrightarrow X$ is a homotopy equivalence. As it will turn out, both of these implications are strict.

Example 1.3. $X \times\{0\}$ is a strong deformation retract of $X \times I$:

$$
\begin{equation*}
F:(X \times I) \times I \rightarrow X \times I \tag{1.16}
\end{equation*}
$$

where $F((x, s), t)=(x,(1-t) s)$.
Example 1.4. $\mathbb{R}^{n} \backslash\{0\}$ strong deformation retracts to S^{n-1}.
Example 1.5. $A=S^{1} \times[-1,1]$ strong deformation retracts to $S^{1} \times\{0\}$. A Möbius band B also strong deformation retracts to S^{1}. Therefore $A \simeq B$.

Example 1.6. Let X be a twice punctured disk. Then it is sort of clear that this strong deformation retracts to
(i) the boundary along with one arc passing between the punctures,
(ii) the wedge of two circles, and
(iii) two circles connected by an interval.

This means these three are all homotopy equivalent.
EXAMPle 1.7. Consider a once-punctured torus $X=T^{2} \backslash \operatorname{int}\left(D^{2}\right)$. This strong deformation retracts to the wedge of two circles. This tells us that the once punctured torus is actually homotopy equivalent to the disk with two punctures.

These examples show that homotopy equivalence does not imply homeomorphism, even for surfaces with boundary. We can immediately see these examples are not homeomorphic because there's no way for the boundaries to be mapped to one another.
0.2. Manifolds. Topological spaces can be very wild, but manifolds are usually quite nice.

Definition 1.6. An n-dimensional manifold is a Hausdorff, second countable space M such that every $x \in M$ has a neighborhood homeomorphic to \mathbb{R}^{n}.

EXAMPLE 1.8. $\mathbb{R}^{n}, S^{n}, T^{n}=\underbrace{S^{1} \times \ldots \times S^{1}}_{n}$.
Definition 1.7. A manifold is closed iff it is compact.
Definition 1.8. A surface is a closed 2-manifold.
Example 1.9. We have all of the two-sided or orientable surfaces $\left(S^{2}, T^{2}, \ldots\right)$ and then non orientable ones like \mathbb{P}^{2} and the Klein bottle. As it turns out this is a complete list up to homeomorphism.

For any two spaces $X \cong Y$ implies $X \simeq Y$. As we have seen, the converse isn't even true for surfaces with boundary. But for closed manifolds, there are many interesting cases where it is true:
(1) For M, M^{\prime} closed surfaces, $M \simeq M^{\prime} \Longrightarrow M \cong M^{\prime}$.
(2) For M an n-manifold, $M \simeq S^{n} \Longrightarrow M \cong S^{n}$. (Generalized Poincaré conjecture)

For $n=0,1,2$ this is not so bad. For $n \geq 5$, Connell and Newman independently proved it. The next step was proving this for $n=4$. This was proved by Freedman. Finally for $n=3$ Perelman proved this. The smooth 4 -dimensional version is still open. I.e. the statement for diffeomorphism.

REmark 1.3. Poincaré originally posed this conjecture as saying that having the same homology as S^{n} was sufficient. But he discovered a counterexample, now called the Poincaré homology sphere. This shares homology with S^{3} but has different fundamental group. This is in fact why he invented the fundamental group.

Definition 1.9. $f: X \rightarrow Y$ is a constant map if there is some $y_{0} \in Y$ such that for all $x \in X f(x)=y_{0}$. We write $f=c_{y_{0}}$.

Definition 1.10. A map $f: X \rightarrow Y$ is null-homotopic iff $f \simeq$ a constant map.
Definition 1.11. X is contractible if id_{X} is null-homotopic. I.e. there exists some $x_{0} \in X$ such that X deformation retracts to x_{0}.

Example 1.10. (1) Any nonempty convex ${ }^{1.1}$ subspace of \mathbb{R}^{n} is contractible. Choose an arbitrary point $x_{0} \in X$. Define $F: X \times I \rightarrow X$ by

$$
\begin{equation*}
F(x, t)=(1-t) x+t x_{0} . \tag{1.17}
\end{equation*}
$$

[^2]Then $\operatorname{id}_{X} \simeq_{F} c_{x_{0}}$. In fact this is a strong deformation retraction. Sometimes you can do this for some point but not all, and for some you can't do it for any points.
(2) S^{1} is not contractible.

Lecture 3;
September 5, 2019

Lemma 1.5. For a topological space X TFAE:
(1) X is contractible,
(2) $\forall x_{0} \in X, X$ deformation retracts to $\left\{x_{0}\right\}$,
(3) $X \simeq\{p t\}$,
(4) $\forall Y$, any two maps $Y \rightarrow X$ are homotopic.
(5) $\forall Y$, any map $X \rightarrow Y$ is null-homotopic.

Proof. (1) $\Longrightarrow(3):(1)$ is equivalent to saying that X deformation retracts to a point, so the inclusion map is certainly a homotopy equivalence.
$(3) \Longrightarrow(4)$: Let $f: X \rightarrow\{z\}$ be a homotopy equivalence. By homework 1 exercise 3 , we get an induced function:

$$
\begin{equation*}
f_{*}:[Y, X] \rightarrow[Y,\{z\}] \tag{1.18}
\end{equation*}
$$

but there is only one map in the target set, so clearly there is only one homotopy class of maps $Y \rightarrow\{z\}$.
$(4) \Longrightarrow(2)$: Take $Y=X$, and take any $x_{0} \in X$. This means $\operatorname{id}_{X} \simeq c_{x_{0}}$, but this is exactly saying that X deformation retracts to x_{0}.
$(2) \Longrightarrow(5):$ Let $f: X \rightarrow Y$ and $x_{0} \in X$. Then (2) implies $\operatorname{id}_{X} \simeq_{F} c_{x_{0}}$. Then

$$
\begin{equation*}
f \circ \operatorname{id}_{X} \simeq_{f \circ F} f \circ c_{x_{0}} \tag{1.19}
\end{equation*}
$$

i.e. f is nullhomotopic.
$(5) \Longrightarrow(1):$ Take $Y=X$.
Corollary 1.6. For X, Y contractible, then
(1) $X \simeq Y$,
(2) any map $X \rightarrow Y$ is a homotopy equivalence.

Proof. (1) If $X, Y \simeq\{\mathrm{pt}\}$ then $X \simeq Y$.
(2) Given $f: X \rightarrow Y$, let $g: Y \rightarrow X$ be any map. $g f: X \rightarrow X$, but X is contractible, so $g f \simeq \mathrm{id}_{X}$ by Lemma 1.5.

Now we will give an example of a deformation retraction which is not a strong deformation retraction. Recall X strong deformation retracts to A implies X deformation retracts to A which implies $i: A \hookrightarrow X$ is a homotopy equivalence, but none of these implications are reversible.

Example 1.11 (Comb space). Define the comb space $C \subset I \times I \subset \mathbb{R}^{2}$ to be:

$$
\begin{equation*}
C=\left\{(x, y) \in \mathbb{R}^{2} \mid y=0,0 \leq x \leq 1 ; 0 \leq y \leq 1, x=0,1 / n(n=1,2, \ldots)\right\} \tag{1.20}
\end{equation*}
$$

This should be pictured as a bunch of vertical intervals. ${ }^{1.2}$ The first thing to note is that C strong deformation retracts to $(0,0)$. Therefore C is contractible. C also deformation retracts to $(0,1)$. [More generally: if X deformation retracts to some $x_{0} \in X$ and X is path connected, then X deformation retracts to any $x \in X]$.

[^3]Claim 1.1. But it does not strong deformation retract to $(0,1)$.
Proof. Let $F: C \times I \rightarrow C$ be such a strong deformation retraction. Let U be some open disc of radius $1 / 2$ centered at $(0,1) . F^{-1}(U) \subset X \times I$ contains $(0,1) \times I$. Therefore for all $t \in I$ there exists some neighborhood V_{t} of $(0,1) \times\{t\}$ such that $V_{t} \subset F^{-1}(U)$. But $V_{t}=W_{t} \times Z_{t}$ for W_{t} some neighborhood of $(0,1)$ in C and Z_{t} some neighborhood of t in I. I is compact which means $\exists t_{1}, \ldots, t_{m}$ such that

$$
\begin{equation*}
\bigcup_{i=1}^{m} Z_{t_{i}}=I \tag{1.21}
\end{equation*}
$$

Let

$$
\begin{equation*}
W=\bigcap_{i=1}^{m} W_{t_{i}} . \tag{1.22}
\end{equation*}
$$

This is a neighborhood of $(0,1)$ in C, and $W \times I \subset F^{-1}(U)$. (This is sometimes called the tube lemma). Pick n such that $(1 / n, 1) \in W$. Then $F((1 / n, 1), t), 0 \leq t \leq 1$, is a path in U from $(1 / n, 1)$ to $(0,1)$ but there clearly isn't such a path since these two points are in different path components.

Corollary 1.7. Let $C \subset I^{2} \subset \mathbb{R}^{2}$ where C, I^{2} are both contractible. Then the inclusion $i: C \rightarrow I^{2}$ is a homotopy equivalence. But there does not exist a deformation retraction $I^{2} \rightarrow C$. In fact there is no retraction at all.

REmark 1.4. There exists a space X such that X is contractible (therefore $\{x\} \hookrightarrow X$ is a homotopy equivalence for all $x \in X$) but there does not exist a strong deformation retraction from X to any $x \in X$. (e.g. Hatcher chapter 0 , exercise $6(\mathrm{~b})$).
0.3. Fixed point property. A space X has the fixed point property (FPP) iff $\forall f$: $X \rightarrow X, \exists x \in X$ such that $f(x)=x . X$ being contractible does not imply X has the FPP (e.g. \mathbb{R}^{1}).

Question 3 (Borsuk). If X is compact and contractible does contractible imply FPP?

CHAPTER 2

The fundamental group

Definition 2.1. A path from x_{0} to x is a map $\sigma: I \rightarrow X$ such that $\sigma(0)=x_{0}$ and $\sigma(1)=x$.

Definition 2.2. Let σ be a path in X from x_{0} to x_{1}, and τ a path in X from x_{1} to x_{2}. Their concatenation $\sigma * \tau$ is a path from x_{0} to x_{2} given by:

$$
(\sigma * \tau)(s)= \begin{cases}\sigma(2 s) & 0 \leq s \leq 1 / 2 \tag{2.1}\\ \tau(2 s-1) & 1 / 2 \leq s \leq 1\end{cases}
$$

Definition 2.3. The homotopy class of σ is

$$
\begin{equation*}
[\sigma]=\left\{\sigma^{\prime} \mid \sigma^{\prime} \simeq \sigma(\operatorname{rel} \partial I)\right\} \tag{2.2}
\end{equation*}
$$

Lemma 2.1. If $[\sigma]=\left[\sigma^{\prime}\right]$ and $[\tau]=\left[\tau^{\prime}\right]$ where $\sigma(1)=\tau(0)$ then $[\sigma * \tau]=\left[\sigma^{\prime} * \tau^{\prime}\right]$.
Proof. If $\sigma \simeq_{F_{t}} \sigma^{\prime}$ and $\tau \simeq{ }_{G_{t}} \tau^{\prime}$ then $\sigma * \tau \simeq_{F_{t} * G_{t}} \sigma^{\prime} * \tau^{\prime}(\operatorname{rel} \partial I)$.
This means we can define the product of two homotopy classes to the be the homotopy class of the concatenation. This is well defined by the lemma.

Lemma 2.2 (Reparameterization). Let $u: I \rightarrow I$ be a map such that $\left.u\right|_{\partial I}=\mathrm{id}$. Then $u \simeq \operatorname{id}_{I}(\operatorname{rel} \partial I)$.

Proof. Define $F: I \times I \rightarrow I$ by $F(s, t)=t s+(1-t) u(s) . \quad F_{0}=u, F_{1}=\operatorname{id}_{I}$, $\left.F_{t}\right|_{\partial I}=\mathrm{id}$ for all $t \in I$.

Lemma 2.3 (Associativity). Let ρ, σ, τ be paths in X such that $\rho(1)=\sigma(0), \sigma(1)=\tau(0)$. Then

$$
\begin{equation*}
([\rho][\sigma])[\tau]=[\rho]([\sigma][\tau]) . \tag{2.3}
\end{equation*}
$$

Proof. Define $u: I \rightarrow I$ by

$$
u(s)= \begin{cases}2 s & 0 \leq s \leq 1 / 4 \tag{2.4}\\ s+1 / 4 & 1 / 4 \leq s \leq 1 / 2 \\ (s+1) / 2 & 1 / 2 \leq s \leq 1\end{cases}
$$

Then

$$
\begin{equation*}
(\rho *(\sigma * \tau)) u=(\rho * \sigma) * \tau \tag{2.5}
\end{equation*}
$$

but $u \simeq \operatorname{id}_{I}(\operatorname{rel} \partial I)$ so $(\rho *(\sigma * \tau))=(\rho * \sigma) * \tau(\operatorname{rel} \partial I)$
Let $c_{x_{0}}: I \rightarrow X$ be the constant path given by $c_{x_{0}}=x_{0}$ for all $s \in I$.

Lemma 2.4. For σ a path in X from x_{0} to x_{1} then

$$
\begin{equation*}
[\sigma]=[\sigma]\left[c_{x_{1}}\right]=\left[c_{x_{0}}\right][\sigma] \tag{2.6}
\end{equation*}
$$

Proof. Let $u: I \rightarrow I$ be

$$
u(s)= \begin{cases}2 s & 0 \leq s \leq 1 / 2 \tag{2.7}\\ 1 & 1 / 2 \leq s \leq 1\end{cases}
$$

Then $\sigma * c_{x_{1}}=\sigma * u$

$$
\begin{equation*}
[\sigma]=[\sigma]\left[c_{x_{1}}\right] \tag{2.8}
\end{equation*}
$$

by Lemma 2.2. The proof is the same for the other part.
If σ is a path from x_{0} to x_{1}, the reverse of σ is the path $\bar{\sigma}$ from x_{1} to x_{0} given by

$$
\begin{equation*}
\bar{\sigma}(s)=\sigma(1-s) \tag{2.9}
\end{equation*}
$$

Note that immediately we have $\overline{(\bar{\sigma})}=\sigma$.
Lemma 2.5. $[\sigma][\bar{\sigma}]=\left[c_{x_{0}}\right]$.
Proof. Define $F: I \times I \rightarrow X$ by

$$
F(s, t)= \begin{cases}\sigma(2 s t) & 0 \leq s \leq 1 / 2 \tag{2.10}\\ \sigma(2(1-s) t) & 1 / 2 \leq 2 \leq 1\end{cases}
$$

Note that $F_{0}=c_{x_{0}}$ and $F_{1}=\sigma * \bar{\sigma}$ so we are done.
A loop in a space X based at a point $x_{0} \in X$ is a path in X from x_{0} to x_{0}. If σ and τ are loops at x_{0} then this implies $\sigma * \tau$ is a loop at x_{0}. Let

Lecture 4;
September 10, 2019

$$
\begin{equation*}
\pi_{1}\left(X, x_{0}\right)=\left\{[\sigma] \mid \sigma \text { loop in } X \text { based at } x_{0}\right\} \tag{2.11}
\end{equation*}
$$

THEOREM 2.6. $\pi\left(X, x_{0}\right)$ is a group with respect to the operation $[\sigma][\tau]$; the fundamental group of X with basepoint x_{0}.

Proof. We proved associativity last time in Lemma 2.3 the identity is the constant map $\left[c_{x_{0}}\right]$ as shown in Lemma 2.4, and inverses are given by $[\sigma]^{-1}=[\bar{\sigma}]$ as shown in Lemma 2.5.

Example 2.1. Suppose X strong deformation retracts to some point x_{0}. This means there exists some homotopy $F: X \times I \rightarrow X$ such that $F_{0}=\operatorname{id}_{X}$ and $F_{1}(x)=x_{0}$ for all $x \in X$. Since it is a strong deformation retraction for all $t \in I$ we have $F_{t}\left(x_{0}\right)=x_{0}$. Now let $\sigma: I \rightarrow X$ be a loop based at x_{0}. Then $\sigma \simeq_{F_{t} \sigma} c_{x_{0}}(\operatorname{rel} \partial I)$. Therefore $[\sigma]=1$ and $\pi_{1}\left(X, x_{0}\right)=1$.

REmARK 2.1. We will actually prove a more general fact later, when we discuss change of basepoint.

Now we will finally have an example with nontrivial fundamental group. For all we know every space is contractible. ${ }^{2.1}$

[^4]

Figure 1. p mapping \mathbb{R} to S^{1}. Note the preimage of a $1 \in S^{1}$ looks like \mathbb{Z}.

1. Fundamental group of S^{1}

A key example is $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$.
Theorem 2.7. $\pi_{1}\left(S^{1}, 1\right) \simeq \mathbb{Z}$.
Remark 2.2. The idea of the proof is to somehow unwrap the circle. This proof led to the idea of a covering space.

Let $p: \mathbb{R} \rightarrow S^{1}$ be the map defined by $p(x)=e^{2 \pi i x}$. The picture is as in Fig. 1.
Note that $p^{-1}(1)=\mathbb{Z} \subset \mathbb{R}$.
Lemma 2.8 (path-lifting). Let $\sigma: I \rightarrow S^{1}$ be a path with $\sigma(0)=1$. Then there exists a unique path $\tilde{\sigma}: I \rightarrow \mathbb{R}$ such that $\tilde{\sigma}(0)=0$ and p $\tilde{\sigma}=\sigma$, i.e. $\tilde{\sigma}$ is a lift of σ so the following diagram commutes:

Proof. Let

$$
\begin{align*}
& U=\left\{e^{i \theta} \left\lvert\,-\frac{3 \pi}{4}<\theta<\frac{3 \pi}{4}\right.\right\} \tag{2.13}\\
& V=\left\{e^{i \theta} \left\lvert\, \frac{\pi}{4}<\theta<\frac{7 \pi}{4}\right.\right\} \tag{2.14}
\end{align*}
$$

This looks as in Fig. 2. Then $\{U, V\}$ is an open cover of S^{1}. First notice that the distance between the points $\pi / 4$ and $3 \pi / 4$ is $\sqrt{2}$. This means that for any $z, z^{\prime} \in S^{1}$ we have that $d\left(z, z^{\prime}\right)<\sqrt{2}$ implies either $z, z^{\prime} \in U$ and $z, z^{\prime} \in V$.

Figure 2. An open cover for the circle is given by the two sets U and V.

So we have some $\sigma: I \rightarrow S^{1}, \sigma(0)=1$. Since I is compact this implies $\exists \delta>0$ such that $d\left(s, s^{\prime}\right)<\delta$ implies $d\left(\sigma(s), \sigma\left(s^{\prime}\right)\right)<\sqrt{2}$.

Now we decompose the interval. Let $0=s_{0}<s_{1}<\ldots<s_{m}=1$ such that $\left|s_{i}-s_{i-1}\right|<$ δ for all i. Then $\sigma\left(\left[s_{i-1}, s_{i}\right]\right) \subset U$ or V for all i.

Now we look at the inverse image in \mathbb{R} and we get these overlapping intervals covering \mathbb{R} as in Fig. 3.

In particular

$$
\begin{array}{ll}
p^{-1}(U)=\bigcup_{n \in \mathbb{Z}} \tilde{U}_{n} & \tilde{U}_{n}=\left(n-\frac{3}{8}, n+\frac{3}{8}\right) \\
p^{-1}(V)=\bigcup_{n \in \mathbb{Z}} \tilde{V}_{n} & \tilde{V}_{n}=\left(n+\frac{1}{8}, n+\frac{7}{8}\right)
\end{array}
$$

The restrictions

$$
\begin{equation*}
\left.p\right|_{\tilde{U}_{n}}:\left.\tilde{U}_{n} \rightarrow U \quad p\right|_{\tilde{V}_{n}}: \tilde{V}_{n} \rightarrow V \tag{2.17}
\end{equation*}
$$

are homeomorphisms for all n. This means if we try to lift the path from s_{0} to s_{1} we have no choice in the lift since it stays in U in S^{1}. So we get a unique lift. In detail, we define $\tilde{\sigma}$ inductively on $\left[0, s_{k}\right], 0 \leq k \leq m$. For $k=0, \sigma(0)=0$. So now suppose $\tilde{\sigma}$ is defined on [$0, s_{k-1}$] for some k such that $1 \leq k \leq m$. Then WLOG

$$
\begin{equation*}
\sigma\left(\left[s_{k-1}, s_{k}\right]\right) \subset U \tag{2.18}
\end{equation*}
$$

(rather than V). This means $\tilde{\sigma}\left(s_{k-1}\right) \in \tilde{U}_{r}$ for some $r \in \mathbb{Z}$. Since $\left.p\right|_{\tilde{U}_{r}}$ is a homeomorphism let $q_{r}: U \rightarrow \tilde{U}_{r}$ be $\left(\left.p\right|_{\tilde{U}_{r}}\right)^{-1}$. Define

$$
\begin{equation*}
\left.\tilde{\sigma}\right|_{\left[s_{k-1}, s_{k}\right]}=\left.q_{r} \sigma\right|_{\left[s_{k-1}, s_{k}\right]} \tag{2.19}
\end{equation*}
$$

and note this is the only choice. Therefore by induction $\tilde{\sigma}$ exists and is unique.
Lemma 2.9 (Homotopy lifting). Let $\sigma, \tau: I \rightarrow S^{1}$ be paths with $\sigma(0)=\tau(0)=1$ and let $F: I \times I \rightarrow S^{1}$ be a homotopy from σ to $\tau(\operatorname{rel} \partial I)$. (So $\left.\sigma(1)=\tau(1)\right)$. Then there

Figure 3. The preimage of the cover U and V in \mathbb{R} under the map p.
exists a unique $\tilde{F}: I \times I \rightarrow \mathbb{R}$, a homotopy from $\tilde{\sigma}$ to $\tilde{\tau}(\operatorname{rel} \partial I)$, i.e. the following diagram commutes:

Proof. This proof is very similar to the proof of Lemma 2.8. $I \times I$ is compact so there exists some $0<s_{0}<s_{1}<\ldots<s_{m}=1$ and $0=t_{0}<t_{1}<\ldots<t_{n}=1$ such that if

$$
\begin{equation*}
R_{i, j}=\left[s_{i-1}, s_{i}\right] \times\left[t_{j-1}, t_{j}\right] \tag{2.21}
\end{equation*}
$$

(for $1 \leq i \leq m, 1 \leq j \leq n$) then $F\left(R_{i j}\right) \subset U$ or V. Order the $R_{i, j}$ and relabel them as R_{k}. Then let

$$
\begin{equation*}
S_{k}=\bigcup_{i \leq k} R_{i} \tag{2.22}
\end{equation*}
$$

Now we define \tilde{F} inductively on S_{k}. First $\tilde{F}\left(S_{0}\right)=\tilde{F}(0,0)=0$. Now suppose \tilde{F} is defined on S_{k-1}. Then $S_{k}=S_{k-1} \cup R_{k}$ and $F\left(R_{k}\right) \subset U$ or V; say U. Then $S_{k-1} \cap R_{k}$ is nonempty and connected and in U, and therefore

$$
\begin{equation*}
\tilde{F}\left(S_{k-1} \cap R_{k}\right) \subset \tilde{U}_{r} \tag{2.23}
\end{equation*}
$$

for some $r \in \mathbb{Z}$. So we can (and must) define

$$
\begin{equation*}
\left.\tilde{F}\right|_{R_{k}}=\left.q_{r} F\right|_{R_{k}} \tag{2.24}
\end{equation*}
$$

Therefore \tilde{F} exists and is unique. \tilde{F}_{0} is a lift of $F_{0}=\sigma$, starting at $0, \tilde{F}_{1}$ is a lift of $F_{1}=\tau$, starting at 0 , therefore by the uniqueness of Lemma $2.8, \tilde{F}_{0}=\tilde{\sigma}$ and $\tilde{F}_{1}=\tilde{\tau}$. Finally $p^{-1}(1)=\mathbb{Z}$ is discrete in \mathbb{R}, so $\tilde{F}_{t}(0)=\tilde{\sigma}(0)=0$ and $\tilde{F}_{t}(1)=\tilde{\sigma}(1)$ for all $t \in I$, so indeed $\tilde{\sigma} \simeq_{F_{t}} \tilde{\tau}(\operatorname{rel} \partial I)$.

Proof of Theorem 2.7. Let σ be a loop in S^{1} at 1 . Define $\varphi: \pi_{1}\left(S^{1}, 1\right) \rightarrow \mathbb{Z}$ by $\varphi([\sigma])=\tilde{\sigma}(1)$. Then we claim:
(1) φ is well defined: This follows from Lemmata 2.8 and 2.9.
(2) φ is onto: Let $n \in \mathbb{Z}$; define $\tilde{\sigma}: I \rightarrow \mathbb{R}$ by $\tilde{\sigma}(s)=n s$. Let $\sigma=p \tilde{\sigma}$. Then $\varphi([\sigma])=\tilde{\sigma}(1)=n$.
(3) φ is a homomorphism: Let $[\sigma],[\tau] \in \pi_{1}\left(S^{1}, 1\right)$ with $\varphi([\sigma])=m, \varphi([\tau])=n$ and

$$
\begin{equation*}
[\sigma][\tau]=[\sigma * \tau] \tag{2.25}
\end{equation*}
$$

Then
where $\hat{\tau}(s)=\tilde{s}+m$ and therefore

$$
\begin{equation*}
\varphi([\sigma][\tau])=\varphi([\sigma * \tau])=(\widetilde{\sigma * \tau})(1)=(\tilde{\sigma} * \hat{\tau})(1)=m+n=\varphi([\sigma])+\varphi([\tau]) \tag{2.27}
\end{equation*}
$$

as desired.
(4) φ is one-to-one: Suppose $\varphi([\sigma])=0$, i.e. $\tilde{\sigma}$ is a loop in \mathbb{R} at $0 . \mathbb{R}$ strong deformation retracts to 0 , so $\tilde{\sigma} \simeq x_{0}(\operatorname{rel} \partial I)$. Therefore $[\sigma]=1$.

2. Induced homomorphisms

So consider some map $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$. Then the claim is that we can define a group homomorphism

$$
\begin{equation*}
f_{*}: \pi\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right) \tag{2.28}
\end{equation*}
$$

by $f_{*}([\sigma])=[f \sigma]$.
ThEOREM 2.10. (1) f_{*} is a well-defined homomorphism.
(2) $(g f)_{*}=g_{*} f_{*}, \mathrm{id}_{*}=\mathrm{id}$.
(3) $f \simeq g\left(\operatorname{rel} x_{0}\right)$ implies $f_{*}=g_{*}$.

Proof. (1) Suppose we have two loops $\sigma \simeq_{F_{t}} \sigma^{\prime}(\operatorname{rel} \partial I)$. Then this means

$$
\begin{equation*}
f \sigma \simeq_{f F_{t}} f \sigma^{\prime}(\operatorname{rel} \partial I) \tag{2.29}
\end{equation*}
$$

which means f_{*} is well-defined.
(2)

$$
\begin{align*}
f_{*}([\sigma][\tau]) & =f_{*}([\sigma * \tau])=[f(\sigma * \tau)] \tag{2.30}\\
& =[f(\sigma) * f(\tau)]=[f \sigma][f \tau] \tag{2.31}\\
& =f_{*}([\sigma]) f_{*}([\tau]) . \tag{2.32}
\end{align*}
$$

Example 2.2. Let $\mu_{n}(z)=z^{n}$ for $n \in \mathbb{Z}$. Then

$$
\begin{equation*}
\mu_{n_{*}}: \pi_{1}\left(S^{1}, 1\right) \rightarrow \pi_{1}\left(S^{1}, 1\right) \tag{2.33}
\end{equation*}
$$

is multiplication by n, i.e.

Proof. The loop $\sigma: I \rightarrow S^{1}$ with $\sigma(s)=e^{2 \pi i s}$ represents $1 \in \mathbb{Z} \simeq \pi_{1}\left(S^{1}, 1\right)$, i.e. $\varphi([\sigma])=1$. Then

$$
\begin{equation*}
\mu_{n *}([\sigma])=\left[\mu_{n} \sigma\right] \tag{2.35}
\end{equation*}
$$

where $\left(\mu_{n} \sigma\right)(s)=e^{2 \pi i n s}$. Therefore $\varphi\left(\left[\mu_{n} \sigma\right]\right)=n$.
The following is an application of Theorem 2.7.
Theorem 2.11. There is no retraction $D^{2} \rightarrow S^{1}$.
Proof. Let $r: D^{2} \rightarrow S^{1}$ be a retraction. Then

commutes. Then we apply the functor π_{1} to get:

which is a contradiction.

Corollary 2.12. Every map $D^{2} \rightarrow D^{2}$ has a fixed point.

3. Dependence of π_{1} on the basepoint

Let $\alpha: I \rightarrow X$ be a path from x_{0} to x_{1}. Define $\alpha_{\#}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{1}\right)$ by

$$
\begin{equation*}
\alpha_{\#}[\sigma]=[\bar{\alpha}][\sigma][\alpha]=[\bar{\alpha} * \sigma * \alpha] . \tag{2.38}
\end{equation*}
$$

The point is that we take a loop at one basepoint and attach this path on both ends (with one reversed) to get a loop at the other basepoint.

ThEOREM 2.13. (1) $\alpha_{\#}$ is an isomorphism.
(2) $\alpha \simeq \beta(\operatorname{rel} \partial I)$ implies $\alpha_{\#}=\beta_{\#}$.
(3) $(\alpha * \beta)_{\#}=\beta_{\#} \alpha_{\#}$.
(4) If $f: X \rightarrow Y$ is a map then

commutes.
Remark 2.3. Professor Cameron learned algebraic topology from Hilton and Wylie. He is surprised he learned anything at all because they decided that since homology is a covariant functor and cohomology is a contravariant functor homology should be cohomology and cohomology should be "contrahomology". They also wrote all of the maps on the right.

Proof. (1) We can directly verify $\alpha_{\#}$ is a homomorphism:

$$
\begin{align*}
\alpha_{\#}([\sigma][\tau]) & =[\bar{\alpha}][\sigma][\tau][\alpha]=[\bar{\alpha}][\sigma]\left[c_{x_{0}}\right][\tau][\alpha] \tag{2.40}\\
& =[\bar{\alpha}][\sigma]([\alpha][\bar{\alpha}])[\tau][\alpha] \tag{2.41}\\
& =\alpha_{\#}([\sigma]) \alpha_{\#}([\tau]) . \tag{2.42}
\end{align*}
$$

$\alpha_{\#}$ is a bijection because $(\bar{\alpha})_{\#}$ is an inverse of $\alpha_{\#}$.
(2) Obvious.
(3) Exercise.
(4) Exercise.

REmARK 2.4. If $x_{1}=x_{0}$ then α is a loop at x_{0} so

$$
\begin{equation*}
\alpha_{\#}([\sigma])=[\bar{\alpha}][\sigma][\alpha]=[\alpha]^{-1}[\sigma][\alpha] \tag{2.43}
\end{equation*}
$$

i.e. $\alpha_{\#}$ is conjugation by α.

Corollary 2.14. If X is path-connected then $\pi_{1}\left(X, x_{0}\right)$ is independent of x_{0} (up to isomorphism).

Definition 2.4. X is simply connected if X is path-connected and $\pi_{1}(X)=1$.
Lemma 2.15. Let $f, g: X \rightarrow Y$. Let F be a homotopy from f to g. Let α be the path $\alpha(t)=F\left(x_{0}, t\right)$ in Y from $f\left(x_{0}\right)$ to $g\left(x_{0}\right)$. Then the diagram

Figure 4. $I \times I$ labelled as in Lemma 2.15.
commutes.
Proof. Let σ be a loop in X at x_{0}. Let $H=F(\sigma \times \mathrm{id}): I \times I \rightarrow Y$. Pictorially we have: $\left.H\right|_{\partial(I \times I)}$ (suitably reparameterized) is a loop in Y at $g\left(x_{0}\right)$. Reading Fig. 4 counterclockwise we get

$$
\begin{equation*}
\left[\left.H\right|_{\partial(I \times I)}\right]=[\bar{\alpha}][f \sigma][\alpha][g \sigma]^{-1} \tag{2.45}
\end{equation*}
$$

But this extends over $I \times I$ so it is just $1 \in \pi_{1}\left(Y, g\left(x_{0}\right)\right)$, i.e. $\alpha_{\#} f_{*}([\sigma])=g_{*}([\sigma])$ which implies $\alpha_{\#} f_{*}=g_{*}$.

Theorem 2.16. Let $f: X \rightarrow Y$ be a homotopy equivalence. Then $f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow$ $\pi_{1}\left(Y, f\left(x_{0}\right)\right)$ is an isomorphism for all $x_{0} \in X$.

Proof. Let $g: Y \rightarrow X$ be a homotopy inverse of f. So we get maps

$$
\begin{equation*}
\pi_{1}\left(X, x_{0}\right) \xrightarrow{f_{*}} \pi_{1}\left(Y_{*} f\left(x_{0}\right)\right) \xrightarrow{g_{*}} \pi_{1}\left(X, g f\left(x_{0}\right)\right) \tag{2.46}
\end{equation*}
$$

but we have $g f \simeq \operatorname{id}_{X}$ which means $(g f)_{*}=g_{*} f_{*}$ is an isomorphism. by Lemma 2.15 and Theorem 2.13 (1) so g_{*} is onto.

Then we have

$$
\begin{equation*}
\pi_{1}\left(Y, f\left(x_{0}\right)\right) \xrightarrow{g_{*}} \pi_{1}\left(X, g f\left(x_{0}\right)\right) \xrightarrow{f_{*}} \pi_{1}\left(Y, f g f\left(x_{0}\right)\right) \tag{2.47}
\end{equation*}
$$

and $f g \simeq \operatorname{id}_{Y}$ so $f_{*} g_{*}$ is an isomorphism so g_{*} is one-to-one. Therefore g_{*} is an isomorphism and $g_{*} f_{*}$ is an isomorphism which implies f_{*} is an isomorphism.

Corollary 2.17. If X is contractible then $\pi_{1}\left(X, x_{0}\right)=1$ for all $x_{0} \in X$.
Proof. X being contractible is equivalent to $i:\left\{x_{0}\right\} \hookrightarrow X$ being a homotopy equivalence.

4. Fundamental theorem of algebra

THEOREM 2.18 (Fundamental theorem of algebra). Every non-constant polynomial with coefficients in \mathbb{C} has a root in \mathbb{C}.

Remark 2.5. Professor Cameron says this topological proof of an algebraic statement should provide topologists some comfort in light of the Poincaré conjecture receiving some sort of proof via PDEs.

Proof. Let $f(z)=z^{n}+a_{n-1} z^{n-1}+\ldots+a_{0}$ for all $a_{i} \in \mathbb{C}$ for $n \geq 1$. Suppose $f(z) \neq 0$ for all $z \in \mathbb{C}$; so $a_{0} \neq 0$. So f is a map $\mathbb{C} \rightarrow \mathbb{C} \backslash\{0\}$.

The idea of the proof is as follows. As $|z| \rightarrow \infty$ somehow $f \sim z^{n}$, i.e. $f \sim \mu_{n}$ and similarly as $|z| \rightarrow 0$ somehow $f \leadsto a_{0}$, i.e. $f \leadsto c_{a_{0}}$ but this implies $\mu_{n} \simeq c_{a_{0}}$ which is a contradiction. Now we make this precise.

Let $R \in \mathbb{R}, R \geq 0$. Define $F: S^{1} \times I \rightarrow S^{1}$ by

$$
\begin{equation*}
F(z, t)=F_{t}(z)=\frac{f(t R z)}{|f(t R z)|} \tag{2.48}
\end{equation*}
$$

Note that $F_{0}(z)=1$ so $F_{0}=c_{1}$.
Let

$$
\begin{equation*}
g(z)=a_{n-1} z^{n-1}+\ldots+a_{0} \tag{2.49}
\end{equation*}
$$

so $f(z)=z^{n}+g(z)$. Choose

$$
\begin{equation*}
R>\max \left\{1, \sum_{k=0}^{n-1}\left|a_{k}\right|\right\} \tag{2.50}
\end{equation*}
$$

Then if $|z|=R$

$$
\begin{equation*}
|g(z)| \leq \sum_{k=0}^{n-1}\left|a_{k} z^{k}\right|=\sum_{k=0}^{n-1}\left|a_{k}\right| R^{k} \leq 2.2\left(\sum_{k=0}^{n-1}\left|a_{k}\right|\right) R^{n-1}<R^{n}=|z|^{n} \tag{2.51}
\end{equation*}
$$

Therefore for all $t \in I$

$$
\begin{equation*}
\left|z^{m}+t g(z)\right| \geq|z|^{n}-t|g(z)| \geq|z|^{n}-|g(z)|>0 \tag{2.52}
\end{equation*}
$$

Let $h_{t}(z)=z^{n}+t g(z)$. So $h_{0}(z)=z^{n}$ and $h_{1}(z)=f(z)$.
So define $H: S^{1} \times I \rightarrow S^{1}$ by

$$
\begin{equation*}
H(z, t)=\frac{h_{t}(R z)}{h_{t}(R z)} \tag{2.53}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{1}(z)=\frac{f(R z)}{|f(R z)|}=F_{1}(z) \quad H_{0}(z)=\frac{(R z)^{n}}{|R z|^{n}}=z^{n} \tag{2.54}
\end{equation*}
$$

and therefore $H_{0}=\mu_{n}$.
Now we can put it all together. We have

$$
\begin{equation*}
c_{1}=F_{0} \simeq F_{1}=H_{1} \simeq H_{0}=\mu_{n} \tag{2.55}
\end{equation*}
$$

[^5]so $c_{1} \simeq \mu_{n}$. Therefore by Lemma 2.15

which is a contradiction. Note $\alpha_{\#}$ is conjugation by $[\alpha]$, but \mathbb{Z} is abelian so this is just the identity.

5. Cartesian products

If $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ are maps, let $(f, g): Z \rightarrow X \times Y$ be the map given by

$$
\begin{equation*}
(f, g)(z)=(f(z), g(z)) . \tag{2.57}
\end{equation*}
$$

We will use the same notation for group homomorphisms. Let $p: X \times Y \rightarrow X$ and $q: X \times Y \rightarrow Y$ be the projections.

THEOREM 2.19. $\left(p_{*}, q_{*}\right): \pi_{1}\left(X \times Y,\left(x_{0}, y_{0}\right)\right)=\pi_{1}\left(X, x_{0}\right) \times \pi_{1}\left(Y, y_{0}\right)$.
Proof. Exercise.
Example 2.3. $\pi_{1}\left(T^{n}\right) \simeq \mathbb{Z}^{n}$.

6. Retractions

Consider some $i: A \hookrightarrow X$ and some $a_{0} \in A$. Suppose there exists a retraction $r: X \rightarrow$ A. Then we get a commutative diagram

i.e. $r_{*} i_{*}=$ id so therefore i_{*} is one-to-one and r_{*} is onto.

CHAPTER 3

Van Kampen's theorem

The idea is to calculate the fundamental group of $X=X_{1} \cup X_{2}$ from the data of the groups $\pi_{1}\left(X_{1}\right), \pi_{1}\left(X_{2}\right), \pi_{1}\left(X_{1} \cap X_{2}\right)$ and the associated inclusion maps. These always fit into the diagram:

Lecture 6;
September 24, 2019

1. Basic combinatorial group theory

1.1. Free products. Let A and B be groups. The free product is a group D and homomorphisms $i_{A}: A \rightarrow D$ and $i_{B}: B \rightarrow D$ such that given a group G and homomorphisms $\alpha: A \rightarrow G$ and $\beta: B \rightarrow G$, there exists a unique homomorphism $\varphi: D \rightarrow G$ such that $\varphi i_{A}=\alpha$ and $\varphi i_{B}=\beta$; i.e. the following push-out diagram commutes:

Remark 3.1. This is the coproduct in the category Grp.
Lemma 3.1. If D exists then it is unique (up to unique isomorphism).
Proof. If D, D^{\prime} are free products of A and B there exist unique φ, ψ as shown:

Now we can write the free product of A and B as $A * B$, and say A and B are the factors of $A * B$.

Theorem 3.2. Free products exist.

Proof. Define $A * B$ to be the set of all sequences $x=\left(x_{1} x_{2} \ldots x_{m}\right)$ for $m \geq 0$ where $x_{i} \in A$ or $B ; x_{i} \neq 1$; and x_{i} and x_{i+1} are in different factors. m is the length of $x, 1$ is the empty sequence.

Define the product of two sequence by

$$
\left(x_{1} \ldots x_{m}\right)\left(y_{1} \ldots y_{n}\right)= \begin{cases}\left(x_{1} \ldots x_{m} y_{1} \ldots y_{n}\right) & x_{m}, y_{1} \in \text { different fac. } \tag{3.4}\\ \left(x_{1} \ldots x_{m-1}\left(x_{m} y_{1}\right) y_{2} \ldots y_{m}\right) & x_{m}, y_{1} \in \text { same fac., } x_{m} y_{1} \neq 1 \\ \left(x_{1} \ldots x_{m-1}\right)\left(y_{2} \ldots y_{n}\right) & x_{m}, y_{1} \in \text { same fac., } x_{m} y_{1}=1\end{cases}
$$

Then $x 1=1 x=x$ for all $x \in A * B$. Define the inverse $x^{-1}=\left(x_{m}^{-1} \ldots x_{1}^{-1}\right)$, then $x x^{-1}=1=x^{-1} x$ for all $x \in A * B$.

So we just have to check associativity. $x(y z)=(x y) z$. We induct on n (where n is the length of y). $n=0$ is trivial. For $n=1$, WLOG $y=(a)$ for $a \in A, a \neq 1$. Then there are several cases, e.g.

- $x_{m} \in B, z_{1} \in B ;$
- $x_{m} \in B, z_{1} \in A$;
- ...

For $n>1, y=y^{\prime} y^{\prime \prime}$ where the length of y^{\prime} and $y^{\prime \prime}$ are less than n. Then by induction

$$
\begin{equation*}
(x y) z=\left(x\left(y^{\prime} y^{\prime \prime}\right)\right) z=\left(\left(x y^{\prime}\right) y^{\prime \prime}\right) z=\left(x y^{\prime}\right)\left(y^{\prime \prime} z\right) . \tag{3.5}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
x(y z)=x\left(\left(y^{\prime} y^{\prime \prime}\right) z\right)=x\left(y^{\prime}\left(y^{\prime \prime} z\right)\right)=\left(x y^{\prime}\left(y^{\prime \prime} z\right)\right) \tag{3.6}
\end{equation*}
$$

so $A * B$ is a group.
Now we see it has the universal properties. Define $i_{A}: A \rightarrow A * B$ by $i_{A}(a)=(a)$ and similarly for B. Given $\alpha: A \rightarrow G$ and $\beta: B \rightarrow G$ then define $\varphi: A * B \rightarrow G$ by

$$
\begin{equation*}
\varphi\left(x_{1} \ldots x_{m}\right)=\gamma\left(x_{1}\right) \ldots \gamma\left(x_{m}\right) \tag{3.7}
\end{equation*}
$$

where $\gamma_{i}=\alpha$ if $x_{i} \in A$ and $\gamma_{i}=\beta$ if $x_{i} \in B$. Therefore φ is unique as a homomorphism and it has the desired properties:

$$
\begin{equation*}
\varphi i_{A}=\alpha \quad \varphi i_{B}=\beta \tag{3.8}
\end{equation*}
$$

REMARK 3.2. i_{A} and i_{B} are actually injective in this case. For general pushouts they won't be. This means we can identify A and B with their images in $A * B$. In other words we can drop the parentheses. Each element in $A * B$ has a unique expression as $x_{1} \ldots x_{m}$ for $x_{i} \in A$ or $B ; x_{i} \neq 1 ; x_{i}, x_{i+1}$ in different factors. This is called a reduced word in A and B. We say $A * B$ is a non-trivial free product if $A \neq \mathrm{id} \neq B$.

Example 3.1. $\mathbb{Z} / 2 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}=\{1, a, b, a b, b a, a b a, b a b, a b a b, \ldots\}$.
Remark 3.3. A non-trivial free product is infinite: $a \in A \backslash\{1\}, b \in B \backslash\{1\}$, then $a b$ has infinite order in $A * B$.

Remark 3.4. We can define free product $* A_{\lambda}$ for any collection $\left\{A_{\lambda}\right\}$ of groups. As a special case we can take $A_{\lambda}=\mathbb{Z}$ for all λ, then write x_{λ} for the generator of A_{λ}. Then $* A_{\lambda}$ is the free group on the set $X=\left\{x_{\lambda}\right\}$, written $F(X)$.

Any function $\left\{x_{\lambda_{0}}\right\} \rightarrow G$ extends to a unique homomorphism $\mathbb{Z}=\mathbb{Z}\left(x_{\lambda_{0}}\right) \rightarrow G$. So $F(X)$ is characterized by the following. For any group G and any function $f: X \rightarrow G$, there exists unique homomorphism $\varphi: F(X) \rightarrow G$ such that

commutes.
Note that every element of $F(X)$ has a unique expression as a reduced word

$$
\begin{equation*}
x_{\lambda_{1}}^{n_{1}} x_{\lambda_{2}}^{n_{2}} \ldots x_{\lambda_{m}}^{n_{m}} \tag{3.10}
\end{equation*}
$$

where $\lambda_{i} \neq \lambda_{i+1}$ and $n_{i} \in \mathbb{Z}, n_{i} \neq 0$.
Definition 3.1. ($X: R$) is a presentation of the group G if $R \subset F(X)$ and there exists an epimorphism $\varphi: F(X) \rightarrow G$ such that $\operatorname{ker} \varphi=N(R)$ is the normal closure of R in $F(X)$, the smallest normal subgroup of $F(X)$ that contains R, i.e. the set of all products of conjugates of elements in R and their inverses:

$$
\begin{equation*}
\left\{\prod_{i=1}^{k} u_{i}^{-1} r_{i}^{\epsilon_{i}} u_{i} \mid u_{i} \in F(X), r_{i} \in R, \epsilon_{i}= \pm 1\right\} \tag{3.11}
\end{equation*}
$$

Theorem 3.3. Every group has a presentation.
Proof. Let $Y=\left\{y_{\lambda}\right\}$ be any set of generators of G. (Worst case we could take $Y=G$.) Let $X=\left\{x_{\lambda}\right\}$ and define a function $f: X \rightarrow G$ by mapping $f\left(x_{\lambda}\right)=y_{\lambda} . f$ extends to a homomorphism $\varphi: F(X) \rightarrow G$ which is onto (since Y generates G). (Worst case take $R=\operatorname{ker} \varphi$.)

Definition 3.2. G is finitely generated iff there exists a finite set of generators for G, iff G has a presentation $(X: R)$ with X finite.
G is finitely presentable iff there exists a presentation $(X: R)$ of G with X and R finite.
If $(X: R)$ is a presentation of G we say R is the set of relators, and X is the set of generators. We often suppress φ, i.e. we regard $X \subset G$, and write $r=1(r \in R)$ to indicate that $\varphi(r)=1 \in G$. We also write $G=\langle X: R\rangle$. Write $\left(\left\{x_{1}, \ldots\right\}:\left\{r_{1}, \ldots\right\}\right)$ as $\left(x_{1}, \ldots: r_{1}, \ldots\right)$.

Example 3.2. (1) $\langle X \mid \emptyset\rangle \cong F(X)$,
(2) $\left\langle\{x\} \mid x^{n}=1\right\rangle \cong \mathbb{Z}_{|n|}$,
(3) $\langle\{x, y\} \mid x y=y x\rangle \cong \mathbb{Z} \times \mathbb{Z}$,
(4) $\left\langle a, b \mid a^{n}=1, b^{2}=1, b^{-1} a b=a^{-1}\right\rangle$

Theorem 3.4. If $X \cap Y=\emptyset$ then $\langle X \mid R\rangle *\langle Y \mid S\rangle \cong\langle X \cup Y \mid R \cup S\rangle$.
Example 3.3. $\mathbb{Z} / 2 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z} \cong\left\langle a, b \mid a^{2}=b^{2}=1\right\rangle$.
EXERCISE 1.1. (1) Show $\left\langle x, y \mid x^{-1} y x=y^{2}, y^{-1} x y=x^{2}\right\rangle$ is trivial.
(2) Is $\left\langle x, y, z \mid x^{-1} y x=y^{2}, y^{-1} z y=z^{2}, z^{-1} x z=x^{2}\right\rangle$ trivial?
(3) Is $\left\langle x, y, z, w \mid x^{-1} y x=y^{2}, y^{-1} z y=z^{2}, z^{-1} w z=w^{2}, w^{-1} x w=x^{2}\right\rangle$ trivial?
(4) Show $\left\langle x, y \mid x y x=y x y, x^{n}=y^{n+1}\right\rangle$ is trivial for $n \geq 0$.

These are called balanced presentations of the trivial group because the set of relators is the same size as the set of generators.

Conjecture 1. Every balanced presentation can be taken to the trivial balanced presentation under some particular "moves".

REMARK 3.5. Dealing with groups via their finite presentations is notoriously difficult. It is an unsolvable problem to find whether a group is trivial based only on a presentation. There is not algorithm which determines whether a group is trivial from its finite presentation.

Remark 3.6. Novikov and Boone proved this unsolvability independently. ${ }^{3.1}$
1.2. Push-outs. Let A, B, and C be groups with homomorphisms $j_{A}: C \rightarrow A$, $j_{B}: C \rightarrow B$. Then a push-out of this diagram is a group D and homomorphisms $i_{A}: A \rightarrow D$ and $i_{B}: B \rightarrow D$ such that $i_{A} j_{A}=i_{B} j_{B}$, and given a group G and homomorphisms $\alpha: A \rightarrow G, \beta: B \rightarrow G$ such that $\alpha j_{A}=\beta j_{B}$ there exists a unique homomorphism $\varphi: D \rightarrow G$ such that $\varphi i_{A}=\alpha$ and $\varphi i_{B}=\beta$. In other words, the following diagram commutes:

Theorem 3.5. Push-outs exist.
Proof. Consider $A * B$ (regard $A, B \subset A * B$). Let

$$
\begin{equation*}
N=N\left(\left\{j_{A}(c) j_{b}(c)^{-1} \mid c \in C\right\}\right) \triangleleft A * B \tag{3.13}
\end{equation*}
$$

Let $q: A * B \rightarrow A * B / N$ be quotient homomorphisms. Define $i_{A}=\left.q\right|_{A}, i_{B}=\left.q\right|_{B}$. Then $A * B / N$ is the pushout.

Remark 3.7. In the case $A * B$ (i.e. $C=1$), i_{A} and i_{B} are injective. This is not true in an arbitrary pushout.

Counterexample 1 . Consider $\mathbb{Z}(y) \stackrel{0}{\leftarrow} \mathbb{Z} \xrightarrow{\text { id }} \mathbb{Z}(x)$. Then the pushout is $\langle x, y \mid x=1\rangle \simeq$ \mathbb{Z} :

so i_{A} is not injective.
If j_{A} and j_{B} are injective, then i_{A} and i_{B} are injective. The pushout is called the free product of A and B amalgamated along $C, A *_{C} B$.

[^6]Example 3.4. Take $\mathbb{Z} \stackrel{q}{\leftarrow} \mathbb{Z} \xrightarrow{p} \mathbb{Z}$ for $p, q \geq 2$. Then the pushout is:

where $\mathbb{Z} *_{\mathbb{Z}} \mathbb{Z}=\left\langle x, y \mid x^{p}=y^{q}\right\rangle$.

Lecture 7;
September 26, 2019

Theorem 3.6. Push-outs exist.
Proof. So we need to show that given $B \leftarrow C \rightarrow A$ we have:

Define

$$
\begin{equation*}
N=N\left(\left\{j_{A}(c) j_{b}(c)^{-1} \forall c \in C\right\}\right) \triangleleft A * B \tag{3.17}
\end{equation*}
$$

where we regard $A, B<A * B$. Let $q: A * B \rightarrow A * B / N$ be the quotient homomorphism and let $i_{A}=\left.q\right|_{A}$ and $i_{B}=\left.q\right|_{B}$. Then the diagram certainly commutes.

Claim 3.1. This is the push-out.
Proof. Given $\alpha: A \rightarrow G$ and $\beta: B \rightarrow G$ such that $\alpha j_{A}=\beta j_{B}: C \rightarrow G$ there exists $\psi: A * B \rightarrow G$ such that $\left.\psi\right|_{A}=\alpha$ and $\left.\psi\right|_{B}=\beta$ by Theorem 3.2.

Now $\alpha j_{A}=\beta j_{B}$ implies that $\psi j_{A}=\psi j_{B}$, which means $\psi\left(j_{A}(c) j_{B}(c)^{-1}\right)=1$ for all $c \in C$, which means $\psi(N)=1$. This means ψ induces $\varphi: A * B / N \rightarrow G$, i.e.

commutes. I.e. $\left.\varphi q\right|_{A}=\alpha$ and $\left.\varphi q\right|_{B}=\beta$, i.e. $\varphi i_{A}=\alpha$ and $\varphi i_{B}=\beta$. Then $A \cup B$ generates $A * B$, and therefore $q(A) \cup q(B)$ generates $A * B / N$. Then φ is determined by $\left.\varphi\right|_{q(A)}$ and $\left.\varphi\right|_{q(B)}$. But we have to define $\left.\varphi q\right|_{A}=\alpha$ and $\left.\varphi q\right|_{A}=\beta$ and therefore φ is unique.

REmark 3.8. It follows from Theorem 3.4 that if $A=\langle X \mid R\rangle$ and $B=\langle Y \mid S\rangle$ then the pushout is

$$
\begin{equation*}
\left\langle X \cup Y \mid R \cup S, j_{A}(c)=j_{B}(c), \forall c \in C\right\rangle \tag{3.19}
\end{equation*}
$$

We could also replace C by any set generating C.
Remark 3.9. Push-outs are defined and exist for $\left\{A_{\lambda}, j_{\lambda}: C \rightarrow A_{\lambda}\right\}$.

Figure 1. The cone of two Hawaiian earrings joined at a point. This has nontrivial fundamental group even though it is the union of two things with trivial fundamental group.

2. Statement of the theorem

Theorem 3.7 (van Kampen's theorem). Suppose $X=X_{1} \cup X_{2}$, with $X_{1}, X_{2}, X_{1} \cap X_{2}$ open and path-connected. Let $x_{0} \in X_{1} \cap X_{2}$ Then $\pi_{1}\left(X, x_{0}\right)$ is the push-out:

where all homomorphisms are induced by inclusions.
REmark 3.10. (1) There exists an analogous statement when $X=\cup_{\lambda} X_{\lambda}$.
(2) In practice, one often applies Theorem 3.7 when X_{1} and X_{2} are closed in X but where X_{i} has an open subsets $U_{i} \subset X$ such that there exists a strong deformation retractions of pairs:

$$
\begin{equation*}
\left(U_{1}, U_{1} \cap X_{2}\right) \rightarrow\left(X_{1}, X_{1} \cap X_{2}\right) \quad\left(U_{2}, U_{2} \cap X_{1}\right) \rightarrow\left(X_{2}, X_{1} \cap X_{2}\right) \tag{3.21}
\end{equation*}
$$

(3) Theorem 3.7 is false without the openness assumption. The counterexample is the double cone of the wedge of two Hawaiian earrings as in Fig. 1. If we take each cone of an earring to be one of the X_{i} then the intersection is a point, so it satisfies all of the assumptions except the openness. But notice that each of the X_{i} is contractible since cones are always contractible. However $\pi_{1}\left(X_{1} \cup X_{2}\right) \neq 1$ because the two earrings themselves form a nontrivial loop.

Corollary 3.8. Let X_{1}, X_{2} be as in Theorem 3.7. Then $\pi_{1}\left(X_{1}\right)=\pi_{1}\left(X_{2}\right)=1$ which implies $\pi_{1}(X)=1$.
Corollary 3.9. If $n \geq 2$ then $\pi_{1}\left(S^{n}\right)=1$.
Proof. We can write $S^{n}=D_{+}^{n} \cup D_{-}^{n}$ where $D_{+} \cap D_{-} \cong S^{n-1}$. For $n \geq 2 S^{n-1}$ is path-connected and D^{n} is contractible, so $\pi_{1}\left(D_{+}\right)=\pi_{1}\left(D_{-}\right)=1$.

Corollary 3.10. If $\pi_{1}\left(X_{1} \cap X_{2}\right)=1$ then $\pi_{1}(X)=\pi_{1}\left(X_{1}\right) * \pi_{1}\left(X_{2}\right)$.

3. Cell complexes

Let Y be a topological space and $f: S^{n-1} \rightarrow Y$ a map. Then the quotient space

$$
\begin{equation*}
X=\left(D^{n} \amalg Y\right) /\left(x \sim f(x), \forall x \in S^{n-1}\right) \tag{3.22}
\end{equation*}
$$

is obtained from Y by attaching an n cell, and f is the attaching map.
Note that X has the quotient topology, i.e. if $q: D^{n} \amalg Y \rightarrow X$ is the quotient map, then $U \subset X$ is open iff $q^{-1}(U) \subset D^{n} \amalg Y$ is open. Also note that one can similarly add multiple n-cells to Y via maps $f_{\lambda}: S_{\lambda}^{n-1} \rightarrow Y$.

An n-complex (or n-dimensional CW complex) is defined inductively by:

- a -1 -complex is \emptyset,
- an n-complex is a space obtained by attached a collection of n-cells to an $n-1$ complex so a 0 -complex is a discrete set of points.
An n-complex is finite if there exists only finitely many cells. Note that we can define an inf-dimensional CW-complex by setting

$$
\begin{equation*}
X=\cup_{n=0}^{\infty} X_{n} \tag{3.23}
\end{equation*}
$$

for X_{n} an n-complex such that $X_{i} \subset X_{i+1}$ for all i. Note that $U \subset X$ is open iff $U \cap X_{n}$ is open for all n.

For X a cell-complex define the n-skeleton of $X, X^{(n)}$, to be the union of all cells of dimension $\leq n$.

Example 3.5. The same space might have multiple cell decompositions. Consider S^{2}. We can think of this as a cell-complex as being one 0 -cell, one 1 -cell, and two 2 -cells (hemispheres). A more simple way of seeing this is one 0 -cell and a 2 -cell with the entire boundary mapping to the point.

3.1. Effect of adding a cell on the fundamental group.

Example 3.6. Consider $X=Y \cup$ some 2-cell, i.e. $X=Y \cup_{f} D^{2}$ where f is the attaching map. Let $u \in D^{2}$. Then define $X_{1}=Y \cup_{f}\left(D^{2} \backslash\{0\}\right)$ and $X_{2}=\operatorname{int}\left(D^{2}\right) \subset X$. This means X_{1} and X_{2} are open in $X, X=X_{1} \cup X_{2}$, and

$$
\begin{equation*}
X_{1} \cap X_{2}=\operatorname{int}\left(D^{2}\right) \backslash\{0\} \simeq S^{1} \times \mathbb{R} \simeq S^{1} \tag{3.24}
\end{equation*}
$$

By van Kampen $\pi_{1}(X)$ is the push-out of

$$
\begin{aligned}
\mathbb{Z} \simeq & \pi_{1}\left(X_{1} \cap X_{2}\right) \xrightarrow{j_{\boldsymbol{P}_{*}}} \pi_{1}\left(X_{1}\right) \\
& \pi_{1}\left(X_{2}\right)=1
\end{aligned}
$$

Let $w \in \pi_{1}(Y)=\pi_{1}(Y, f(1))$ be the element represented by $f: S^{1} \rightarrow Y$. We have a strong deformation retraction $D^{2} \backslash\{0\} \rightarrow S^{1}$, which induces a strong deformation retraction $X_{1} \rightarrow Y$ so $j_{1 *}(z)=w$ and

$$
\begin{equation*}
\pi_{1}(X) / N(w) \tag{3.26}
\end{equation*}
$$

Similarly, if we attach a collection of 2-cells we get $\pi_{1}(X) / N\left(\left\{w_{\lambda}\right\}\right)$.
REmark 3.11. The same argument shows, using the fact that $\pi_{1}\left(S^{n-1}\right)=1(n \geq 3)$ that if $X=Y \cup$ some n-cells then the inclusion map $\pi_{1}(Y) \rightarrow \pi_{1}(X)$ is an isomorphism.

Figure 2. The first few closed orientable surfaces.

Example 3.7. Let

$$
\begin{equation*}
X=\bigvee_{\lambda} S_{\lambda} \tag{3.27}
\end{equation*}
$$

We can consider the open set around the common point:

$$
\begin{equation*}
U=\bigcup_{\lambda} I_{\lambda} \subset X \tag{3.28}
\end{equation*}
$$

where each I_{λ} is an open interval in the S_{λ} around the common point. So attach this U to each circle:

$$
\begin{equation*}
X_{\lambda}=S_{\lambda}^{1} \cup U \tag{3.29}
\end{equation*}
$$

and then apply van Kampen's theorem to get:

$$
\begin{equation*}
\pi_{1}(X)=\underset{\lambda}{*} \pi_{1}\left(X_{\lambda}\right)=\underset{\lambda}{*} \mathbb{Z}=F\left(\left\{x_{\lambda}\right\}\right) \tag{3.30}
\end{equation*}
$$

Recall a closed n-dimensional manifold M is a compact metric space such that every $x \in M$ has a neighborhood homeomorphic to \mathbb{R}^{n}. Then a surface is a connected, closed

Lecture 8; October 1, 2019 2-manifold.

If S_{1} and S_{2} are two surfaces, let $D_{i} \subset S_{i}$ be a disk, define $S_{1} \# S_{2}$ (the connect sum of S_{1} and S_{2}) to be

$$
\begin{equation*}
\mathrm{Cl}\left(\left(S_{1} \backslash D_{1}\right)\right) \cup_{f} \mathrm{Cl}\left(\left(S_{2} \backslash D_{2}\right)\right) \tag{3.31}
\end{equation*}
$$

where f is any homeomorphism $f: \partial D_{1} \rightarrow \partial D_{2}$. One can show that this is well-defined, i.e. the homeomorphism type of $S_{1} \# S_{2}$ is independent of all choices.

Example 3.8. S^{2} and T^{2} are surfaces. Then we can take connect sums to get the closed orientable genus 2 surface $T^{2} \# T^{2}$, and similarly we get the closed orientable genus 3 surface by taking $T^{2} \# T^{2} \# T^{2}$. These look as in Fig. 2.

The projective plane is given by:

$$
\begin{equation*}
\mathbb{P}^{2}=S^{2} /\left\{x \sim-x \forall x \in S^{2}\right\} \tag{3.32}
\end{equation*}
$$

This can be viewed as a Möbius band M with a disk D attached. We could also connect some these together to get what are call the non-orientable surfaces (or one-sided surfaces).

Theorem 3.11. Any surface is homeomorphic to one of the following:

$$
\begin{equation*}
\#_{g} T^{2},(g \geq 0) \quad \#_{k} \mathbb{P}^{2},(k \geq 1) \tag{3.33}
\end{equation*}
$$

Example 3.9 (Surfaces). Recall $\pi_{1}\left(S^{2}\right)=1$ and $\pi_{1}\left(T^{2}\right)=\mathbb{Z}^{2}$.
If we consider the wedge of two circles (a and b) we can also build a Torus by attaching a disk, so we get

$$
\begin{equation*}
\pi_{1}\left(T^{2}\right)=\left\langle a, b \mid a b a^{-1} b^{-1}=1\right\rangle \cong \mathbb{Z}^{2} \tag{3.34}
\end{equation*}
$$

Now we want to calculate the fundamental group of a closed orientable surface of any genus. First consider the $2 g$ curves in Fig. 3. Call a neighborhood of these loops $N . N$ itself is shown in the bottom of Fig. 3. Notice that N strong deformation retracts to the wedge of $2 g$ circles, so we get:

$$
\begin{equation*}
\pi_{1}(N)=F_{2 g}=F\left(a_{1}, b_{1}, \ldots, a_{g}, b_{g}\right) \tag{3.35}
\end{equation*}
$$

For $f: S^{1} \rightarrow \partial N \subset N$ the attaching map we have

$$
\begin{equation*}
f_{*}(\text { gen. })=\prod_{i=1}^{g}\left[a_{i}, b_{i}\right] \in \pi_{1}(N)=F\left(a_{1}, b_{1}, \ldots, a_{g}, b_{g}\right) \tag{3.36}
\end{equation*}
$$

where $[g, h]=g h g^{-1} h^{-1}$. So by van Kampen we get:

$$
\begin{equation*}
\pi_{1}\left(\#{ }_{g} T^{2}\right)=\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g} \mid \prod_{i=1}^{g}\left[a_{i}, b_{i}\right]=1\right\rangle \tag{3.37}
\end{equation*}
$$

Note also that $\#_{g} T^{2}$ can also be viewed as in Fig. 4.
This tells us that it is a cell complex with one 0 -cell, $2 g 1$-cells, and one 2-cell.
Example 3.10. Recall $\mathbb{P}^{2}=S^{2} /(x \sim-x)$. We can view S^{2} as being two disks glued together along $S^{1} \times I$. Then we can view \mathbb{P}^{2} as a Möbius band B with a disk glued in. Recall $\pi_{1}(B) \simeq \mathbb{Z}$ so this disk kills certain classes and we get

$$
\begin{equation*}
\pi_{1}\left(\mathbb{P}^{2}\right)=\left\langle x \mid x^{2}=1\right\rangle \simeq \mathbb{Z} / 2 \mathbb{Z} \tag{3.38}
\end{equation*}
$$

Example 3.11. The Klein bottle ${ }^{3.2}$ is glued out of two copies of \mathbb{P}^{2}. Recall it was the quotient of a square as in Fig. 5, where it is also shown as the union of two Möbius bands. We know:

$$
\begin{equation*}
\pi_{1}(K B)=\left\langle a, b \mid a b a^{-1} b=1\right\rangle \tag{3.39}
\end{equation*}
$$

but we also know:

$$
\begin{equation*}
\pi_{1}\left(\mathbb{P}^{2} \# \mathbb{P}^{2}\right)=\left\langle x, y \mid x^{2}=y^{2}\right\rangle \tag{3.40}
\end{equation*}
$$

Exercise 3.1. Show these groups are isomorphic.
Now we can connect sum an arbitrary number of projective planes to get:

$$
\begin{equation*}
\#_{k} \mathbb{P}^{2} \cong N \cup D^{2} \tag{3.41}
\end{equation*}
$$

where N is pictured in Fig. 6.

[^7]

Figure 3. Top: Two "handles" of a closed surface. If we take a neighborhood of the two loops in each handle, the complement is just a disk. Bottom: A better picture of the neighborhood of these loops. Note this space strong deformation retracts to the wedge of $2 g$ copies of S^{1}.

Figure 4. We can quotient this polygon to get a closed orientable genus g surface.

Then by van Kampen we get:

$$
\begin{equation*}
\pi_{1}\left(\#_{k} \mathbb{P}^{2}\right)=\left\langle a_{1}, \ldots, a_{k} \mid \prod_{i=1}^{k} a_{i}^{2}=1\right\rangle \tag{3.42}
\end{equation*}
$$

We can also view this as a quotient space as in Fig. 7.
This tells us this has a cell-composition with one 0-cell, k 1-cells, and one 2-cell.
Let G be a group. Then the commutator subgroup, $[G, G]$, is the subgroup generated by $\{[g, h] \mid g, h \in G\}$. Note that $[G, G] \triangleleft G$ and $G /[G, G]=G_{\text {ab }}$ is abelian. Call this the abelianization of G. Let A be an abelian group and α be a group homomorphism. Then

Figure 5. The Klein bottle viewed as a quotient of the square, and as the union of two Möbius bands.

Figure 6. We can view the connect sum of k copies of \mathbb{P}^{2} as being a disk glued to this space N.

Figure 7. We can quotient this square as indicated to get the projective plane. In fact we can view all connect sums of copies of \mathbb{P}^{2} as quotients of polygons. This is the non-orientable analogue to Fig. 4.

Figure 8. (Left) The trefoil knot.
clearly $G_{\text {ab }}$ satisfies

i.e. there exists a unique $\varphi: G_{\mathrm{ab}} \rightarrow A$ such that $\alpha=\varphi \pi$.

Note that $[G, G]$ is also a characteristic subgroup, which means $G \simeq H$ implies $G_{\mathrm{ab}} \simeq$ H_{ab}.

Theorem 3.12. The surfaces listed are pairwise non-homeomorphic.
Proof. $\left(\pi_{1}\left(\#_{g} T^{2}\right)\right)_{\mathrm{ab}}$ is the free abelian group on $2 g$ generators, i.e. $\underset{2 g}{\bigoplus} \mathbb{Z}$. On the other hand, $\left(\pi_{1}\left(\#_{k} \mathbb{P}^{2}\right)\right)_{\mathrm{ab}}$ is an abelian group with generators a_{1}, \ldots, a_{k} with the relation

$$
\begin{equation*}
2\left(a_{1}+a_{2}+\ldots+a_{k}\right)=0 \tag{3.44}
\end{equation*}
$$

Then $\left\{a_{1}, a_{2}, \ldots, a_{1}+a_{2}+\ldots a_{k}\right\}$ is a \mathbb{Z} basis for the free abelian group on $\left\{a_{1}, \ldots, a_{k}\right\}$ which means

$$
\begin{equation*}
\left(\pi_{1}\left(\#_{k} \mathbb{P}^{2}\right)\right)_{\mathrm{ab}} \cong \mathbb{Z}^{k-1} \oplus \mathbb{Z} / 2 \mathbb{Z} \tag{3.45}
\end{equation*}
$$

Therefore the surfaces listed have pairwise non-isomorphic abelianized fundamental groups and are therefore not homeomorphic.

4. Knot groups

A $k n o t^{3.3}$ is a smooth subset $K \subset S^{3}$ such that $K \cong S^{1}$. See Fig. 8 for the example of the trefoil knot. We say $K_{1} \simeq K_{2}$ if there exists a homeomorphism $h: S^{3} \rightarrow S^{3}$ such that $h\left(K_{1}\right)=K_{2}$.

The group of K is $\pi(K)=\pi_{1}\left(S^{3} \backslash K\right)$. Then $K_{1} \sim K_{2}$ implies $S^{3} \backslash K_{1} \cong S^{3} \backslash K_{2}$, which implies $\pi\left(K_{1}\right) \cong \pi\left(K_{2}\right)$.

[^8]

Figure 9. The square knot (top) and the granny knot (bottom). They are both connect sums of the trefoil.

Figure 10. The connect sum of two knots K_{1} and K_{2}.

EXAMPLE 3.12. For K the unknot, we have $\pi(K) \cong \mathbb{Z}$. Essentially using van Kampen's theorem one can then show that the group of the trefoil is

$$
\begin{equation*}
\langle a, b \mid a b a=b a b\rangle \tag{3.46}
\end{equation*}
$$

which is not \mathbb{Z}, so it is not the unknot.
In fact we also have:
Lemma 3.13 (Dehn). K is trivial iff $\pi(K) \cong \mathbb{Z}$.
One might wonder if $\pi(K) \cong \pi\left(K^{\prime}\right)$ implies $K \sim K^{\prime}$. This is not true.
Counterexample 2. Consider the square knot and granny knot in Fig. 9. These have the same group but $K \nsim K^{\prime}$.

We can also connect sum knots. The idea is to cut out a small piece out of each and then past the gaps together as in Fig. 10.

We say K is prime if $K=K_{1} \# K_{2}$ implies either K_{1} or K_{2} is trivial.

Figure 11. The 5, 2 torus knot. (Photo from the knot atlas.)
Theorem 3.14. Let K be prime. Then $\pi(K) \cong \pi\left(K^{\prime}\right)$ implies $K \sim K^{\prime}$.
Example 3.13 (Torus knots). Let $p, q \geq 1$ relatively prime. Then identify the ends of a solid cylinder $I \times D^{2}$ by $2 \pi p / q$. This gives a solid torus for any p, q. Now take q arcs in $S^{1} \times I \hookrightarrow D^{2} \times I$ given by

$$
\begin{equation*}
\left\{\frac{2 \pi k}{q}\right\} \times I \tag{3.47}
\end{equation*}
$$

for $k=0,1, \ldots, q-1$. In the quotient space $D^{2} \times S^{1}$, this gives a circle $K_{p, q} \subset \partial\left(D^{2} \times S^{1}\right)$. This is called the p, q torus knot $T_{p, q} \subset S^{3}$. For example the trefoil is $T_{2,3}$. another example is in Fig. 11.

We can decompose $S^{3}=V \cup W$ where V, W are solid tori $D^{1} \times S^{1}$. Write
Lecture 9; October

$$
\begin{equation*}
A=T \backslash K_{p, q} \cong S^{1} \times \mathbb{R} \tag{3.48}
\end{equation*}
$$

Then

$$
\begin{equation*}
S^{3} \backslash K_{p, q}=\left(V \backslash K_{p, q}\right) \cup_{A}\left(W \backslash K_{p, q}\right) \tag{3.49}
\end{equation*}
$$

so we can apply van Kampen. In other words $\pi\left(K_{p, q}\right)$ is the push-out:

which means

$$
\begin{equation*}
\pi_{1}\left(K_{p, q}\right)=G_{p, q} \cong\left\langle x, y \mid x^{p}=y^{q}\right\rangle \tag{3.51}
\end{equation*}
$$

REmARK 3.12. If p or $q=1 K_{p, q}$ is the unknot.
ThEOREM 3.15. (1) If $p, q>1$ then $K_{p, q}$ is non-trivial.
(2) $K_{p, q} \sim K_{p^{\prime}, q^{\prime}}$ iff $\{p, q\}=\left\{p^{\prime}, q^{\prime}\right\}$.

Proof. (1) π (trivial knot) $=\mathbb{Z}$. Suppose $p, q>1$. Then

$$
\begin{equation*}
G_{p, q}=\left\langle x, y \mid x^{p}=y^{q}\right\rangle \tag{3.52}
\end{equation*}
$$

has quotient
$\left\langle x, y \mid x^{p}=y^{q}=1\right\rangle=\left\langle x, y \mid x^{p}=1, y^{q}=1\right\rangle \cong\left\langle x \mid x^{p}=1\right\rangle *\left\langle y \mid y^{q}=1\right\rangle \cong \mathbb{Z} / p \mathbb{Z} * \mathbb{Z} / q \mathbb{Z}$
which is non-abelian, so this cannot be \mathbb{Z}, and therefore K cannot be trivial.
(2) Assume $p, q>1$. In $G_{p, q}$, let $z=x^{p}=y^{q}$. Clearly z commutes with $x+y$. Therefore $z \in Z\left(G_{p, q}\right)$, so $\langle\langle z\rangle\rangle=(z)$, and

$$
\begin{equation*}
G_{p, q} / Z=\left\langle x, y \mid x^{p}=x^{q}=1\right\rangle \cong \mathbb{Z} / p \mathbb{Z} * \mathbb{Z} / q \mathbb{Z} \tag{3.54}
\end{equation*}
$$

But $Z\left(\mathbb{Z}_{p} * \mathbb{Z}_{q}\right)=1$, so $(z)=Z\left(G_{p, q}\right)$. In other words:

$$
\begin{equation*}
G_{p, q} / Z\left(G_{p, q}\right) \cong \mathbb{Z}_{p} * \mathbb{Z}_{q} \tag{3.55}
\end{equation*}
$$

which means $G_{p, q} \cong G_{p^{\prime}, q^{\prime}}$ which implies $\mathbb{Z}_{p} * \mathbb{Z}_{q} \cong \mathbb{Z}_{p^{\prime}} * \mathbb{Z}_{q^{\prime}}$. Considering elements of finite order (Hatcher $\S 1.2$, exercise 1) we get that $\{p, q\}=\left\{p^{\prime}, q^{\prime}\right\}$.

Remark 3.13. These are the only knots such that the group has nontrivial center.
Theorem 3.16. For any group G, there exists a path-connected 2-complex X with $\pi_{1}(X) \cong G$.

Proof. G has a presentation $\left\langle\left\{x_{\lambda}\right\} \mid\left\{r_{\mu}\right\}\right\rangle$ for $r_{\mu} \in F\left(\left\{x_{\lambda}\right\}\right)$. Then let

$$
\begin{equation*}
W=\bigvee_{\lambda} S_{\lambda}^{1} \tag{3.56}
\end{equation*}
$$

This means $\pi_{1}(W) \cong F\left(\left\{x_{\lambda}\right\}\right)$. Attach 2-cells $\left\{D_{\mu}\right\}$, with attaching maps

$$
\begin{equation*}
f_{\mu}:\left(S^{1}, 1\right) \rightarrow\left(W, x_{0}\right) \tag{3.57}
\end{equation*}
$$

such that $f_{\mu_{*}}($ gen $)=r_{\mu} \in \pi_{1}(W)$. Now let

$$
\begin{equation*}
X=W \cup_{f_{\mu}}\left\{2 \text {-cells } D_{\mu}\right\} \tag{3.58}
\end{equation*}
$$

This is a path-connected 2-complex, $\pi_{1}(X) \cong G$ by van Kampen.
THEOREM 3.17. Let $f, g: S^{n-1} \rightarrow Y$ be maps such that $f \simeq g$. Then

$$
\begin{equation*}
Y \cup_{f} D^{n} \simeq Y \cup_{g} D^{n} \tag{3.59}
\end{equation*}
$$

Proof. Let $F: S^{n-1} \times I \rightarrow Y$ be a homotopy with $F_{0}=f, F_{1}=g$. Let $W=$ $Y \cup_{F}\left(D^{n} \times I\right)$. Then we have:

$$
\begin{equation*}
D^{n} \cup_{F} Y=Y \cup_{F_{0}}\left(D^{n} \times\{0\}\right) \subset W \supset Y \cup_{F_{1}}\left(D^{n} \times\{1\}\right)=Y \cup_{g} D^{n} \tag{3.60}
\end{equation*}
$$

There exists a strong deformation retraction

$$
\begin{equation*}
D^{n} \times I \rightarrow D^{n} \times\{0\} \cup S^{n-1} \times I \tag{3.61}
\end{equation*}
$$

Similarly, there exists a strong deformation retraction

$$
\begin{equation*}
D^{n} \times I \rightarrow D^{n} \times\{1\} \cup S^{n-1} \times I \tag{3.62}
\end{equation*}
$$

Figure 12. All three edges get identified with the 1-cell on the left with the indicated orientations. If we identify the bottom edge of the triangle with the 1 -cell on the left, we get the figure on the right of the equality. This is why it is called the dunce hat. At this stage it is obviously contractible, but after making the final identification (indicated with the arrows) it becomes more difficult to see this.

These induce a strong deformation retractions:

Therefore

$$
\begin{equation*}
Y \cup_{f} D^{n} \simeq W \simeq Y \cup_{d} D^{n} \tag{3.64}
\end{equation*}
$$

Example 3.14 (Dunce hat). Consider the space in Fig. 12. The attaching map is homotopic to id : $S^{1} \rightarrow S^{1}$. Therefore

$$
\begin{equation*}
X=S^{1} \cup_{f} D^{2} \simeq S^{1} \cup_{\mathrm{id}} D^{2}=D^{2} \tag{3.65}
\end{equation*}
$$

Therefore X is contractible.

CHAPTER 4

Covering spaces

Let X be a topological space.
Definition 4.1. A map $p: \tilde{X} \rightarrow X$ is a covering projection iff for all $x \in X$, there exists an open neighborhood U of x such that U is evenly covered by p, i.e. $p^{-1}(U)$ is a non-empty disjoint union of open subsets if \tilde{X}, each of which is mapped by p homeomorphically onto U. We call these the sheets over U. We call \tilde{X} the covering space of X.

Remark 4.1. For all $x \in X, p^{-1}(x)$, the fiber over x is a discrete subspace of \tilde{X}.
Example 4.1. (1) id : $X \rightarrow X$
(2) $p: \mathbb{R} \rightarrow S^{1}$ given by $p(x)=e^{2 \pi i x}$ is a covering projection. This is the map we used to calculate $\pi_{1}\left(S^{1}\right)$. See Fig. 1.

EXERCISE 0.1. Let $p: \tilde{X} \rightarrow X$ and $q: \tilde{Y} \rightarrow Y$ be covering projections. Then $p \times q:$ $\tilde{X} \times \tilde{Y} \rightarrow X \times Y$ is a covering projection.

ExERCISE 0.2. X is the quotient:

$$
\begin{equation*}
\tilde{X} /\left(\tilde{x}_{1} \sim \tilde{x}_{2} \Longleftrightarrow p\left(\tilde{x}_{1}\right)=p\left(\tilde{x}_{2}\right)\right) \tag{4.1}
\end{equation*}
$$

with the quotient topology.
Example 4.2. If we map

$$
\begin{equation*}
S^{1} \times S^{1} \longrightarrow S^{1} \times S^{1} \tag{4.2}
\end{equation*}
$$

$$
(\theta, \varphi) \longmapsto(m \varphi, n \varphi)
$$

(for $m, n \geq 1$) we get a covering projection.
Similarly

$$
\begin{align*}
& \mathbb{R} \times \mathbb{R} \longrightarrow S^{1} \times S^{1} \tag{4.3}\\
&(x, y) \longmapsto\left(e^{2 \pi i x}, e^{2 \pi i y}\right)
\end{align*}
$$

is a covering projection. See Fig. 1.
Example 4.3. Consider the connect sum $\#_{4} T^{2}$. The connect sum $\#_{7} T^{2}$ actually forms a covering space of this as in Fig. 2.

EXAMPLE 4.4. \mathbb{R}^{2} is also a covering space for the Klein bottle in a similar way that we constructed a cover for T^{2}. In fact we get a 2-sheet cover $T^{2} \rightarrow K B$.

Lecture 10; October

Figure 1. \mathbb{R}^{2} mapping to T^{2} is a covering projection. Each I^{2} gets quotiented as usual.

Figure 2. The connect sum of 7 tori forms a covering space over the connect sum of 4 tori. In general the connect sum of $2 g-1$ tori is a covering space over the connect sum of g tori.

EXAMPLE 4.5. $q: S^{n} \rightarrow S^{n} /(x \sim-x)=\mathbb{R}^{n}$ is a covering projection.
Example 4.6. The map indicated in Fig. 3 is a covering projection. This is what is called a regular covering space. The group $\mathbb{Z} / 3 \mathbb{Z}$ is acting on \tilde{X}.

Figure 3. The map identifying solid with solid and dashed with dashed (with the indicated orientations) is a covering projection.

EXAMPle 4.7. Consider a different three-fold cover (of the same base as the previous example) which is pictured in Fig. 4. We will eventually call this an irregular covering space.

Example 4.8 (TV antenna). Now consider the covering projection in Fig. 5 of the same base as the previous examples. This has an obvious action of the free group on it. This example is called the TV antenna. ${ }^{4.1}$

Slogan: Taking covering spaces of X corresponds to unwrapping $\pi_{1}(X)$.
For a covering projection $p: \tilde{X} \rightarrow X, f: Y \rightarrow \tilde{X}$ is a lift of a map $f: Y \rightarrow X$ iff the following diagram commutes:

i.e. $p \tilde{f}=f$.

Example 4.9. Map $p: \mathbb{R} \rightarrow S^{1}$ where $p(x)=e^{2 \pi i x}$. Then define $f: I \rightarrow S^{1}$ by $f(t)=e^{2 \pi i t}(t \in I)$. Then for any $n \in \mathbb{Z}, \tilde{f}(t)=t+n$ is a life of f.
4.1"When TV first arrived it was going to be this great tool for education. Right. . ."

Figure 4. Another example of a three-fold covering space.

Figure 5. The Cayley graph of the free group on two generators. This can be viewed as a covering space for the same base as above. Figure from wikipedia.

Lemma 4.1 (Unique lifting). Let $p_{\tilde{\sim}}: \tilde{X} \rightarrow X$ be a covering projection and $f: Y \rightarrow X$ be a map, where Y is connected. Let $\tilde{f}, \tilde{g}: Y \rightarrow \tilde{X}$ be lifts of f such that $\tilde{f}\left(y_{0}\right)=\tilde{g}\left(y_{0}\right)$ for some $y_{0} \in Y$. Then $\tilde{f}=\tilde{g}$.

Proof. Let

$$
\begin{equation*}
A=\{y \in Y \mid \tilde{f}(Y)=\tilde{g}(y)\} \quad D=\{y \in Y \mid \tilde{f}(y) \neq \tilde{g}(y)\} \tag{4.5}
\end{equation*}
$$

Then $Y=A \amalg D$ and $A \neq \emptyset$ by hypothesis. We will show that A and D are both open. Therefore $A=Y$ since Y is connected.
(i) A is open: Let $y \in A, U$ be an evenly covered open neighborhood of $f(y) \in X$. Then $\tilde{f}(y)=\tilde{g}(y)$ are in some sheet \tilde{U}. Then

$$
\begin{equation*}
\tilde{f}^{-1}(\tilde{U}) \cap \tilde{g}^{-1}(\tilde{U}) \tag{4.6}
\end{equation*}
$$

is an open neighborhood of $Y \subset A$.
(ii) D is open: the picture here is the same. But now $\tilde{f}(y)$ and $\tilde{g}(y)$ are in different sheets, since otherwise they would agree. Then $\tilde{f}^{-1}(\tilde{U}) \cap \tilde{g}^{-1}(\tilde{V})$ is an open neighborhood of $y \in Y$, contained in D.

Theorem 4.2 (Homotopy lifting). Let $p: \tilde{X} \rightarrow X$ be a covering projection and $f: Y \rightarrow$ X a map with lift $\tilde{f}: Y \rightarrow \tilde{X}$ and $F: Y \times I \rightarrow X_{\tilde{\sim}}$ a homotopy such that $F_{0}=\underset{\tilde{F}}{f}$. Then F has a unique lift $\tilde{F}: Y \times I \rightarrow \tilde{X}$ such that $\tilde{F}_{0}=\tilde{f}$, i.e. there exists a unique \tilde{F} such that the following diagram commutes:

Proof. Uniqueness: $\{y\} \times I$ is connected so $\left.\tilde{F}\right|_{\{y\} \times I}$ is unique for all $y \in Y$ (from Lemma 4.1). Therefore \tilde{F} is unique.

Existence: This is similar to the proof of Lemma 2.9. Let $y \in Y$. By compactness of I, we can write it as a union $I=I_{1} \cup \ldots \cup I_{n}$ such that $F\left(\{y\} \times I_{i}\right)$ is contained in some evenly covered $U_{i} \subset X$.

Then we can define \tilde{F} on $\{y\} \times I$ such that $\tilde{F}(\{y\} \times I) \subset \tilde{U}_{i}$ for some sheet over U_{i}. Then I_{i} is compact, which means there exists a neighborhood N_{i} of y in Y such that $\tilde{F}\left(N_{i} \times I_{i}\right) \subset \tilde{U}_{i}$. Let

$$
\begin{equation*}
N=N_{y}=\bigcap_{i=1}^{n} N_{i} \tag{4.8}
\end{equation*}
$$

Then N is a neighborhood of $y \in \underset{\tilde{F}}{ } Y$ such that $F\left(N \times I_{i}\right) \subset U_{i}(1 \leq i \leq n)$. So now we can define $\tilde{F}\left(N \times I_{i}\right)$ (contained in $\left.\tilde{U}_{i}\right)$ for all i. Therefore \tilde{F}_{y} is defined on $N_{y} \times I$.

Claim 4.1. The \tilde{F}_{y} s fit together to give $\tilde{F}: Y \times I \rightarrow \tilde{X}$.
Let $z \in N_{y} \cap N_{y^{\prime}}$. Then $\tilde{F}_{y} \times \tilde{F}_{y^{\prime}}$ are defined on $\{z\} \times I$ and

$$
\begin{equation*}
\tilde{F}_{Y}(z, 0)=\tilde{f}(z)=\tilde{F}_{y^{\prime}}(z, 0) \tag{4.9}
\end{equation*}
$$

$\{z\} \times I$ is connected, and therefore by Lemma 4.1 \tilde{F}_{y} and $F_{y^{\prime}}$ agree on $\{z\} \times I$, and therefore they agree on $N_{y} \cap N_{y^{\prime}}$, so setting $\tilde{F}(y, t)=\tilde{F}_{y}(y, t)$ gives a well-defined map $\tilde{F}: Y \times I \rightarrow \tilde{X}$ and $\tilde{F}_{0}=\tilde{f}$.
Corollary 4.3 (Path lifting). Let $p:\left(\tilde{X}, \tilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a covering projection.
(1) Let $\sigma: I \rightarrow X$ be a path such that $\sigma(0)=x_{0}$. Then σ has a unique lift $\tilde{\sigma}: I \rightarrow \tilde{X}$ such that $\tilde{\sigma}(0)=\tilde{x}_{0}$.
(2) If $\sigma, \tau: I \rightarrow X$ are paths such that $\sigma(0)=\tau(0)=x_{0}$ and $\sigma \simeq \tau(\operatorname{rel} \partial I)$ then $\tilde{\sigma}(1)=\tilde{\tau}(1)$ and $\tilde{\sigma} \simeq \tilde{\tau}(\operatorname{rel} \partial I)$.

Proof. (1) Apply Theorem 4.2 with $Y=\{\mathrm{pt}\}$.
(2) Apply Theorem 4.2 with $Y=I$.

Corollary 4.4. Let $p:\left(\tilde{X}, \tilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a covering projection. Then $p_{*}: \pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right) \rightarrow$ $\pi_{1}\left(X, x_{0}\right)$ is injective.

Proof. Let $\hat{\sigma}$ be a loop in \tilde{X} at \tilde{x}_{0} such that $p_{*}[\hat{\sigma}]=1 \in \pi_{1}\left(X, x_{0}\right)$. By hypothesis $\hat{\sim} c_{x_{0}}(\operatorname{rel} \partial I) . \quad \hat{\sigma}$ is the lift $\tilde{\sigma}$ of σ in Corollary 4.3. Therefore by Corollary $4.3 \hat{\sigma} \simeq \tilde{c}_{x_{0}}=$ $c_{\tilde{x}_{0}}(\operatorname{rel} \partial I)$. Therefore $[\hat{\sigma}]=1 \in \pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right)$.

Lecture 11; October 10, 2019

THEOREM 4.5 (Lifting criterion for loops). Let $p:\left(\tilde{X}, \tilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a covering projection. Then a loop σ in X at x_{0} lifts to a loop in \tilde{X} at \tilde{x}_{0} iff

$$
\begin{equation*}
[\sigma] \in p_{*}\left(\pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right)\right)\left(<\pi_{1}\left(X, x_{0}\right)\right) \tag{4.10}
\end{equation*}
$$

Definition 4.2. A space Y is locally path-connected (lpc) iff for all $y \in Y$ and for all neighborhoods U of $y \in Y$, there exists some neighborhood V of y such that $V \subset U$ and V is path-connected.

Example 4.10. The comb space is not lpc.
REmARK 4.2. (1) Path connected does not imply locally-path-connected (e.g. the comb space).
(2) Theorem 4.6 is false if we omit the lpc hypothesis.

THEOREM 4.6 (Lifting criterion). Let $p:\left(\tilde{X}, \tilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a covering projection. Let Y be connected and lpc and let $f:\left(Y, y_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a map. Then f has a lift $\tilde{f}:\left(Y, y_{0}\right) \rightarrow\left(\tilde{X}, \tilde{x}_{0}\right)$ iff

$$
\begin{equation*}
f_{*}\left(\pi_{1}\left(Y, y_{0}\right)\right)<p_{*}\left(\pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right)\right)\left(<\pi_{1}\left(X, x_{0}\right)\right) \tag{4.11}
\end{equation*}
$$

Proof. (\Longrightarrow) : This direction is clear:

(\Longleftarrow) : Define \tilde{f} as follows. Given $y \in Y, Y$ lps, let α be a path in Y form y_{0} to y. Then $f \alpha$ is a path in X from x_{0} to $f(y)$. Let $\widetilde{f \alpha}$ be the lift of $f \alpha$ such that

$$
\begin{equation*}
\widetilde{f \alpha}(0)=\tilde{x}_{0} \tag{4.13}
\end{equation*}
$$

Then define

$$
\begin{equation*}
\tilde{f}(y)=\widetilde{f \alpha}(1) \tag{4.14}
\end{equation*}
$$

First we show this is well-define. For α and β paths in Y from y_{0} to y we have

$$
\begin{equation*}
\alpha \simeq(\alpha * \bar{\beta} * \beta)=\underbrace{\sigma}_{\alpha * \bar{\beta}} * \beta(\operatorname{rel} \partial I) \tag{4.15}
\end{equation*}
$$

which means

$$
\begin{equation*}
f \alpha \simeq f \sigma * f \beta(\operatorname{rel} \partial I) \tag{4.16}
\end{equation*}
$$

But

$$
\begin{equation*}
[f \sigma]=f_{*}[\sigma] \in p_{*} \pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right) \tag{4.17}
\end{equation*}
$$

by hypothesis. Therefore by Theorem $4.5 f \sigma$ lifts to a loop $\widetilde{f \sigma}$ in \tilde{X} at \tilde{x}_{0}. Therefore by Corollary 4.3 we have that $\widetilde{f \alpha} \simeq \widetilde{f \sigma} * \widetilde{f \beta}(\operatorname{rel} \partial I)$, so $\widetilde{f \alpha}(1)=\widetilde{f \beta}(1)$.

Now we show \tilde{f} is continuous. Let $y \in Y$. Any neighborhood of $\tilde{f}(y)$ contains a neighborhood \tilde{U}, a sheet over an evenly covered neighborhood U of $f(y) . f$ continuous implies that there exists a neighborhood V of $y \in Y$ such that $f(V) \subset U$. Then Y lpc implies there exists a path connected neighborhood W of $y, W \subset V$. Therefore for all $y^{\prime} \in W$ there exists a path β in W from y to y^{\prime}. Then $f \beta$ is a path in U from $f(y)$ to $f\left(y^{\prime}\right)$. But $\left.p\right|_{\tilde{U}}: \tilde{U} \rightarrow U$ is a homeomorphism, so $f \beta$ lifts to a path $\widetilde{f \beta}$ in \tilde{U} from $\tilde{f}(y)$ to $\tilde{f}\left(y^{\prime}\right)$. Therefore $\tilde{f}(W) \subset \tilde{U}$, so \tilde{f} is continuous.

Corollary 4.7. If Y is lpc and simply-connected then any map $f: Y \rightarrow X$ lifts.
Lemma 4.8. Let $p:\left(\tilde{X}, \tilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a covering projection, \tilde{X} path-connected. Let $\tilde{x}_{1} \in p^{-1}\left(x_{0}\right)$. Then $p_{*} \pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right)$ and $p_{*} \pi_{1}\left(\tilde{X}, \tilde{x}_{1}\right)$ are conjugate in $\pi_{1}\left(X, x_{0}\right) .{ }^{4.2}$

Proof. For $\tilde{X} \mathrm{pc}$, let α be a path in \tilde{X} from \tilde{x}_{0} to \tilde{x}_{1}. This gives us

$$
\begin{equation*}
\alpha_{\#}: \pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right) \stackrel{\cong}{\rightrightarrows} \pi_{1}\left(\tilde{X}, \tilde{x}_{1}\right) \tag{4.18}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{\#}([\sigma])=[\bar{\alpha} * \sigma * \alpha] \tag{4.19}
\end{equation*}
$$

which means

$$
\begin{equation*}
p_{*}\left(\alpha_{\#}[\sigma]\right)=[\overline{p \alpha} * p \sigma * p \alpha] . \alpha^{-1} p_{*}([\sigma]) a \tag{4.20}
\end{equation*}
$$

where $p \alpha$ is a loop in X at x_{0}, so we can write $[p \alpha]=a \in \pi_{1}\left(X, x_{0}\right)$ and actually

$$
\begin{equation*}
p_{*}\left(\alpha_{\#}[\sigma]\right)=[\overline{p \alpha} * p \sigma * p \alpha] \cdot \alpha^{-1} p_{*}([\sigma]) a . \tag{4.21}
\end{equation*}
$$

[^9]
1. Covering transformations

An isomorphism of covering spaces $\left(\tilde{X}, p_{1}\right) \stackrel{\cong}{\Longrightarrow}\left(\tilde{X}_{2}, p_{2}\right)$ is a homeomorphism $f: \tilde{X}_{1} \rightarrow$ \tilde{X}_{2} such that

commutes.
Let $g=f^{-1}$. Then f is said to be a lift of p_{1} and f is said to be a lift of p_{2}. Therefore Theorem 4.6 gives

TheOrem 4.9. For $\left(\tilde{X}_{i}, p_{i}\right)$ a covering space of X, \tilde{X}_{i} connected and lpc, then $\left(\tilde{X}_{1}, p_{1}\right) \cong$ $\left(\tilde{X}_{2}, p_{2}\right)$ by a homeomorphism taking \tilde{x}_{1} to \tilde{x}_{2} iff

$$
\begin{equation*}
p_{1 *}\left(\pi_{1}\left(\tilde{X}_{1}, \tilde{x}_{1}\right)\right)=p_{2 *}\left(\pi_{1}\left(\tilde{X}_{2}, \tilde{x}_{2}\right)\right) \tag{4.23}
\end{equation*}
$$

This and Lemma 4.8 gives us the forward implication of the following: The other implication is left as an exercise.

THEOREM 4.10. Let $\left(\tilde{X}_{i}, p_{i}\right)$ be as above. Then $\left(\tilde{X}_{1}, p_{1}\right) \cong\left(\tilde{X}_{2}, p_{2}\right)$ iff for all $\tilde{x}_{i} \in \tilde{X}_{i}$ such that $p_{1}\left(\tilde{x}_{1}\right)=p_{2}\left(\tilde{x}_{2}\right) \quad\left(=x_{0} \in X\right.$, say $)$

$$
\begin{equation*}
p_{1 *}\left(\pi_{1}\left(\tilde{X}_{1}, \tilde{x}_{1}\right)\right) \quad \text { and } \quad p_{2 *}\left(\pi_{1}\left(\tilde{X}_{2}, \tilde{x}_{2}\right)\right) \tag{4.24}
\end{equation*}
$$

are conjugate.
DEFINITION 4.3. A covering transformation of (\tilde{X}, p) is an automorphism of (\tilde{X}, p), i.e. a homeomorphism $f: \tilde{X} \rightarrow \tilde{X}$ such that $p f=p$:

REmARK 4.3. (1) A covering transformation is a lift of p.
(2) The covering transformations of (\tilde{X}, p) form a group under composition.

Digression 1. Now we learn some basics of group actions. Let Y be a space and G a group. A left action of G on Y is a map

$$
\begin{aligned}
G \times Y & \longrightarrow \\
(g, y) & \longmapsto g y
\end{aligned}
$$

such that
(1) $1 y=y$
(2) $\forall y \in Y, g(h(y))=(g h)(y)$
(3) $\forall g \in G, y \mapsto g y$ is continuous.

It follows from this that for all $g \in G, y \mapsto g y$ is a homeomorphism $Y \rightarrow Y$. So a left action of G on Y is equivalent to a homeomorphism $G \rightarrow \operatorname{Hom}(Y, Y)$. The action is transitive if for all $y_{1}, y_{2} \in Y$ there exists $g \in G$ such that $g\left(y_{1}\right)=y_{2}$. Define a equivalence relation on Y by $y_{1} \sim y_{2}$ iff there exists some $g \in G$ such that $g\left(y_{1}\right)=y_{2}$. This gives us a quotient space:

$$
\begin{equation*}
Y / G=Y /\left(y_{1} \sim y_{2}\right) \tag{4.27}
\end{equation*}
$$

with the quotient topology. Note that if G is transitive, $Y / G=\mathrm{pt}$.
Now we return to covering transformations. Since these form a group $G(\tilde{X}, p)$, we have a left group action of this on \tilde{X}. By unique lifting, if \tilde{X} is connected and $g_{1}, g_{2} \in G(\tilde{X})$ such that $g_{1}(\tilde{x})=g_{2}(\tilde{x})$ for some $\tilde{x} \in X$, then $g_{1}=g_{2}$. Equivalently, for all $\tilde{x}_{1}, \tilde{x}_{2} \in \tilde{X}$, there is at most one covering transformation taking $\tilde{x}_{1} \rightarrow \tilde{x}_{2}$.

EXAMPLE 4.11. Consider the covering space $p: \mathbb{R} \rightarrow S^{1}$. For any $n \in \mathbb{Z}$ we can map $\mathbb{R} \rightarrow \mathbb{R}$ by sending $t \mapsto t+n$. This is a covering transformation. But there is at most one such transformation, as we just noticed, which means this is all of them:

$$
\begin{equation*}
G(\mathbb{R})=\left\{g_{n} \mid n \in \mathbb{Z}\right\} \cong \mathbb{Z} \tag{4.28}
\end{equation*}
$$

In addition, the quotient is $\mathbb{R} / G(\mathbb{R}) \cong S^{1}$.
Example 4.12. Recall Example 4.6. There is a $\mathbb{Z} / 3 \mathbb{Z}$ action on \tilde{X}, so $G(\tilde{X}) \cong \mathbb{Z} / 3 \mathbb{Z}$, and

$$
\begin{equation*}
\tilde{X} /(\mathbb{Z} / 3 \mathbb{Z}) \cong X \tag{4.29}
\end{equation*}
$$

Example 4.13. Recall Example 4.7. In this case $G(\tilde{X})=\{1\}$.
Theorem 4.9 immediately gives us:
Theorem 4.11. Let $p: \tilde{X} \rightarrow X$ be a covering projection. Suppose \tilde{X} is connected and lpc, $x_{0} \in X$, and $\tilde{x}_{1}, \tilde{x}_{2} \in p^{-1}\left(x_{0}\right)$. Then there exists a covering transformation of \tilde{X} taking \tilde{x}_{1} to \tilde{x}_{2} iff $p_{*} \pi_{1}\left(\tilde{X}, \tilde{x}_{1}\right)=p_{*} \pi_{1}\left(\tilde{X}, \tilde{x}_{2}\right)$.

Example 4.14. Consider Example 4.7 again. In this case $H_{i}=p_{*} \pi_{1}\left(\tilde{X}, \tilde{x}_{i}\right)$ for $i=$ $1,2,3$ are all distinct. We know these are contained in $F(a, b)$. Then we can explicitly write them as the subgroups generated by:

$$
\begin{align*}
& H_{1}=\left\langle b, a^{2}, a b^{2} a^{-1},(a b) a\left(b^{-1} a^{-1}\right)\right\rangle \tag{4.30}\\
& H_{2}=\left\langle a^{2}, b^{2}, a b a^{-1}, b a b^{-1}\right\rangle \tag{4.31}\\
& H_{3}=\left\langle a, b^{2}, b a^{1} b^{-1},(b a) b\left(a^{-1} b^{-1}\right)\right\rangle . \tag{4.32}
\end{align*}
$$

So these are all distinct, but conjugate in $\pi_{1}(\tilde{X})$.
A covering projection $p:\left(\tilde{X}, \tilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ is regular iff $p_{*} \pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right)$ is normal in $\pi_{1}\left(X, x_{0}\right)$.

Lecture 12; October 15, 2019

REmARK 4.4. If \tilde{X} is path-connected then this is independent of x_{0} and \tilde{x}_{0}. The reason is as follows. Suppose have some $\tilde{x}_{0}, \tilde{x}_{1} \in \tilde{X}$ with $x_{0}=p\left(\tilde{x}_{0}\right), x_{1}=p\left(\tilde{x}_{1}\right)$. Then \tilde{X} path-connected implies there exists a path α in \tilde{X} from \tilde{x}_{0} to \tilde{x}_{1} so we get a commutative diagram

$$
\begin{gather*}
\pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right) \xrightarrow{\alpha_{\#}} \underset{\substack{\cong}}{\cong} \pi_{1}\left(\tilde{X}, \tilde{x}_{1}\right) \\
\downarrow_{p_{*}} \tag{4.33}\\
\pi_{1}\left(X, x_{0}\right) \xrightarrow{(p \alpha)_{\#}} \underset{p_{1}}{\cong} \pi_{1}\left(X, x_{1}\right)
\end{gather*}
$$

where these are isomorphisms from Corollary 2.14.
Lemma 4.8 and Theorem 4.11 immediately give:
Theorem 4.12. Let $p: \tilde{X} \rightarrow X$ be a covering projection; \tilde{X} connected, lpc; $x_{0} \in X$. Then p is regular iff $G(\tilde{X}, p)$ acts transitively on $p^{-1}\left(x_{0}\right)$.

Recall for G a group and $H<G$ a subgroup, the normalizer of H in G is

$$
\begin{equation*}
N(H)=\left\{g \in G \mid g^{-1} H g=H\right\} \tag{4.34}
\end{equation*}
$$

Note that H is clearly always normal in its normalizer, and H is a normal subgroup if its normalizer is all of G.

TheOrem 4.13. Let $p:\left(\tilde{X}, \tilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a covering projection, \tilde{X} connected and lpc. Let $H=p_{*} \pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right)<\pi_{1}\left(X, x_{0}\right)$. Then

$$
\begin{equation*}
G(\tilde{X}, p) \cong N(H) / H \tag{4.35}
\end{equation*}
$$

Corollary 4.14. Let p be as above. If the covering is regular, then

$$
\begin{equation*}
G(\tilde{X}, p) \cong \pi_{1}\left(X, x_{0}\right) / p_{*} \pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right) \tag{4.36}
\end{equation*}
$$

In particular if $\pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right)=1$, then

$$
\begin{equation*}
G(\tilde{X}, p) \cong \pi_{1}\left(X, x_{0}\right) \tag{4.37}
\end{equation*}
$$

Example 4.15. Consider the usual covering $p: \mathbb{R} \rightarrow S^{1}$. Then we have

$$
\begin{equation*}
G(\mathbb{R}, p) \cong \mathbb{Z} \cong \pi_{1}\left(S^{1}, 1\right) \tag{4.38}
\end{equation*}
$$

Example 4.16. Recall Example 4.7. For each possible basepoint in \tilde{X} we had three subgroups $H_{i}=p_{*} \pi_{1}\left(\tilde{X}, \tilde{x}_{i}\right)$. Recall $\pi_{1}\left(X, x_{0}\right) \cong F_{2}$. Now we have $G(\tilde{X}, p)=\{1\}$ and therefore from Theorem 4.13 we have

$$
\begin{equation*}
N\left(H_{i}\right)=H_{i} \tag{4.39}
\end{equation*}
$$

Proof of Theorem 4.13. Let $[\sigma] \in N(H), \sigma$ a loop in X at x_{0}. Let $\tilde{\sigma}$ be the lift of σ such that $\tilde{\sigma}(0)=\tilde{x}_{0}$; let $\tilde{x}_{1}=\tilde{\sigma}(1)$.

By the proof of Lemma 4.8:

$$
\begin{equation*}
p_{*} \pi_{1}\left(\tilde{X}, \tilde{x}_{1}\right)=[\sigma]^{-1} H[\sigma]=H \tag{4.40}
\end{equation*}
$$

by assumption. Therefore by Theorem 4.11 there exists a covering transformation $g \in$ $G(\tilde{X}, p)$ such that $g\left(\tilde{x}_{0}\right)=\tilde{x}_{1} . g$ is unique by Remark 4.4.

Define $\varphi: N(H) \rightarrow G(\tilde{X}, p)$ by sending $\varphi([\sigma])=g$. Now we need to check that φ is well-defined. Suppose we have two representatives of the same class $[\sigma]=[\tau]$. This means $\sigma \simeq \tau(\operatorname{rel} \partial I)$, which means $\tilde{\sigma} \simeq \tilde{\tau}(\partial I)$, which means $\tilde{\sigma}(1)=\tilde{\tau}(1)$. Now we need to check that φ is a homomorphism. Consider $[\sigma],[\tau] \in N(H)$. These will correspond to $\varphi([\sigma])=g$ and $\varphi([\tau])=h$. This means

$$
\begin{equation*}
g\left(\tilde{x}_{0}\right)=\tilde{x}_{1} \quad h\left(\tilde{x}_{0}\right)=\tilde{x}_{2} \tag{4.41}
\end{equation*}
$$

Then we have $\varphi([\sigma][\tau])=\varphi([\sigma * \tau])$. But we know

$$
\begin{equation*}
\widetilde{\sigma * \tau}=\tilde{\sigma} * g(\tilde{\tau}) \tag{4.42}
\end{equation*}
$$

which means

$$
\begin{equation*}
\widetilde{\sigma * \tau}(1)=g\left(\tilde{x}_{2}\right)=g h\left(\tilde{x}_{0}\right) \tag{4.43}
\end{equation*}
$$

so finally

$$
\begin{equation*}
\varphi([\sigma][\tau])=g h=\varphi([\sigma]) \varphi([\tau]) \tag{4.44}
\end{equation*}
$$

as desired.
Now we want to show φ is onto. Let $g \in G(\tilde{X}, p)$ and $\tilde{\sigma}$ be a path in \tilde{X} from \tilde{x}_{0} to $g\left(\tilde{x}_{0}\right)$. Then $p \tilde{\sigma}=\sigma$ is a loop in X at x_{0}. By Theorem 4.11 and Lemma 4.8 we have

$$
\begin{equation*}
H=p_{*} \pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right)=p_{*} \pi_{1}\left(\tilde{X}, g\left(\tilde{x}_{0}\right)\right)=[\sigma]^{-1} H[\sigma] \tag{4.45}
\end{equation*}
$$

Therefore $[\sigma] \in N(H), \tilde{\sigma}(1)=g\left(\tilde{x}_{0}\right)$. Therefore $\varphi([\sigma])=g$.
Now we show $\operatorname{ker} \varphi=H . \varphi([\sigma])=\operatorname{id} \operatorname{iff} \tilde{\sigma}(1)=\tilde{x}_{0}$ iff $\tilde{\sigma}$ is a loop in \tilde{X} at \tilde{x}_{0}. But this is equivalent to:

$$
\begin{equation*}
[\sigma]=[p \tilde{\sigma}]=p_{*}([\tilde{\sigma}]) \in p_{*} \pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right)=H \tag{4.46}
\end{equation*}
$$

ThEOREM 4.15. Let $p: \tilde{X} \rightarrow X$ be a regular covering projection with \tilde{X} connected and lpc. Write $G=G(\tilde{X}, p)$ for the group of covering transformations. Then there is a homeomorphism

$$
\begin{equation*}
\tilde{X} / G \xrightarrow{\cong} X \tag{4.47}
\end{equation*}
$$

such that

Proof. By Theorem 4.12, if $\tilde{x}, \tilde{y} \in \tilde{X}$ then $p(\tilde{x})=p(\tilde{y})$ iff there is a group element $g \in G$ such that $g(\tilde{x})=\tilde{y}$. By definition, this is the case iff $q(\tilde{x})=q(\tilde{y})$. So we just need to check that p is a quotient map, i.e. that for V open in \tilde{X} we have $p(V)$ open in X. This is left as an exercise.

For "nice" group actions there is a sort of converse to Theorem 4.15. A (left) action of G on Y is a covering space action (CSA) iff for all $y \in Y$ there is some neighborhood U of Y such that if $U \cap g U \neq \emptyset$ for some $g \in G$ then $g=$ id. Note that this certainly implies that the action has no fixed points. It actually turns out to be stronger.

REmark 4.5. (1) This condition is equivalent to $g_{1} U \cap g_{2} U_{2} \neq \emptyset$ iff $g_{1}=g_{2}$.
(2) Let $\tilde{X} \rightarrow X$ be covering projection and \tilde{X} connected and lpc. Then the action of $G(\tilde{X}, p)$ on \tilde{X} is a CSA.
ThEOREM 4.16. Let $G \times Y \rightarrow Y$ be a CSA. Then
(1) The quotient map $p: Y \rightarrow Y / G$ is a regular covering projection,
(2) $G \cong G(Y, p)$; hence
(3) $G \simeq \pi_{1}(Y / G) / p_{*} \pi_{1}(Y)$.

Example 4.17. Consider the antipodal map $a: S^{n} \rightarrow S^{n}$ defined by $a(x)=-x$. Since $a^{2}=$ id a generated a $\mathbb{Z} / 2 \mathbb{Z}$ action on S^{n}. By definition $\mathbb{R P}^{n}=S^{n} /(\mathbb{Z} / 2)$. Clearly the action is a CSA, and therefore the quotient map

$$
\begin{equation*}
p: S^{n} \rightarrow \mathbb{R P}^{n} \tag{4.49}
\end{equation*}
$$

is a covering projection with group of covering transformations isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$.
For $n=0$ this is just a map from two points to one point. For $n=1$ this is a rotation, i.e. it sends $p(\theta)=2 \theta$. The induced map sends $\pi_{1}\left(S^{1}\right)=\mathbb{Z} \xrightarrow{p_{*}} \pi_{1}\left(S^{1}\right)=\mathbb{Z}$ by multiplying by 2 . Then of course the quotient is $\mathbb{Z} / 2 \mathbb{Z}$.

For $n>1$ we have $\pi_{1}\left(S^{n}\right)=1$, which means $\pi_{1}\left(\mathbb{R} \mathbb{P}^{n}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$.
Example 4.18. Let G be the group of homeomorphisms of \mathbb{R}^{2} generated by

$$
\begin{equation*}
h(x, y)=(x+1, y) \quad v(x, y)=(-x, y+1) \tag{4.50}
\end{equation*}
$$

It is easy to see that this is a CSA. Let

$$
\begin{equation*}
R=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\,-\frac{1}{2} \leq x \leq \frac{1}{2}\right., 0 \leq y \leq 1\right\} \tag{4.51}
\end{equation*}
$$

Every points in \mathbb{R}^{2} can be obtained by some point of R after sufficiently many applications of h and v. In particular, \mathbb{R}^{2} / G is some kind of quotient of R. In particular we quotient the edges exactly as in the description of the Klein bottle.

Notice that

$$
\begin{equation*}
h^{m} v^{n}(0,0)=(m, n) \tag{4.52}
\end{equation*}
$$

so certainly we have a bijection $\mathbb{Z} \times \mathbb{Z} \leftrightarrow G$. Now notice that

$$
\begin{equation*}
v h v^{-1}=h^{-1} \tag{4.53}
\end{equation*}
$$

i.e. as a set:

$$
\begin{equation*}
G=\left\{h^{m} v^{n} \mid m, n \in \mathbb{Z}\right\} \tag{4.54}
\end{equation*}
$$

and to find the multiplication we use the rule in (4.53) to get:

$$
\left(h^{m_{1}} v^{n_{1}}\right)\left(h^{m_{2}} v^{n_{2}}\right)= \begin{cases}h^{m_{1}+m_{2}} v^{n_{1}+n_{2}} & n_{1} \text { even } \tag{4.55}\\ h^{m_{1}-m_{2}} v^{n_{1}+n_{2}} & n_{1} \text { odd }\end{cases}
$$

In other words:

$$
\begin{equation*}
\pi_{1}(K B)=\left\langle h, v \mid v h v^{-1}=h^{-1}\right\rangle \tag{4.56}
\end{equation*}
$$

Exercise 1.1. Recall we saw a different presentation for this group by a more direct argument. Show that

$$
\begin{equation*}
\left\langle a, b \mid a^{2} b^{2}=1\right\rangle=\left\langle h, v \mid v h v^{-1}=h^{-1}\right\rangle . \tag{4.57}
\end{equation*}
$$

An n-manifold is a second countable Hausdorff space M such that every $x \in M$ has a neighborhood $\cong \mathbb{R}^{n}$. M is closed if it is compact.

Lecture 13; October
Let $\tilde{M} \rightarrow M$ be a covering projection (such that \tilde{M} is connected). Then we have the following:
(1) If M is an n-manifold, then \tilde{M} is an n-manifold. ${ }^{4.3}$
(2) Suppose \tilde{M} is an n-manifold. Then M is locally euclidean and second countable, but M may not be Hausdorff.

Example 4.19. Let $Y=\mathbb{R}^{2} \backslash\{(x, 0) \mid x \leq 0\}$.
ExERCISE 1.2. Show this is homeomorphic to \mathbb{R}^{2}.
Define a homeomorphism $h: Y \rightarrow Y$ by

$$
\begin{equation*}
h(x, y)=(2 x, y / 2) . \tag{4.58}
\end{equation*}
$$

This generates an action of \mathbb{Z} on Y.
Exercise 1.3. Show this is a CSA.
Therefore the quotient map $p: Y \rightarrow Y / \mathbb{Z}=: X$ is a regular covering projection. We know $Y \cong \mathbb{R}^{2}$ so $\pi_{1}(Y)=1$, so $\pi_{1}(Y / \mathbb{Z}) \cong \mathbb{Z}$. X is locally euclidean, but as it turns out, X is not Hausdorff. ${ }^{4.4}$ The reason is that $p((1,0))$ and $p((0,1))$ cannot be separated. If U is a neighborhood of $(1,0), h^{-n}(U)$ approaches the y-axis as $n \rightarrow \infty$. Similarly, for V a neighborhood of $(0,1)$, then $h^{n}(V)$ approaches the x-axis as $n \rightarrow \infty$. Then the point is that for all U, V there exists n such that $h^{-n}(U) \cap h^{n}(V) \neq \emptyset$.

An action of G on Y is free if $g(y)=y$ for some $Y \in Y$ iff $g=\mathrm{id}$.
ExERCISE 1.4. Show that if G is finite, acts freely on Y, and Y is Hausdorff, then Y / G is Hausdorff.

The upshot is that for M an n-manifold, G finite acting freely on M we have M / G is an n-manifold.

Example 4.20. Consider

$$
\begin{equation*}
S^{3}=\left\{(z, w)\left|z, w \in \mathbb{C},\left|z^{2}\right|+\left|w^{2}\right|=1\right\} \subset \mathbb{C}^{2}\right. \tag{4.59}
\end{equation*}
$$

Let $p, q \in \mathbb{Z}, p \geq 2,(p, q)=1$. Then define $h: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ by

$$
\begin{equation*}
h(z, w)=\left(e^{2 \pi i / p} z, e^{2 \pi i q / p} w\right) \tag{4.60}
\end{equation*}
$$

This fixes the origin, but otherwise this action is free. In particular we can restrict this to the unit sphere to get a free $\mathbb{Z} / p \mathbb{Z}$ action on S^{3}. Therefore the quotient is a three-manifold. In particular

$$
\begin{equation*}
S^{3} \rightarrow S^{3} /(\mathbb{Z} / p \mathbb{Z}) \tag{4.61}
\end{equation*}
$$

[^10]is a regular $\mathbb{Z} / p \mathbb{Z}$-covering projection. $S^{3} /(\mathbb{Z} / p \mathbb{Z})$ is a (closed) three-manifold, $L(p, q)$, called Lens space. Since $\pi_{1}\left(S^{3}\right)=1$, we get that
\[

$$
\begin{equation*}
\pi_{1}(L(p, q)) \cong \mathbb{Z} / p \mathbb{Z} \tag{4.62}
\end{equation*}
$$

\]

Note that $L(2,1)=\mathbb{R} \mathbb{P}^{3}$.
FACT 2 (Reidemeister). $L(p, q) \cong L\left(p^{\prime}, q^{\prime}\right)$ iff $p=p^{\prime}$ and either:

- $q \equiv \pm q^{\prime}(\bmod p)$, or
- $q q^{\prime} \equiv \pm 1(\bmod p)$

The difficult direction of this is the forward implication.
EXAMPLE 4.21. $L(5,1) \neq L(5,2)$, and in fact $L(5,1) \nsucceq L(5,2) . L(7,1) \simeq L(7,2)$, but $L(7,1) \not \equiv L(7,2)$.

FACT 3 (Perelman). Let M and M^{\prime} be closed prime three-manifolds, with $\pi_{1}(M) \cong$ $\pi_{1}\left(M^{\prime}\right)$. Then either $M \cong M^{\prime}$ or $M=L(p, q), M^{\prime}=L\left(p, q^{\prime}\right)$.

The moral is to not be disheartened when you find counterexamples to what you're trying to prove.

2. Existence of covering spaces

Let $p:\left(\tilde{X}, x_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a covering projection. We know

$$
\begin{equation*}
\pi_{1}\left(\tilde{X}, x_{0}\right) \cong p_{*} \pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right)<\pi_{1}\left(X, x_{0}\right) \tag{4.63}
\end{equation*}
$$

Now we might wonder if, given a subgroup of $\pi_{1}\left(X, x_{0}\right)$, there is some covering space \tilde{X} such that $p_{*} \pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right)=H$. This is false.

Say a space X is semi-locally simply-connected (slsc) iff for all $x \in X$ there exists a neighborhood U of x such that

$$
\begin{equation*}
i_{*}: \pi_{1}(U, x) \rightarrow \pi_{1}(X, x) \tag{4.64}
\end{equation*}
$$

is trivial.
Lemma 4.17. Let $p: \tilde{X} \rightarrow X$ be a covering projection, \tilde{X} simply-connected. Then X is slsc.
 $\tilde{x} \in \tilde{U}$ such that $p(\tilde{x})=x$. Then we have

$$
\begin{align*}
& \pi_{1}(\tilde{U}, \tilde{x}) \xrightarrow{\tilde{i}_{*}} \pi_{1}(\tilde{X}, \tilde{x})=1 \\
& \quad \cong\left(\left.p\right|_{\tilde{U})_{*}} \xrightarrow{i_{*}} \underset{\sim}{p_{*}}\right. \tag{4.65}\\
& \pi_{1}(X, x) \xrightarrow{\downarrow}(U, x)
\end{align*}
$$

so indeed X is slsc.
Example 4.22. Consider the Hawaiian earring. This is not slsc at the origin (common point of all the circles). Therefore X has no simply-connected covering space.

Remark 4.6. Cell complexes are lpc and slsc.

Theorem 4.18. Let X be connected, lpc, and slsc. Let $x_{0} \in X$ and $H<\pi_{1}\left(X, x_{0}\right)$. Then there exists a covering projection $p:\left(\tilde{X}, \tilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right), \tilde{X}$ pc such that $p_{*} \pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right)=$ H.

Proof sketch. (1) Assume $H=1$: The idea is as follows. If we did have $p: \tilde{X} \rightarrow X, \tilde{X}$ simply connected, then for $\tilde{x} \in \tilde{X}$, any two paths from \tilde{x}_{0} to \tilde{x} are $\simeq(\operatorname{rel} \partial I)$. Therefore \tilde{X} is in bijection with the set:

$$
\left\{[\tilde{\alpha}] \mid \tilde{\alpha} \text { path in } \tilde{X} \text { s.t. } \tilde{\alpha}(0)=\tilde{x}_{0}\right\} .
$$

by path-lifting (Corollary 4.3) we have that this is in bijection with

$$
S=\left\{[\alpha] \mid \alpha \text { in } X \text { s.t. } \alpha(0)=x_{0}\right\}
$$

Define $p: S \rightarrow X$ by $p([\alpha])=\alpha(1)$.
(a) Topologize S : Let $[\alpha] \in S . \alpha(1)$ has a neighborhood U in X, where U is pc, and $\pi_{1}(U) \rightarrow \pi_{1}(X)$ is trivial. Define

$$
[\alpha, U]=\{[\alpha * \beta] \mid \beta \text { a path in } U \text { s.t. } \beta(0)=\alpha(1)\} \subset S
$$

Then

$$
\begin{equation*}
\left.p\right|_{[\alpha, U]}:[\alpha, U] \rightarrow U \tag{4.69}
\end{equation*}
$$

is a bijection.
Exercise 2.1. Show that the set of $[\alpha, U] \mathrm{s}$ is a basis for a topology on S.
(b)

EXERCISE 2.2. Show p is continuous.
(c)

Exercise 2.3. S is path-connected.
(d)

Exercise 2.4. Show $\pi_{1}(S)=1$.
(2) Assume $H<\pi_{1}\left(X, x_{0}\right)$: Let \tilde{X} be the S as above. $p: \tilde{X} \rightarrow X$ is a covering projection, \tilde{X} is simply-connected. $G=\pi_{1}\left(X, x_{0}\right)$ acts on \tilde{X} as the group of covering transformations Corollary 4.14. By Theorem 4.15 we have $\tilde{X} \xrightarrow{p} \tilde{X} / G=$ X. Let $H<G$. Then we have:

ExErcise 2.5. Show p_{H} is a covering projection.
$\pi_{1}(\tilde{X} / H) \cong H$ so we are done.

Combining Theorem 4.10 and Theorem 4.18 we get:
ThEOREM 4.19 (Galois correspondence). Let X be connected, lpc, slsc. Then there exists a bijection between isomorphism classes of connected covering spaces of X and conjugacy classes of subgroups of $\pi_{1}\left(X, x_{0}\right)$.

We have seen that for any group G there exists a connected 2-complex X such that $\pi_{1}(X)=G$ so we have seen basically this entire correspondence between algebra and topology.

Lecture 14; October 22, 2019
Definition 4.4. Let X be pc, lpc. A universal covering space of X is a covering projection $p: \tilde{X} \rightarrow X$ such that \tilde{X} is simply connected, i.e. pc and $\pi_{1}(\tilde{X})=1$.

By Theorem 4.10 if (\tilde{X}, p) exists, then it is unique (up to isomorphism of covering spaces). By Lemma 4.17 an Theorem 4.18 it exists iff X is slsc.

Counterexample 3. The Hawaiian earring has no universal covering.
This is universal in the sense that if $q: \hat{X} \rightarrow X$ is a covering projection (\hat{X} connected) then there exists a covering projection $\hat{p}: \tilde{X} \rightarrow \hat{X}$ such that $p=q \hat{p}$, i.e. that the following diagram commutes:

See the proof of Theorem 4.18.
Let $p: \tilde{X} \rightarrow X$ be a covering projection and $x \in X .\left|p^{-1}(x)\right|$ is locally constant. Therefore if \tilde{X} is connected, $\left|p^{-1}(x)\right|$ is constant. This is the index of the covering. This is the same as the number of sheets.

Lemma 4.20. If \tilde{X} is p c, $x_{0} \in X, \tilde{x}_{0} \in p^{-1}\left(x_{0}\right)$, then $\left|p^{-1}\left(x_{0}\right)\right|$ is the index of $p_{*} \pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right)$ in $\pi_{1}\left(X, x_{0}\right)$.

Proof. Let $H=p_{*} \pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right)<\pi_{1}\left(X, x_{0}\right) .[\sigma] \in \pi_{1}\left(X, x_{0}\right)$, let $\tilde{\sigma}$ be a lift of σ in \tilde{X} with $\tilde{\sigma}(0)=\tilde{x}_{0}$.

Define a function φ from the right cosets of H in $\pi_{1}\left(X, x_{0}\right)$ to $p^{-1}\left(x_{0}\right)$ by $\varphi(H[\sigma])=$ $\tilde{\sigma}(1)$. Consider two loops $[\sigma],[\tau] \in \pi_{1}\left(X, x_{0}\right)$. Then we have:

$$
\begin{align*}
\tilde{\sigma}(1)=\tilde{\tau}(1) & \Longleftrightarrow(\widetilde{\sigma * \bar{\tau}})(1)=\tilde{x}_{0} \tag{4.72}\\
& \Longleftrightarrow[\sigma * \bar{\tau}]=[\sigma][\tau]^{-1} \in H \tag{4.73}\\
& \Longleftrightarrow H[\sigma]=H \tau \tag{4.74}
\end{align*}
$$

This shows φ is well-defined and injective. φ is onto since \tilde{X} is pc.
Exercise 2.6. Work out the details of this.

3. Coverings of cell complexes

Let $X=Y \cup_{a} D^{n} a: S^{n-1} \rightarrow Y$ the attaching map. Then we have the diagram:

where $\left.f\right|_{S^{n-1}}=i a$.
Now let $p: \tilde{X} \rightarrow X$ be a covering projection. Let $\tilde{Y}=p^{-1}(Y)$. Then $\left.p\right|_{\tilde{Y}}: \tilde{Y} \rightarrow Y$ is a covering projection (Hatcher $\S 1.3, \mathrm{Q} 1$). Let $0 \in D^{n}, x=f(0) \in X, \tilde{x} \in p^{-1}(x)$. We know D^{n} is lpc and simply connected. Therefore by Theorem 4.6 and Lemma $4.1 f$ has a unique lift

$$
\begin{equation*}
f_{\tilde{x}}:\left(D^{n}, 0\right) \rightarrow(\tilde{X}, \tilde{x}) \tag{4.76}
\end{equation*}
$$

and in particular

$$
\begin{equation*}
f_{\tilde{x}}\left(S^{n-1}\right) \subset \tilde{Y} \stackrel{\tilde{i}}{\hookrightarrow} \tilde{X} \tag{4.77}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{\tilde{x}}=\tilde{i} a_{\tilde{x}} \tag{4.78}
\end{equation*}
$$

for $a_{\tilde{x}}: S^{n-1} \rightarrow \tilde{Y}$. Then

$$
\begin{equation*}
\left\{a_{\tilde{x}} \mid \tilde{x} \in p^{-1}(x)\right\} \tag{4.79}
\end{equation*}
$$

defined a map

$$
\begin{equation*}
\tilde{a}: \coprod_{\tilde{x} \in p^{-1}(x)} S_{\tilde{x}}^{n-1} \rightarrow \tilde{Y} \tag{4.80}
\end{equation*}
$$

Lemma 4.21.

$$
\begin{equation*}
\tilde{X}=\tilde{Y} \cup_{\tilde{a}}\left(\coprod_{\tilde{x} \in p^{-1}(x)} D_{\tilde{x}}^{n}\right) \tag{4.81}
\end{equation*}
$$

Sketch of proof. We have a commutative diagram

Exercise 3.1. Show that \tilde{q} is the quotient map wrt the given topology on \tilde{X}.

Similarly, for attaching a collection of n cells to Y.
Corollary 4.22. A covering \tilde{X} of a cell complex X is a cell complex. If X is finite dimensional, then \tilde{X} is finite-dimensional and $\operatorname{dim} X=\operatorname{dim} \tilde{X}$.

Proof. Induct over n-skeleta $X^{(n)}$ of X.

If X is a finite complex, and $\tilde{X} \rightarrow X$ is an n-sheeted covering, then \tilde{X} is also finite complex. In particular, if we have $N_{k} k$-cells in X, we have $n \cdot N_{k} k$-cells in \tilde{X}. Recall the Euler characteristic is

$$
\begin{equation*}
\chi(X)=\sum(-1)^{k} N_{k} \tag{4.83}
\end{equation*}
$$

REmark 4.7. We will see later (using homology) that $\chi(X)$ depends only on the homeomorphism type ${ }^{4.5}$ of X. In particular, this means it is independent of the particular cell structure.

Corollary 4.23.

$$
\begin{equation*}
\chi(\tilde{X})=n \chi(X) \tag{4.84}
\end{equation*}
$$

4. Free groups and 1-complexes

A 1-complex is also called a graph, where the 0-cells are vertices and the 1-cells are the edges.

A graph Γ is connected iff Γ is path connected, iff any 2 vertices can be joined by a reduced edge. A path is a concatenation of edges. A graph is a tree ${ }^{4.6}$ iff it is connected and with has no closed nontrivial reduced edge paths.

Example 4.23. The following are not trees:

Therefore γ is a tree iff any 2 vertices can be joined by a unique reduced edge path.
Lemma 4.24. Let T be a tree, v_{0} be a vertex of T. Then there exists a strong deformation retraction $T \rightarrow v_{0}$. In particular T is contractible.

Proof. For each vertex v of T, there exists a unique reduced edge path P_{v} from v to v_{0}. If P_{v} has n edges, identify P_{v} with $[0, n]$ in the obvious way. Now define a homotopy $F_{t}(v): P_{v} \rightarrow P_{v}$ by

$$
\begin{equation*}
F_{t}^{(v)}(x)=(1-t) x \tag{4.86}
\end{equation*}
$$

so $F_{0}^{(v)}=\mathrm{id}, F_{1}^{(v)}\left(P_{v}\right)=v_{0}$, and $F_{t}^{(v)}\left(v_{0}\right)=v_{0}$ for all $t \in I$.
Note:
(i) $P_{v} \cap P_{v^{\prime}}=P_{v^{\prime \prime}}$ for some $v^{\prime \prime}\left(\right.$ possibly $\left.v^{\prime \prime}=v_{0}\right)$.
(ii) $T=\bigcup_{v} P_{v}$.

So we have

$$
\begin{equation*}
\left.F_{t}^{(v)}\right|_{P_{v^{\prime \prime}}}=\left.F_{t}^{\left(v^{\prime}\right)}\right|_{P_{v^{\prime \prime}}} \tag{4.87}
\end{equation*}
$$

[^11]which means the $F_{t}^{(s)}$ s induce
\[

$$
\begin{equation*}
F_{t}: T \times I \rightarrow T \tag{4.88}
\end{equation*}
$$

\]

such that $F_{0}=\mathrm{id}, F_{1}(t)=v_{0}$, and $F_{t}\left(v_{0}\right)=v_{0}$ for all $t \in I$.
Lemma 4.25. Let Γ be a graph. Then:
(1) Γ contains a maximal subtree (wrt inclusion).
(2) If Γ is connected, a subtree of Γ is maximal iff it contains all of the vertices.

Proof. The set of subtrees of Γ is partially ordered by inclusion. Let \mathfrak{T} be the set of subtrees of Γ that is totally ordered. I.e. for all T and $T^{\prime} \in \mathfrak{T}$ we have either $T \subset T^{\prime}$ or $T^{\prime} \subset T$. Then

$$
\begin{equation*}
\bigcup_{T \in \mathfrak{T}} T \tag{4.89}
\end{equation*}
$$

is a subtree of Γ.
To see this, let e_{1}, \ldots, e_{k} be a closed reduced edge path in $\cup_{T} T$. Then $e_{i} \subset T_{i}$ for some $T_{i} \in \mathfrak{T}$. \mathfrak{T} is totally ordered, so for all $i, 1 \leq i \leq k, e_{i} \subset T_{j}$ for some j. But this is a contradiction since T_{j} is a tree.

Therefore there exists a maximal subtree of Γ by Zorn's lemma.
Exercise 4.1. Prove the second part.

A pair of spaces (X, Y) has the homotopy extension proper (HEP) iff given a space Z and maps $f: X \rightarrow Z, G: Y \times I \rightarrow Z$, such that $G(y, 0)=f(y)$ for all $y \in Y$ there exists $F: X \times I \rightarrow Z$ such that $\left.F\right|_{Y \times I}=G$ and $F(x, 0)=f(x)$ for all $x \in X$.
Lemma 4.26. Let X be an n-complex and Y a subcomplex. Then (X, Y) has the HEP.
Proof. Note if there exists a retraction $r: X \times I \rightarrow X \times 0 \cup Y \times I$, then (X, Y) has the HEP. Given $f \cup G: X \times 0 \cup Y \times I \rightarrow Z$, define $F: X \times I \rightarrow Z$ by $(f \cup G) \circ r$.

If $X=Y \cup\{n$-cells $\}$ then we have a retraction $D^{n} \times I \rightarrow D^{n} \times 0 \cup S^{n-1} \times I$. This induces a retraction $X \times I \rightarrow X \times 0 \cup Y \times I$.

ExERCISE 4.2. Show that for X a cell complex and Y a subcomplex, then X / Y is a cell complex.

Lemma 4.27. Let (X, Y) be a pair of m-complexes with Y contractible. Then the quotient map $X \rightarrow X / Y$ is a homotopy equivalence.

Proof. Y is contractible, so we have $G: Y \times I \rightarrow X$ such that $G_{0}: Y \hookrightarrow X$, $G_{1}(Y)=y_{0} \in Y, G_{t}(Y) \subset Y$ for all $t \in I$. We know (X, Y) has the HEP, so there exists $F: X \times I \rightarrow X$ such that $F_{0}=\mathrm{id},\left.F\right|_{Y \times I}=G$.

The we have $F_{1}(Y)=G_{1}(Y)=y_{0}$ which means F_{1} induces a well-defined map f : $X / Y \rightarrow X$. So then we have a commuting diagram

which means $f q=F_{1} \simeq F_{0}=\mathrm{id}$.

Then for all $t \in I$

$$
\begin{equation*}
F_{t}(Y)=G_{t}(Y) \subset Y \tag{4.91}
\end{equation*}
$$

which means F_{t} induces $F_{t}^{\prime}: X / Y \rightarrow X / Y$ and we have the diagram:

The square commutes, and the upper triangle commutes, which implies the lower triangle commutes (since q is onto) and therefore $q f=F_{1}^{\prime} \simeq F_{0}^{\prime}=\mathrm{id}$ which means $f g \simeq \mathrm{id}: X \rightarrow X$ so q is a homotopy equivalence.

Corollary 4.28. Let X be a connected n-complex and T a maximal tree in $X^{(1)}$. Then 24, 2019 $X \simeq X / T$ an n-complex with a single 0 cell.
Corollary 4.29. Let Γ be a connected graph. Let T be a maximal tree in Γ and let $\left\{e_{\lambda}\right\}$ be the set of edges of Γ that are not in T. Then $\pi_{1}(T)$ is the free group $F\left(\left\{e_{\lambda}\right\}\right)$.

Proof. $\Gamma \simeq \Gamma / T$, which is a wedge of circles, one for each edge e_{λ} not in T.
Theorem 4.30. (1) (Nielsen-Schreier) $)^{4.7}$ A subgroup of a free group is free.
(2) If F is a free group of rank k and $H<F$ of index n, then H is a free group of $\operatorname{rank} n(k-1)+1$.
Proof. (1) Let F be a free group and $H<F$. We know $F \simeq \pi_{1}(X)$ for X a wedge of circles.

Fact 4 (Hatcher). Cell complexes are locally contractible. In particular they are slsc and lpc.

Then there exists a connected covering space $\tilde{X} \rightarrow X$ with $\pi_{1}(\tilde{X}) \cong H$ (Theorem 4.18). By Corollary $4.22 \tilde{X}$ is also a 1-complex. Therefore $\pi_{1}(\tilde{X})$ is free by Corollary 4.29.
(2) Let Γ be a finite graph with vertices $V(\gamma)$ and edges $E(\gamma)$. Then any maximal tree T in Γ has $V(\Gamma)-1$ edges. Therefore Γ / T is the wedge of

$$
\begin{equation*}
E[\Gamma]-(V(\Gamma)-1)=1-V(\Gamma)+E(\gamma)=1-\chi(\Gamma) \tag{4.93}
\end{equation*}
$$

circles. Let F be a free group of rank k. Then $F \cong \pi_{1}(X)$ where X is the wedge of k circles. For $H<F$ of index n there exists an n-sheeted covering $\tilde{X} \rightarrow X$ with $\pi_{1}(\tilde{X}) \cong H$. By Corollary 4.23 we get

$$
\chi(\tilde{X})=n \chi(X)=n(1-k) .
$$

Therefore by Corollary $4.29 \pi_{1}(\tilde{X})$ is free of rank

$$
\begin{equation*}
1-\chi(\tilde{X})=1-n(1-k)=n(k-1)+1 . \tag{4.95}
\end{equation*}
$$

[^12]
5. Surfaces

Lemma 4.31. Let X and Y be finite cell complexes such that $X \cap Y$ is a subcomplex of X and Y. Then $(X \cup Y$ is a finite cell complex) and

$$
\begin{equation*}
\chi(X \cup Y)=\chi(X)+\chi(Y)-\chi(X \cap Y) \tag{4.96}
\end{equation*}
$$

Proof. For any k, the number of k-cells in $X \cup Y$ is given by the number of k-cells in X, plus the number of k-cells in Y, minus the number of k-cells in $X \cap Y$.

Let S be a surface, $D \subset S$ a disk. Let $S_{0}=S \backslash D$. Then $S=S_{0} \cup D, S_{0} \cap D=\partial D \simeq S^{1}$. Then we have

$$
\begin{equation*}
\chi(S)=\chi\left(S_{0}\right)+\underbrace{\chi(D)}_{=1}-\underbrace{\chi(\partial D)}_{=0}=\chi(S)-1 \tag{4.97}
\end{equation*}
$$

Recall we saw that when we removed a disk from the connect sum of g copies of T^{2}, we got something homotopy equivalent to the wedge of $2 g$ circles. This tells us that, as expected, the Euler characteristic is:

$$
\begin{equation*}
\chi\left(\#_{g} T^{2}\right)=2-2 g \tag{4.98}
\end{equation*}
$$

Similarly, we saw that when we removed a disk from the connect sum of k copies of \mathbb{P}^{2}, we got something homotopy equivalent to the wedge of k circles. This tells us that, as expected, the Euler characteristic is:

$$
\begin{equation*}
\chi\left(\#_{k} \mathbb{P}^{2}\right)=2-k \tag{4.99}
\end{equation*}
$$

Define $\omega(S)$ to be + if S is orientable and - if S is nonorientable. The classification of closed surfaces shows the following.

Theorem 4.32. Let S and S^{\prime} be two compact surfaces with (possibly empty) boundary. Then $S \simeq S^{\prime}$ iff
(1) $\chi(S)=\chi\left(S^{\prime}\right)$
(2) $|\partial S|=\left|\partial S^{\prime}\right|$
(3) $\omega(S)=\omega\left(S^{\prime}\right)$.

Note that if $\partial S \neq \emptyset$, then S strong deformation retracts to a wedge of circles, so $\pi_{1}(S)$ is free.

Suppose $\tilde{S} \rightarrow S$ is an n-sheeted covering, where S is a compact, connected surface (possibly with boundary). Then \tilde{S} is also a compact, connected surface. In addition, $\omega(S)=+$ implies $\omega(\tilde{S})=+$ and $\chi(\tilde{S})=n \chi(S)$.

Example 4.24. Let S be the connect sum of 3 copies of \mathbb{P}^{2}. Let \tilde{S} be a 4 -sheeted (connected) covering of S. We know $\chi(S)=2-3=-1$ which means $\chi(\tilde{S})=-4$. This has even Euler characteristic, so there are two possibilities. The connect sum of 3 tori or 6 projective planes. In fact these are both realized. Figure 6 shows the latter.

Example 4.25. If S is compact, connected, and $\tilde{S} \rightarrow S$ is a connected n-sheeted covering. We know:
(1) $\chi(\tilde{S})=n \chi(S)$.
(2) $|\partial S| \leq|\partial \tilde{S}| \leq n|\partial S|$.

Figure 6. The composition of these maps gives us a covering of the connect sum of three copies of \mathbb{P}^{2} by the connect sum of 6 copies of \mathbb{P}^{2}. The bottom map is involution on the green sphere, and the top is involution on the red sphere.

Now we might try to realize when these are saturated inequalities, but in fact we have:
FACT 5. If S is orientable and (1) and (2) hold, then \tilde{S} is an n-sheeted covering of S.
This is false if S is non-orientable.
There is a generalization of Nielsen-Schreier which tells us that:
Theorem 4.33 (Kurosh subgroup theorem). Let H be a subgroup of $A * B$. Then $H=\left(*_{\lambda} H_{\lambda}\right) * F$, where each H_{λ} is a subgroup of a conjugate of A or $B($ in $A * B)$ and F is a free group. (And similarly for arbitrary free products $*_{\lambda} A_{\lambda}$.)

Proof. Let X_{A} and X_{B} be connected 2-complexes with $\pi_{1}\left(X_{A}\right) \cong A$ and $\pi_{1}\left(X_{B}\right) \cong B$. We can take X_{A} and X_{B} to have a zero cell x_{A} and x_{B}. Let X be obtained from $X_{A} \amalg X_{B}$ by attaching a 1 -cell e which connects these two 0 -cells. Take x_{0} to be the midpoint of e.

Then by van Kampen we have

$$
\begin{equation*}
\pi_{1}\left(X, x_{0}\right) \cong \pi_{1}\left(X_{A}, x_{A}\right) * \pi_{1}\left(X_{B}, x_{B}\right) \cong A * B \tag{4.100}
\end{equation*}
$$

So for $H<A * B$ we have a connected covering $p:\left(\tilde{X}, \tilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ such that $p_{*}\left(\pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right)\right)=$ H. Each component of $p^{-1}\left(X_{A}\right)$ is a covering space of X_{A}, each component of $p^{-1}\left(X_{B}\right)$ is a covering space of X_{B}, and each component of $p^{-1}(e)$ is a covering space of a 1-cell. Let \tilde{x}_{A} and \tilde{x}_{B} be the endpoints of the 1-cell in \tilde{X} containing \tilde{x}_{0}. Let X_{λ} be a component of $p^{-1}\left(X_{A}\right)$ or $p^{-1}\left(X_{B}\right)$ (say $\left.p^{-1}\left(X_{A}\right)\right)$. Let $x_{\lambda} \in p^{-1}\left(x_{A}\right) \in X_{\lambda}$. Let γ_{λ} be a path in \tilde{X} from x_{λ} to \tilde{x}_{A}. Then $p \gamma_{\lambda}$ is a loop in X at x_{A} which means $g_{\lambda} \in \pi_{1}\left(X, x_{A}\right) \cong \pi_{1}\left(X, x_{0}\right)$.

Then

$$
\begin{equation*}
\pi_{1}\left(X_{\lambda}, x_{\lambda}\right) \rightarrow \pi_{1}\left(\tilde{X}, x_{\lambda}\right) \xrightarrow{\gamma_{\lambda \#}} \pi_{1}\left(\tilde{X}, \tilde{x}_{A}\right) \tag{4.101}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{*}\left(\pi_{1}\left(X_{\lambda}, x_{\lambda}\right)\right) \subset g_{\lambda}^{-1} \pi_{1}\left(X_{A}, x_{A}\right) g_{\lambda}=g_{\lambda}^{-1} A g_{\lambda} \tag{4.102}
\end{equation*}
$$

Now take a maximal tree in $\tilde{X}_{\lambda}^{(1)}$, and retract this to a point to get $X_{\lambda}^{\prime} \simeq X_{\lambda}$, where X_{λ}^{\prime} has a single 0 -cell x_{λ}^{\prime}. Then $\tilde{X} \simeq \tilde{X}^{\prime}$ is a graph Γ with X_{λ}^{\prime} s attached to the vertices. Now identify a maximal tree in Γ to a point. Now by van Kampen

$$
\begin{equation*}
\pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right) \cong \pi_{1}\left(\tilde{X}^{\prime}, \tilde{x}_{0}^{\prime}\right)=\underset{\lambda}{*} \underbrace{\pi_{1}\left(X_{\lambda}^{\prime}, x_{\lambda}^{\prime}\right)}_{*_{\lambda} \pi_{1}\left(X_{\lambda}, x_{\lambda}\right)} * \pi_{1}(\Gamma) \tag{4.103}
\end{equation*}
$$

so in the end we get

$$
\begin{equation*}
H=p_{*} \pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right) \tag{4.104}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{*}\left(\pi_{1}\left(X_{\lambda}, x_{\lambda}\right)\right) \subset g_{\lambda}^{-1}\{A \text { or } B\} g_{\lambda} \tag{4.105}
\end{equation*}
$$

and we are done.

CHAPTER 5

Homology

A subset $A \subseteq \mathbb{R}^{m}$ is convex if $a_{1}, a_{2} \in A$ implies $t a_{1}+(1-t) a_{2} \in A$ for all $t \in I$. For \quad Lecture 16; October $A, B \subseteq \mathbb{R}^{m}$ are convex, then a map $f: A \rightarrow B$ is affine if

$$
\begin{equation*}
f\left(t a_{1}+(1-t) a_{2}\right)=t f(a-1)+(1-t) f\left(a_{2}\right) \tag{5.1}
\end{equation*}
$$

for all $a_{1}, a_{2} \in A$ and for all $t \in I$.
Let R be a commutative ring. A sequence of R-modules ${ }^{5.1}$

$$
\begin{equation*}
\ldots \rightarrow A_{q+1} \xrightarrow{\alpha_{q+1}} A_{q} \xrightarrow{\alpha_{q}} A_{q-1} \xrightarrow{\alpha_{q-1}} \ldots \tag{5.2}
\end{equation*}
$$

is exact at A_{q} if $\operatorname{im}\left(\alpha_{q+1}\right)=\operatorname{ker}\left(\alpha_{q}\right)$. A sequence of exact if it is exact at A_{q} for all q. A short exact sequence (SES) is an exact sequence of the form

$$
\begin{equation*}
0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0 \tag{5.3}
\end{equation*}
$$

i.e. α is injective, β is surjective, and $\operatorname{im}(\alpha)=\operatorname{ker}(\beta)$.

Let $v_{0}, v_{1}, \ldots v_{q} \in \mathbb{R}^{q}$ be the points

$$
\begin{align*}
v_{0} & =(0, \ldots, 0) \tag{5.4}\\
v_{1} & =(1,0, \ldots, 0) \tag{5.5}\\
v_{2} & =(0,1,0, \ldots, 0) \tag{5.6}\\
& \ldots \tag{5.7}\\
v_{q} & =(0, \ldots, 1) . \tag{5.8}
\end{align*}
$$

Let Δ^{q} be the convex hull of $\left\{v_{0}, \ldots, v_{q}\right\}$:

$$
\begin{equation*}
\Delta^{q}:=\left\{\sum_{i=0}^{q} \lambda_{i} v_{i} \mid \lambda_{i} \geq 0, \sum_{i=0}^{q} \lambda_{i}=1\right\} \tag{5.9}
\end{equation*}
$$

For X a topological space, a (singular) q-simplex in X is a map $\sigma: \Delta^{q} \rightarrow X$. Let $\Sigma_{q}(X)$ be the set of all singular q-simplices in X. Now we make this into an abelian group by taking the free abelian group on $\Sigma_{q}(X)$. We should thin of this as the set of all formal linear combinations of simplices:

$$
\begin{equation*}
S_{q}(X)=\left\{\sum_{\sigma \in \Sigma(X)} n_{\sigma} \sigma \mid n_{\sigma} \in \mathbb{Z}, n_{\sigma}=0 \forall \text { but fin'tly many } \sigma \in \Sigma_{q}(X)\right\} \tag{5.10}
\end{equation*}
$$

We call this group the group of (singular) q-chains in X. If $q<0$ define $S_{q}(X)=0$.
If $f: X \rightarrow Y$, then we can define $f_{\#}: S_{q}(X) \rightarrow S_{q}(Y)$ by

$$
\begin{equation*}
f_{\#}(\sigma)=f \sigma \tag{5.11}
\end{equation*}
$$

[^13]then we just extend this linearly. Then $\mathrm{id}_{\#}=\mathrm{id}$ and $(g f)_{\#}=g_{\#} f_{\#}$. So even at this point we have functoriality.

Now we define the boundary homomorphisms. First we form the affine idea, and just apply it to the singular chains. Consider the standard 1-simplex

$$
\begin{equation*}
v_{0} \longrightarrow v_{1} \tag{5.12}
\end{equation*}
$$

We want to think of the boundary of this as $\partial\left(v_{0} v_{1}\right)=v_{1}-v_{0}$. Now consider the standard 2 -simplex. We think of orienting it as:

Then we want to think of the boundary of this as:

$$
\begin{equation*}
\partial\left(v_{0} v_{1} v_{2}\right)=\left(v_{1} v_{2}\right)-\left(v_{0} v_{2}\right)+\left(v_{0} v_{1}\right) \tag{5.14}
\end{equation*}
$$

Note that

$$
\begin{align*}
\partial^{2}\left(v_{0} v_{1} v_{2}\right) & =\partial\left(v_{1} v_{2}\right)-\partial\left(v_{0} v_{2}\right)+\partial\left(v_{0} v_{1}\right) \tag{5.15}\\
& =\left(v_{2}-v_{1}\right)-\left(v_{2}-v_{0}\right)+\left(v_{1}-v_{0}\right) \tag{5.16}\\
& =0 \tag{5.17}
\end{align*}
$$

Now we want to express this idea in terms of maps. Let $A \subset \mathbb{R}^{m}$ be a convex set. If $a_{0}, \ldots, a_{q} \in A$, let $\left[a_{0} \ldots a_{q}\right]$ denote the singular q-simplex given by the affine map $\Delta^{q} \rightarrow A$ given by

$$
\begin{equation*}
v_{i} \mapsto a_{i} \tag{5.18}
\end{equation*}
$$

for $0 \leq i \leq q$. So $\left[a_{0} \ldots a_{q}\right] \in \Sigma_{q}(A)$. In particular,

$$
\begin{equation*}
\Sigma_{q}\left(\Delta^{q}\right) \ni\left[v_{0} \ldots v_{q}\right]=\mathrm{id}^{q}: \Delta^{q} \rightarrow \Delta^{q} \tag{5.19}
\end{equation*}
$$

For $0 \leq i \leq q$, define the i th face of id^{q} by

$$
\begin{equation*}
\mathrm{id}_{(i)}^{q}=\left[v_{0} \ldots \hat{v}_{i} \ldots v_{q}\right]: \Delta^{q-1} \rightarrow \Delta^{q} \tag{5.20}
\end{equation*}
$$

where \hat{v}_{i} indicates that we omit v_{i}. For arbitrary $\sigma \in \Sigma_{q}(X)$ define the i th face of σ to be

$$
\begin{equation*}
\sigma_{(i)}=\sigma \operatorname{id}_{(i)}^{q}=\sigma_{\#}\left(\mathrm{id}_{(i)}^{q}\right) \tag{5.21}
\end{equation*}
$$

The q-dimensional boundary homomorphism $\partial_{q}: S_{q}(X) \rightarrow S_{q-1}(X)$ is defined to be

$$
\begin{equation*}
\partial_{q}(\sigma)=\sum_{i=0}^{q}(-1)^{i} \sigma_{(i)} \tag{5.22}
\end{equation*}
$$

and then extended linearly.
REMARK 5.1. (1) $\partial_{q}(\sigma)=\sigma_{\#}\left(\partial_{q}\left(\mathrm{id}^{q}\right)\right)$
(2) For $f: X \rightarrow Y$ a map,

commutes.

Lemma 5.1. $\partial_{q-1} \partial_{q}=0$.
Proof. It is sufficient to show that $\partial_{q-1} \partial_{q}(\sigma)=0$ for all $\sigma \in \Sigma_{q}(X)$. But this is just

$$
\begin{equation*}
\sigma_{\#}\left(\partial_{q-1} \partial_{q}\left(\mathrm{id}^{q}\right)\right) \tag{5.24}
\end{equation*}
$$

so it it sufficient to show:

$$
\begin{align*}
\partial_{q-1} \partial_{q}\left(\mathrm{id}^{q}\right)= & \partial_{q-1}\left(\sum_{i=0}^{q}(-1)^{i}\left[v_{0} \ldots \hat{v}_{i} \ldots v_{q}\right]\right) \tag{5.25}\\
= & \sum_{i=0}^{q} \sum_{j=0}^{i-1}(-1)^{i}(-1)^{j}\left[v_{0} \ldots \hat{v}_{j} \ldots \hat{v}_{i} \ldots v_{q}\right] \tag{5.26}\\
& \quad+\sum_{i=0}^{q} \sum_{j=i+1}^{q}(-1)^{i}(-1)^{j-1}\left[v_{0} \ldots \hat{v}_{i} \ldots \hat{v}_{j} \ldots v_{q}\right] \tag{5.27}\\
= & 0 \tag{5.28}
\end{align*}
$$

A chain complex is an indexed set of abelian groups $C=\left\{C_{q}\right\}_{q \in \mathbb{Z}}$ and a boundary homomorphism $\partial=\left\{\partial_{q}\right\}$ where $\partial_{q}: C_{q} \rightarrow C_{q-1}$ (we say ∂ has degree -1) such that $\partial_{q-1} \partial_{q}=0$. We write $\partial: C \rightarrow C$ and say $\partial^{2}=0$. We call C_{q} the q-chains of C, we write

$$
\begin{equation*}
Z_{q}(C)=\operatorname{ker} \partial_{q} \subset C_{q} \tag{5.29}
\end{equation*}
$$

for the q-cycles, and we write

$$
\begin{equation*}
B_{q}(C)=\operatorname{im} \partial_{q+1} \subset C_{q} \tag{5.30}
\end{equation*}
$$

for the q-boundaries. Note that since $\partial^{2}=0$,

$$
\begin{equation*}
B_{q}(C) \subset Z_{q}(C) \subset C_{q} \tag{5.31}
\end{equation*}
$$

Now define the q-th homology group of C to be

$$
\begin{equation*}
H_{q}(C)=Z_{q}(C) / B_{q}(C) \tag{5.32}
\end{equation*}
$$

We write $H(C)=\left\{H_{q}(C)\right\}_{q \in \mathbb{Z}}$.
Write $S(X)=\left\{S_{q}(X)\right\}$ for the singular chain complex of X. Then $H_{q}(X)$ is the q-dimensional singular homology of X. By definition, $H_{q}(X)=0$ for $q<0$.

Suppose we have two chain complexes C and D. A chain map $\varphi: C \rightarrow D$ is an indexed set of homomorphisms $\left\{\varphi_{q}: C_{q} \rightarrow D_{q}\right\}$ (we say φ has degree 0) such that

commutes, i.e. $\partial \varphi=\varphi \partial$.
Example 5.1. If $f: X \rightarrow Y$ is a map then we get a chain map $f_{\#}: S(X) \rightarrow S(Y)$.
Lemma 5.2. A chain map $\varphi: C \rightarrow D$ induces a homomorphism at the level of homology $\varphi_{*}: H(C) \rightarrow H(D)($ of degree 0$)$.

Proof. Suppose we have $c \in C_{q+1}$. Then $\varphi(\partial c)=\partial(\varphi c)$ which means

$$
\begin{equation*}
\varphi\left(B_{q}(C)\right) \subset B_{q}(D) \tag{5.34}
\end{equation*}
$$

Also, $z \in Z_{q}(c)$ implies $\partial z=0$, which implies $\varphi(\partial z)=0$, so $\partial(\varphi(z))=0$, so $\varphi(z) \in Z_{q}(D)$. Therefore

$$
\begin{equation*}
\varphi\left(Z_{q}(C)\right) \subset Z_{q}(D) \tag{5.35}
\end{equation*}
$$

Therefore φ induces a homomorphism

$$
\begin{equation*}
Z_{q}(C) / B_{q}(C)=H_{q}(C) \rightarrow H_{q}(D)=Z_{q}(D) / B_{q}(D) \tag{5.36}
\end{equation*}
$$

REmaRk 5.2. $\mathrm{id}_{*}=\mathrm{id}$ and $(\psi \varphi)_{*}=\psi_{*} \varphi_{*}$.
For $f: X \rightarrow Y$ this induces a chain map $f_{\#}: S(X) \rightarrow S(Y)$, which in turn induces $f_{*}: H(X) \rightarrow H(Y)$.

1. Elementary computations

Theorem 5.3. Suppose we have a space X with path components $\left\{X_{\lambda}\right\}$. Then

$$
\begin{equation*}
H(X)=\bigoplus_{\lambda} H\left(X_{\lambda}\right) \tag{5.37}
\end{equation*}
$$

Proof. Δ_{q} is path-connected, so

$$
\begin{equation*}
\Sigma_{q}(X)=\bigoplus_{\lambda} \Sigma_{q}\left(X_{\lambda}\right) \tag{5.38}
\end{equation*}
$$

hence

$$
\begin{equation*}
S_{q}(X)=\bigoplus_{\lambda} S_{q}\left(X_{\lambda}\right) \tag{5.39}
\end{equation*}
$$

as abelian groups. Then we have that

$$
\begin{equation*}
\partial_{q}\left(S_{q}\left(X_{\lambda}\right)\right) \subset S_{q-1}\left(X_{\lambda}\right) \tag{5.40}
\end{equation*}
$$

so as chain complexes

$$
\begin{equation*}
S(X) \cong \bigoplus_{\lambda} S\left(X_{\lambda}\right) \tag{5.41}
\end{equation*}
$$

which yields the result.
TheOrem 5.4 (Homology of a point). Let $X=\left\{x_{0}\right\}$ be a one-point space. Then

$$
H_{q}(X)= \begin{cases}\mathbb{Z} & q=0 \tag{5.42}\\ 0 & o / w\end{cases}
$$

Proof. For every q there is a unique elements $\sigma_{q} \in \Sigma_{q}(X)$. Therefore for $q \geq 0$, $S_{q}(X) \cong \mathbb{Z}$. For $q>0$

$$
\partial \sigma_{q}=\sum_{i=0}^{q}(-1)^{i} \sigma_{q-1}= \begin{cases}\sigma_{q-1} & q \text { even } \tag{5.43}\\ 0 & q \text { odd }\end{cases}
$$

so the chain complex $S(X)$ is

$$
\begin{equation*}
\cdots \stackrel{\cong}{\rightrightarrows} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \stackrel{\cong}{\longrightarrow} \mathbb{Z} \xrightarrow{0} 0 \rightarrow 0 \rightarrow \cdots \tag{5.44}
\end{equation*}
$$

So for $q>0$

$$
Z_{q}(X)=B_{q}(X)= \begin{cases}0 & q \text { even } \tag{5.45}\\ \mathbb{Z} & q \text { odd }\end{cases}
$$

so we get exactly what we wanted.
Suppose X is nonempty. Then there exists a unique map $e: X \rightarrow\left\{x_{0}\right\}$. Define the augmentation map

$$
\begin{equation*}
\epsilon=e_{\#}: S_{0}(X) \rightarrow S_{0}\left(\left\{x_{0}\right\}\right) \cong \mathbb{Z} . \tag{5.46}
\end{equation*}
$$

Clearly ϵ is onto. Also,

$$
\begin{equation*}
\epsilon \partial_{1}=e_{\#} \partial_{1}=\partial_{1} e_{\#}=0 \tag{5.47}
\end{equation*}
$$

since $\partial_{1}: S_{1}\left(\left\{x_{0}\right\}\right) \rightarrow S_{0}\left(\left\{x_{0}\right\}\right)$ is 0 from the proof of Theorem 5.4. This means we get an augmented chain complex

$$
\begin{equation*}
\ldots \rightarrow S_{q}(X) \rightarrow S_{q-1}(X) \rightarrow \ldots \rightarrow S_{1}(X) \xrightarrow{\partial_{1}} S_{0}(X) \xrightarrow{\epsilon} \mathbb{Z} \rightarrow 0 \rightarrow 0 \ldots \tag{5.48}
\end{equation*}
$$

Remark 5.3. If $c \in S_{0}(X), c=\sum_{x \in X} n_{x} x$. (Note we are identifying a singular 0 -simplex in X with its image, i.e. a point in X). Then explicitly the augmentation homomorphism is

$$
\begin{equation*}
\epsilon(c)=\sum n_{x} \tag{5.49}
\end{equation*}
$$

Theorem 5.5. For $\left\{X_{\lambda}\right\}$ the set of path-components of X, then

$$
\begin{equation*}
H_{0}(X) \cong \bigoplus_{\lambda} \mathbb{Z} \tag{5.50}
\end{equation*}
$$

Lecture 17; October
Proof. Theorem 5.3 tells us that it is sufficient to show that if X is nonempty and pc, such that

$$
\begin{equation*}
\alpha_{x}\left(v_{0}\right)=x_{0} \quad \alpha\left(v_{1}\right)=x \tag{5.51}
\end{equation*}
$$

(where we are using that X is pc). Then $\partial \alpha_{x}=x-x_{0}$. Let

$$
\begin{equation*}
c_{1}=\sum n_{x} \alpha_{x} \in S_{1}(X) \tag{5.52}
\end{equation*}
$$

Then

$$
\begin{equation*}
\partial_{1} c_{1}=\sum n_{x}\left(x-x_{0}\right)=c_{0}-(\underbrace{\sum n_{x}}_{0}) x_{0}=c_{0} . \tag{5.53}
\end{equation*}
$$

Therefore $\operatorname{ker} \epsilon \subset \operatorname{im} \partial_{1}$. Therefore $\operatorname{ker} \epsilon=\operatorname{im} \partial_{1}=B_{0}(X)$. This means

$$
\begin{equation*}
H_{0}(X) \cong Z_{0}(X) / B_{0}(X)=S_{0}(X) / B_{0}(X)=S_{0}(X) / \operatorname{ker} \epsilon \cong \operatorname{im} \alpha \cong \mathbb{Z} \tag{5.54}
\end{equation*}
$$

as desired.

Write $\tilde{S}(X)$ for the augmented chain complex in (5.48). Recall that by definition $\tilde{S}_{q}(X)=S_{q}(X)$ for $q \neq-1$ and $\tilde{S}_{-1}(X)=\mathbb{Z}$. Then define reduced (singular) homology of X to be

$$
\begin{equation*}
H(\tilde{S}(X))=\tilde{H}(X) \tag{5.55}
\end{equation*}
$$

By construction

$$
\begin{equation*}
\tilde{H}_{q}(X) \cong H_{q}(X) \tag{5.56}
\end{equation*}
$$

for $q \neq 0$, and in fact we have

$$
\begin{equation*}
H_{0}(X) \cong \tilde{H}_{0}(X) \oplus \mathbb{Z} \tag{5.57}
\end{equation*}
$$

To see this, first notice we have a SES

and since \mathbb{Z} is free abelian, this splits, i.e.

$$
\begin{equation*}
Z_{0}(X) \cong \tilde{Z}_{0}(X) \oplus \mathbb{Z} \tag{5.59}
\end{equation*}
$$

Exercise 1.1. Show that for any SES

$$
\begin{equation*}
0 \rightarrow A \rightarrow B \rightarrow \mathbb{Z} \rightarrow 0 \tag{5.60}
\end{equation*}
$$

(or more generally if \mathbb{Z} is replaced by something free abelian) then $B \cong A \oplus \mathbb{Z}$.
This means

$$
\begin{equation*}
B_{0}(X)=\tilde{B}_{0}(X) \subset \tilde{Z}_{0}(X) \tag{5.61}
\end{equation*}
$$

which means

$$
\begin{equation*}
H_{0}(X) \cong Z_{0}(X) / B_{0}(X) \cong \frac{\tilde{Z}_{0}(X) \oplus \mathbb{Z}}{\tilde{B}_{0}(X)} \cong \tilde{H}_{0}(X) \oplus \mathbb{Z} \tag{5.62}
\end{equation*}
$$

2. Homology exact sequence of a pair

Let C be a chain complex, and $D \subset C$ a subcomplex. Then we get a quotient complex C / D.

Example 5.2. Let (X, A) be a pair of topological spaces. Then $S(A) \subset S(X)$ is a subcomplex.

We define the (singular) chain complex of (X, A) to be $S(X, A)=S(X) / S(A)$.
REmARK 5.4. (1) $S_{q}(X, A)$ is the free abelian group on $\Sigma_{q}(X) \backslash \Sigma_{q}(A)$.
(2) $S(X, \emptyset)=S(X)$.
(3) For $f:(X, A) \rightarrow(Y, B)$ a map of pairs, we get an induced chain map

$$
\begin{equation*}
f_{\#}: S(X) \rightarrow S(Y) \tag{5.63}
\end{equation*}
$$

such that $f_{\#}(S(A)) \subset S(B)$ so it really induces a chain map

$$
\begin{equation*}
f_{\#}: S(X, A) \otimes S(Y, B) \tag{5.64}
\end{equation*}
$$

(4) Let $i: A \hookrightarrow X, j:(A, \emptyset) \rightarrow(X, A)$ be the inclusion maps. Then we get a SES of chain complexes

(5) $H(S(X, A))=H(X, A)$ is the singular homology of (X, A). Note $H(X, \emptyset)=$ $H(X)$. For $f:(X, A) \rightarrow(Y, B)$ we get a (graded) homomorphism

$$
\begin{equation*}
f_{*}: H(X, A) \rightarrow H(Y, B) \tag{5.66}
\end{equation*}
$$

Now the goal is to relate $H(A), H(X)$, and $H(X, A)$ by means of an exact sequence.
Theorem 5.6. Let

$$
\begin{equation*}
0 \rightarrow C \xrightarrow{\varphi} D \xrightarrow{\psi} E \rightarrow 0 \tag{5.67}
\end{equation*}
$$

be a SES of chain complexes and chain maps. Then there is a (long) exact sequence

$$
\begin{equation*}
\ldots \rightarrow H_{q}(C) \xrightarrow{\varphi_{*}} H_{q}(D) \xrightarrow{\psi_{*}} H_{q}(E) \xrightarrow{\Delta} H_{q-1}(C) \rightarrow \ldots \tag{5.68}
\end{equation*}
$$

Proof. (1) First we prove exactness at $H_{q}(D)$.
(i) $\left(\operatorname{im} \varphi_{*} \subset \operatorname{ker} \psi_{*}\right):$ By assumption, $\psi \varphi=0$, which means $(\psi \varphi)_{*}=\psi_{*} \varphi_{*}=0$. So $\operatorname{im} \varphi_{*} \subset \operatorname{ker} \psi_{*}$.
(ii) $\left(\operatorname{ker} \psi_{*} \subset \operatorname{im} \varphi_{*}\right)$: Suppose $u \in H_{q}(D)$ is in $\operatorname{ker} \psi_{*}$. Let $u=[z]$, for some $z \in Z_{q}(D)$. Then

Then we can ask where this goes in D_{q}, and it would be nice if it was z, but we can at least look at their difference $z-\partial x$, and then

$$
\begin{equation*}
\psi(z-\partial x)=\psi(z)-\psi(\partial x)=\partial y-\partial \psi(x)=\partial y-\partial y=0 \tag{5.71}
\end{equation*}
$$

Therefore $z-\partial x \in \operatorname{ker} \psi=\operatorname{im} \varphi$, so there is $w \in C_{q}$ such that $\varphi(w)=z-\partial x$. Therefore

$$
\begin{equation*}
\varphi(\partial w)=\partial(z-\partial x)=\partial z-\partial^{2} x=0 \tag{5.72}
\end{equation*}
$$

Then φ is injective, so $\partial w=0$, i.e. $w \in Z_{q}(C)$. Let $v=[w] \in H_{q}(C)$. Then $\varphi_{*}(v)=[\varphi(w)]=[z-\partial x]=[z]=u$, so $u \in \operatorname{im} \varphi_{*}$ so $\operatorname{ker} \psi_{*} \subset \operatorname{im} \varphi_{*}$.
(2) (Definition of Δ): This is often called the connecting homomorphism. Recall this is a homomorphism $\Delta: H_{q}(E) \rightarrow H_{q-1}(C)$. Let $[z] \in H_{q}(E), z \in Z_{q}(E)$. ψ is surjective, so there exists $d \in D_{q}$ such that $\psi(d)=z$. The diagram is:

Then we have

$$
\psi(\partial d)=\partial(\psi(d))=\partial z=0
$$

which means

$$
\begin{equation*}
\partial d \in \operatorname{ker} \psi=\operatorname{im} \varphi \tag{5.75}
\end{equation*}
$$

Therefore there exists $c \in C_{q-1}$ such that $\varphi(c)=\partial d$. Then $\varphi(\partial c)=\partial \varphi(c)=$ $\partial^{2} d=0$. Now φ is injective which means $\partial c=0$, i.e. $c \in Z_{q-1}(C)$. Define

$$
\Delta([z])=[c] \in H_{q-1}(C)
$$

REMARK 5.5. A trick to remember this definition is to think of Δ as $\varphi^{-1} \partial \psi^{-1} z$. Don't take this literally, but it is the idea.

ExErcise 2.1. Show Δ is well-defined and a homomorphism.
(3) (Exactness at $\left.H_{q}(E)\right)$:

Exercise 2.2. Show $\operatorname{im} \psi_{*} \subset \operatorname{ker} \Delta$, then $\operatorname{ker} \Delta \subset \operatorname{im} \psi_{*}$.
(4) (Exactness at $\left.H_{q}(C)\right)$:

Exercise 2.3. Show $\operatorname{im} \Delta \subset \operatorname{ker} \varphi_{*}$ and $\operatorname{ker} \varphi_{*} \subset \operatorname{im} \Delta$.

Corollary 5.7. If (X, A) is a pair of topological spaces, then there exists an exact sequence

$$
\begin{equation*}
\cdots \longrightarrow H_{q}(A) \xrightarrow{i_{*}} H_{q}(X) \xrightarrow{j_{*}} H_{q}(X, A) \xrightarrow{\Delta} H_{q-1}(A) \longrightarrow \cdots \tag{5.77}
\end{equation*}
$$

called the homology exact sequence of the pair (X, A).
Proof. We get a SES of chain complexes $0 \rightarrow S(A) \rightarrow S(X) \rightarrow S(X, A) \rightarrow 0$ and then applying Theorem 5.6 we get the desired long exact sequence.

REMARK 5.6. (1) Δ in Corollary 5.7 is functorial, i.e. for $f:(X, A) \rightarrow(Y, B)$ then

commutes. Therefore the entire exact sequence in Corollary 5.7 is functorial.
(2) In the setting of $H(X, A), \Delta$ has a nice topological interpretation. Define the relative q cycles in (X, A) to be

$$
Z_{q}^{A}(X)=\left\{c \in S_{q}(X) \mid \partial c \in S_{q-1}(A)\right\}
$$

Similarly we can define the relative q boundaries as:

$$
B_{q}^{A}(X)=\left\{c \in S_{q}(X) \mid \exists d \in S_{q+1}(X) \text { s.t. } \partial d=c+a\left(a \in S_{q}(a)\right)\right\}
$$

We can see that actually

$$
H_{q}(X, A)=\frac{Z_{q}(X, A)}{B_{q}(X, A)} \cong \frac{Z_{q}^{A}(X) / S(A)}{B_{q}^{A}(X) / S(A)} \cong Z_{q}^{A}(X) / B_{q}^{A}(X)
$$

Then it turns out that for $[c] \in Z_{q}^{A}(X)$

$$
\Delta([c])=[\partial c] \in H_{q-1}(A)
$$

We can think of c as being some chain in X which doesn't have zero boundary, but the boundary is in $A \subset X$.
Recall for nonempty X we can define the augmented singular chain complex $\tilde{S}(X)$ For nonempty A, we get a SES of chain complexes

Lecture 18;
November 12, 2019

$$
\begin{equation*}
0 \rightarrow \tilde{S}(A) \rightarrow \tilde{S}(X) \rightarrow \tilde{S}(X, A) \rightarrow 0 \tag{5.83}
\end{equation*}
$$

But now notice that

$$
\begin{equation*}
\tilde{S}(X, A)=\tilde{S}(X) / \tilde{S}(A) \cong S(X) / S(A) \tag{5.84}
\end{equation*}
$$

since $\tilde{S}_{-1}(A) \cong \tilde{S}_{-1}(X) \cong \mathbb{Z}$ which implies $\tilde{S}_{-1}(X, A)=0=S_{-1}(X, A)$. This induces a long exact sequence in \tilde{H} :

$$
\begin{array}{r}
\cdots \rightarrow \tilde{H}_{q}(A) \rightarrow \tilde{H}_{q}(X) \rightarrow \tilde{H}_{q}(X, A) \rightarrow \cdots \rightarrow \tilde{H}_{0}(A) \longrightarrow \tilde{H}_{0}(X) \longrightarrow \tilde{H}_{0}(X, A) \longrightarrow \cdots \tag{5.85}\\
H_{0}(X, A)
\end{array}
$$

DEFINITION 5.1. We say chain maps $\varphi, \psi: C \rightarrow D$ are chain homotopic, $\varphi \stackrel{\text { c }}{\cong} \psi$ iff there exists a homomorphism $T: C \rightarrow D$ of degree +1 such that $\partial T+T \partial=\varphi-\psi$. We say T is a chain homotopy from φ to ψ.

REMARK 5.7. Anything of the form $\partial T+T \partial$ is automatically a chain map because

$$
\begin{equation*}
\partial(\partial T+T \partial)=\partial T \partial=(\partial T+T \partial) \partial \tag{5.86}
\end{equation*}
$$

Definition 5.2. We say $\varphi: C \rightarrow D$ is a chain homotopy equivalence iff there exists $\psi: D \rightarrow C$ such that $\psi \varphi \stackrel{\mathrm{c}}{\cong} \operatorname{id}_{C}$ and $\varphi \psi \stackrel{\mathrm{c}}{\cong} \mathrm{id}_{D}$. We say C and D are chain homotopy equivalent.

Lemma 5.8. Let $\varphi, \psi: C \rightarrow D$ be chain maps. Then $\varphi \stackrel{c}{\cong} \psi$ implies $\varphi_{*}=\psi_{*}: H(C) \rightarrow$ $H(D)$.

Proof. Let $z \in Z_{q}(C)$. Then

$$
\begin{align*}
\left(\varphi_{*}-\psi_{*}\right)([z]) & =[\varphi(z)-\psi(z)]=[(\varphi-\psi)(z)] \tag{5.87}\\
& =[(\partial T+T \partial)(z)]=[\partial T(z)]=0 \in H_{q}(D) \tag{5.88}
\end{align*}
$$

Corollary 5.9. $C \stackrel{\mathrm{c}}{\cong} D$ implies $H(C) \cong H(D)$.
The definition of $\stackrel{\mathrm{c}}{\cong}$ is motivated by topology. In particular:
THEOREM 5.10. $f \simeq g:(X, A) \rightarrow(Y, B)$ implies $f_{\#} \stackrel{\mathrm{c}}{\cong} g_{\#}: S(X, A) \rightarrow S(Y, B)$.
This gives us the homotopy invariance of singular homology.
Corollary 5.11. $f \simeq g:(X, A) \rightarrow(Y, B)$ implies $f_{*} \simeq g_{*}: H(X, A) \rightarrow H(Y, B)$.
Corollary 5.12. $(X, A) \simeq(Y, B)$ implies $H(X, A) \cong H(Y, B)$.
To prove Theorem 5.10 it is sufficient to construct

$$
\begin{equation*}
T: S_{q}(X) \rightarrow S_{q+1}(X \times I) \tag{5.89}
\end{equation*}
$$

such that

$$
\begin{equation*}
\partial T+T \partial=i_{1 \#}-i_{0 \#} \tag{5.90}
\end{equation*}
$$

where $i_{\epsilon}: X \rightarrow X \times I$ is inclusion $i_{\epsilon}(x)=(x, \epsilon)$ where $\epsilon \in\{0,1\}$.
To this, it is enough to take $X=\Delta^{q}$ and define

$$
\begin{equation*}
T\left(\mathrm{id}^{q}\right) \in S_{q+1}\left(\Delta^{q} \times I\right) \tag{5.91}
\end{equation*}
$$

Then define $T: S_{q}(X) \rightarrow S_{q+1}(X \times I)$ by

$$
\begin{equation*}
T(\sigma)=(\sigma \times \mathrm{id})_{\#} T\left(\mathrm{id}^{q}\right) \tag{5.92}
\end{equation*}
$$

for $\sigma \in \Sigma_{q}(X)$.
Note that T is automatically fuctorial, i.e. if $f: X \rightarrow Y$ then

The idea of (5.91) is that $T\left(\mathrm{id}^{q}\right)$ is a linear combination of affine $(q+1)$-simplices in $\Delta^{q} \times I$, whose union is $\Delta^{q} \times I$, with coefficients ± 1 chosen so that ∂ s cancel, except for

$$
\begin{equation*}
\partial\left(\Delta^{q} \times I\right)=\Delta^{q} \times\{1\} \cup \Delta^{1} \times\{0\} \cup \partial \Delta^{q} \times I \tag{5.94}
\end{equation*}
$$

Let $a_{i}=\left(v_{i}, 0\right), b_{i}=\left(v_{i}, 1\right) \in \Delta^{q} \times I$ of $0 \leq i \leq q$. Then define

$$
\begin{equation*}
T\left(\mathrm{id}^{q}\right)=\sum_{i=0}^{q}(-1)^{i}\left[a_{0} \ldots a_{i} b_{i} \ldots b_{q}\right] \tag{5.95}
\end{equation*}
$$

Proposition 5.13. $\partial T\left(\mathrm{id}^{q}\right)=\left[b_{0} \ldots b_{q}\right]-\left[a_{0} \ldots a_{q}\right]-T\left(\partial\left(\mathrm{id}^{q}\right)\right)$.
The proof of this is just an explicit computation. See Hatcher.

Example 5.3. For $q=0, \Delta^{0} \times I$ is just an interval running from a_{0} to b_{0} :

$$
\begin{equation*}
a_{0} \longrightarrow b_{0} \tag{5.96}
\end{equation*}
$$

Here we have

$$
\begin{align*}
T\left(\mathrm{id}^{0}\right) & =\left[a_{0} b_{0}\right] \tag{5.97}\\
\partial T\left(\mathrm{id}^{0}\right) & =\left[b_{0}\right]-\left[a_{0}\right] . \tag{5.98}
\end{align*}
$$

Example 5.4. For $q=1$ we have a square which we decompose as two simplices:

The idea is that

$$
\partial=\underset{\uparrow}{\cdot} \underset{\stackrel{\rightharpoonup}{*}}{\cdot}=\binom{\cdot \rightarrow \cdot}{\cdot \longleftarrow \cdot}-\left(\begin{array}{cc}
\cdot & \cdot \tag{5.100}\\
\downarrow & \uparrow \\
\cdot & \cdot
\end{array}\right)
$$

Notice the inner edge is oriented opposite ways when we look at each individual simplex. As the algebra will show us, this is such that it will cancel. In particular

$$
\begin{equation*}
T\left(\mathrm{id}^{1}\right)=\left[a_{0} b_{0} b_{1}\right]-\left[a_{0} a_{1} b_{1}\right] \tag{5.101}
\end{equation*}
$$

and

$$
\begin{align*}
\partial T\left(\mathrm{id}^{1}\right) & =\left(\left[b_{0} b_{1}\right]-\left[a_{0} b_{1}\right]+a_{0} b_{0}\right)-\left(\left[a_{1} b_{1}\right]-\left[a_{0} b_{1}\right]+\left[a_{0} a_{1}\right]\right) \tag{5.102}\\
& =\left[b_{0} b_{1}\right]-\left[a_{0} a_{1}\right]-\left(\left[a_{1} b_{1}\right]-\left[a_{0} b_{0}\right]\right) \tag{5.103}
\end{align*}
$$

Then we have

$$
\begin{equation*}
T\left(\left[v_{0}\right]\right)=T\left(\mathrm{id}^{0}\right)=\left[a_{0} b_{0}\right] \tag{5.104}
\end{equation*}
$$

and

$$
\begin{align*}
T\left(\left[v_{1}\right]\right) & =\left(\left[v_{1}\right] \times \mathrm{id}\right)_{\#} T\left(\mathrm{id}^{0}\right) \tag{5.105}\\
& =\left(\left[v_{1}\right] \times \mathrm{id}\right)\left[a_{0} b_{0}\right]=\left[a_{1} b_{1}\right] \tag{5.106}
\end{align*}
$$

which means

$$
\begin{equation*}
\left[a_{1} b_{1}\right]-\left[a_{0} b_{0}\right]=T\left(\left[v_{1}\right]\right)-T\left(\left[v_{0}\right]\right)=T\left(\left[v_{1}\right]-\left[v_{0}\right]\right)=\partial T\left(\mathrm{id}^{1}\right) \tag{5.107}
\end{equation*}
$$

Now consider $T: S_{q}(X) \rightarrow S_{q+1}(X \times I)$.
Lemma 5.14. $\partial T+T \partial=i_{1 \#}-i_{0 \#}$.
Proof. It is enough to consider $\sigma \in \Sigma_{q}(X)$. Then we have

$$
\begin{align*}
(\partial T+T \partial)(\sigma) & =\partial(\sigma \times \mathrm{id})_{\#} T\left(\mathrm{id}^{q}\right)+T \sigma_{\#} \partial\left(\mathrm{id}^{q}\right) \tag{5.108}\\
& =(\sigma \times \mathrm{id})_{\#} \partial T\left(\mathrm{id}^{q}\right)+(\sigma \times \mathrm{id})_{\#} T \partial\left(\mathrm{id}^{q}\right) \tag{5.109}\\
& =(\sigma \times \mathrm{id})_{\#}(\partial T+T \partial)\left(\mathrm{id}^{q}\right) \tag{5.110}\\
& =(\sigma \times \mathrm{id})_{\#}\left(\left[b_{0} \ldots b_{q}\right]-\left[a_{0} \ldots a_{q}\right]\right)\left(\mathrm{id}^{q}\right) \tag{5.111}\\
& =i_{q} \circ \sigma-i_{0} \sigma=i_{1 \#}(\sigma)-i_{0 \#}(\sigma) \tag{5.112}
\end{align*}
$$

Proof of Theorem 5.10. Let $F: X \times I \rightarrow Y$ be a homotopy from f to $g . F$ induces $F_{\#}: S_{q+1}(X \times I) \rightarrow S_{q+1}(Y)$. Let

$$
\begin{equation*}
T^{\prime}=F_{\#} T: S_{q}(X) \rightarrow S_{q+1}(Y) \tag{5.113}
\end{equation*}
$$

Now we check that

$$
\begin{align*}
\partial T^{\prime}+T^{\prime} \partial & =\partial F_{\#} T+F_{\#} T \partial=F_{\#}(\partial T+T \partial)=F_{\#}\left(i_{1 \#}-i_{0 \#}\right) \tag{5.114}\\
& =\left(F_{i_{1}}\right)_{\#}-\left(F_{i_{0}}\right)_{\#}=g_{\#}-f_{\#} \tag{5.115}
\end{align*}
$$

So t^{\prime} is a chain homotopy from $f_{\#}$ to $g_{\#}$.
Also $T(S(a)) \subset S(A \times I)$ and $F_{\#}(S(A \times I)) \subset S(B)$. Therefore T^{\prime} is a chain homotopy of maps of pairs $(S(X), S(A)) \rightarrow(S(Y), S(B))$. Therefore this induces a chain homotopy equivalence from $f_{\#}$ to $g_{\#}: S(X, A) \otimes S(Y, B)$.

REmaRk 5.8. $f \simeq g: X \rightarrow Y$ implies $f_{*}: \tilde{H}(X) \rightarrow \tilde{H}(Y)$ is an \cong.
Corollary 5.15. If X is contractible then $\tilde{H}(X)=0$.
Proof. Recall $\tilde{H}(\mathrm{pt})$ from Theorem 5.4. Then X being contractible implies $x \simeq$ pt.

Lecture 19;
November 14, 2019

3. Excision

This is the property that makes homology easy to compute.
THEOREM 5.16. If $Z \subset A \subset X$ is such that $\mathrm{Cl}(Z) \subset \operatorname{int}(A)$ then the inclusion induces an isomorphism

$$
\begin{equation*}
H(X \backslash Z, A \backslash Z) \rightarrow H(X, A) \tag{5.116}
\end{equation*}
$$

In this situation we say Z can be excised.
We will actually prove a more general result. Let \mathcal{C} be a collection of subsets of X. Let $S_{q}^{\mathcal{C}}(X)$ be the free abelian group on the set of q-simplices such that the image is contained in some $U \in \mathcal{C}$. Call this the group of \mathcal{C}-small q-chains in X. So we have a subcomplex

$$
\begin{equation*}
S^{\mathcal{C}}(X)=\sum_{U \in \mathcal{C}} S(U) \subset S(X) \tag{5.117}
\end{equation*}
$$

Theorem 5.17. If $\{\operatorname{int}(U) \mid U \in \mathcal{C}\}$ covers X, then the inclusion $S^{\mathcal{C}}(X) \rightarrow S(X)$ is a chain homotopy equivalence.

Moreover, if $A \in \mathcal{C}$, then the inclusion $\left(S^{\mathcal{C}}(X), S(A)\right) \rightarrow(S(X), S(A))$ is a chain homotopy equivalence of pairs.

Proof that Theorem $5.17 \Longrightarrow$ Theorem 5.16. Let $B=X \backslash Z$. Then $\operatorname{int}(B)=$ $X \backslash \operatorname{Cl}(Z) \supset X \backslash \operatorname{int}(A)$. Therefore $X=(\operatorname{int}(A)) \cup(\operatorname{int}(B))$. So by Theorem 5.17 , the inclusion

$$
\begin{equation*}
(\underbrace{S^{\{A, B\}}(X)}_{=S(A)+S(B)}, S(A)) \rightarrow(S(X), S(A)) \tag{5.118}
\end{equation*}
$$

is a chain homotopy equivalence of pairs. Therefore it induces a chain homotopy equivalence

$$
\begin{equation*}
\frac{S(A)+S(B)}{S(A)} \rightarrow \frac{S(X)}{S(A)} \tag{5.119}
\end{equation*}
$$

but

$$
\begin{equation*}
\frac{S(A)+S(B)}{S(A)} \cong \frac{S(B)}{S(A) \cap S(B)}=\frac{S(B)}{S(A \cap B)} \tag{5.120}
\end{equation*}
$$

This induces an isomorphism

$$
\begin{equation*}
H(X \backslash Z, A \backslash Z)=H(B, A \cap B) \rightarrow H(X, A) \tag{5.121}
\end{equation*}
$$

A useful variant of excision is the following.
Theorem 5.18 (Mayer-Vietoris). Suppose $X=\left(\operatorname{int}\left(X_{1}\right)\right) \cup\left(\operatorname{int}\left(X_{2}\right)\right)$. Then there exists a functorial exact sequence

$$
\begin{equation*}
\cdots \longrightarrow H_{q}\left(X_{1} \cap X_{2}\right) \xrightarrow{\alpha_{*}} H_{q}\left(X_{1}\right) \oplus H_{q}\left(X_{2}\right) \xrightarrow{\beta_{*}} H_{q}(X) \xrightarrow{\Delta} H_{q-1}\left(X_{1} \cap X_{2}\right) \longrightarrow \cdots \tag{5.122}
\end{equation*}
$$

where

$$
\begin{align*}
\alpha_{*}(u) & =\left(i_{1 *}(u),-i_{2 *}(u)\right) \tag{5.123}\\
\beta_{*}\left(v_{1}, v_{2}\right) & =j_{1 *}\left(v_{1}\right)+j_{2 *}\left(v_{2}\right) \tag{5.124}
\end{align*}
$$

where the i_{1}, i_{2}, j_{1}, and j_{2} are the obvious inclusion maps. We will call this sequence the Mayer-Vietoris ($M-V$) sequence.

Proof. For $A, B \subset C$ abelian groups then there exists a SES

$$
\begin{gathered}
0 \longrightarrow A \cap B \longrightarrow A+B \longrightarrow(c,-c) \\
c \longmapsto A \longrightarrow a+b
\end{gathered}
$$

Hence there is a SES of chain complexes
(5.126)

where

$$
\begin{equation*}
\alpha(c)=(c,-c) \tag{5.127}
\end{equation*}
$$

$$
\beta^{\prime}(a, b)=a+b
$$

By Theorem 5.6 this induces an exact sequence as stated; where $\beta=i b^{\prime}$ where $i: S^{\left\{X_{1}, X_{2}\right\}} \hookrightarrow$ $S(X)$ is the inclusion. i_{*} is an isomorphism by Theorem 5.17.

REMARK 5.9. (1) i_{*} is an isomorphism (so Theorem 5.18 holds) if $X=X_{1} \cup X_{2}$ such that x_{1} is closed in X and has open V such that $\left(V, V \cap X_{2}\right)$ deformation retracts to ($X_{1}, X_{2} \cap X_{2}$).
(2) Using the description of Δ in Theorem 5.6, we can describe $\Delta: H_{q}(X) \rightarrow$ $H_{q-1}\left(X_{1} \cap X_{2}\right)$ in Theorem 5.18. Recall

$$
H_{q}(X) \cong H_{q}\left(S\left(X_{1}\right)+S\left(X_{2}\right)\right)
$$

so we can write $u \in H_{q}(X)$ as $[z]=\left[c_{1}+c_{2}\right]$ for $c_{i} \in S_{q}\left(X_{i}\right)$ for $i \in\{1,2\}$. Note that $\partial z=\partial c_{1}+\partial c_{2}=0$. Recall that Δ consisted of pulling back under β^{\prime}, acting ∂, then pulling back under α. When we pull back under β^{\prime} we get $\left(c_{1}, c_{2}\right)$, the differential is $\left(\partial c_{1}, \partial c_{2}\right)=\left(\partial c_{1},-\partial c_{1}\right)$, so after pulling back under α we get ∂c_{1}. The picture here is that we have two chains with the same boundary (up to orientation) (sitting in $X_{1} \cap X_{2}$) and then we get a cycle since the boundaries cancel.

Now we will do some hard work.
Proof of Theorem 5.17. We will define what is called a subdivision. This will be a chain map $s: S(X) \rightarrow S(X)$ such that
(1) $s \stackrel{c}{\cong}$ id and
(2) $\forall \sigma \in \Sigma_{q}(X), \exists m=m(\sigma)$ such that $S^{m}(\sigma) \in S^{\mathcal{C}}(X)$.

Then we will use s to define a chain deformation retraction $\rho: S(X) \rightarrow S(X)$, i.e. a chain map such that
(1) $\rho \stackrel{\mathrm{c}}{\cong} \mathrm{id}$ and
(2) $\left.\rho\right|_{S^{\mathcal{C}}(X)}=i: S^{\mathcal{C}}(X) \rightarrow S(X)$.

This implies i is a chain homotopy equivalence.
Let $E \subset \mathbb{R}^{n}$ be convex. Define $S^{a}(E)$ to be the complex of affine chains in E, i.e. linear combinations of affine simplices in E. Define $C: S_{p}^{q}\left(\Delta^{q}\right) \rightarrow S_{p+1}^{a}\left(\Delta^{q}\right)$ by

$$
\begin{equation*}
C\left(\left[e_{0} \ldots e_{p}\right]\right)=\left[b e_{0} \ldots e_{p}\right] \tag{5.129}
\end{equation*}
$$

where

$$
\begin{equation*}
b=\sum_{i=0}^{q} \frac{v_{i}}{q+1} \tag{5.130}
\end{equation*}
$$

is the barycenter of $\Delta^{q} . C$ can be regarded as coning on the barycenter of Δ^{q}.
Lemma 5.19. C is a chain homotopy from id to 0 , i.e. $\partial C+C \partial=\mathrm{id}$.
Proof.

$$
\begin{align*}
\partial C\left[e_{0} \ldots e_{p}\right] & =\partial\left[b e_{0} \ldots e_{p}\right] \tag{5.131}\\
& =\left[e_{0} \ldots e_{p}\right]+\sum_{i=0}^{p}(-1)^{i+1}\left[b e_{0} \ldots \hat{e}_{i} \ldots e_{p}\right] \tag{5.132}\\
& =\left[e_{0} \ldots e_{p}\right]-C\left(\sum_{i=0}^{q}(-1)^{i}\left[e_{0} \ldots \hat{e}_{i} \ldots e_{p}\right]\right) \tag{5.133}\\
& =\left[e_{0} \ldots e_{p}\right]-C \partial\left[e_{0} \ldots e_{p}\right] . \tag{5.134}
\end{align*}
$$

Define $s: S_{q}(X) \rightarrow S_{q}(X)$ (such that $s\left(S_{q}^{a}(E)\right) \subset S_{q}^{a}(E)$ for E convex) inductively on q. Take $s=\mathrm{id}: S_{0}(X) \rightarrow S_{0}(X)$. Now it is enough to define it on the identity:

$$
\begin{equation*}
s\left(\mathrm{id}^{q}\right)=C\left(s\left(\partial\left(\mathrm{id}^{q}\right)\right)\right) \tag{5.135}
\end{equation*}
$$

since for general σ we can take $s(\sigma)=\sigma_{\#} s\left(\mathrm{id}^{q}\right)$.
Lemma 5.20. s is a chain map, i.e. $\partial s=s \partial$.
Proof. It is enough to show $\partial s\left(\mathrm{id}^{q}\right)=d \partial\left(\mathrm{id}^{q}\right)$, induct on q (exercise).
Now we define $T: S_{q}(X) \rightarrow S_{q+1}(X)$ (such that $T\left(S_{q}^{a}(E)\right) \subset S_{q+1}^{a}(E)$ for E convex) inductively on q. Define $T=0: S_{0}(X) \rightarrow S_{1}(X)$. Then define

$$
\begin{equation*}
T\left(\mathrm{id}^{q}\right)=C(s-\mathrm{id}-T \partial)\left(\mathrm{id}^{q}\right) . \tag{5.136}
\end{equation*}
$$

Lemma 5.21. $\partial T+T \partial=s-\mathrm{id}$.
Proof. Enough to show this for id^{q}, induct on q (exercise).
Let $c \in S_{q}^{a}$ for $E \subset \mathbb{R}^{n}$ convex. Then

$$
\begin{equation*}
c=\sum_{i=1}^{k} n_{i} \sigma_{i} \tag{5.137}
\end{equation*}
$$

for $n_{i} \neq 0$ and $\sigma_{i} \in \Sigma_{q}^{a}(E)$ for $1 \leq i \leq k$. Define

$$
\begin{equation*}
\operatorname{mesh}(\sigma)=\max \left\{\operatorname{diam} \sigma_{i}\left(\Delta^{q}\right) \mid 1 \leq i \leq k\right\} \tag{5.138}
\end{equation*}
$$

Lemma 5.22. Let $E \subset \mathbb{R}^{n}$ be convex and $c \in S_{q}^{a}(E)$. then

$$
\begin{equation*}
\operatorname{mesh} s(c) \leq \frac{q}{q+1} \operatorname{mesh}(c) \tag{5.139}
\end{equation*}
$$

Note that if $\sigma=\left[e_{0} \ldots e_{q}\right] \in \Sigma_{q}^{a}(E)$ then

$$
\begin{equation*}
\operatorname{diam} \sigma=\max _{i \leq i, j \leq q}\left\{\left\|e_{i}-e_{j}\right\|\right\} \tag{5.140}
\end{equation*}
$$

Proof. It is enough to prove for $c=\sigma=\left[e_{0} \ldots e_{q}\right]$, induct on q (exercise).
For $\sigma \in \Sigma_{q}(X)$ we have that

$$
\begin{equation*}
\left\{\sigma^{-1}(\operatorname{int}(U)) \mid U \in \mathcal{C}\right\} \tag{5.141}
\end{equation*}
$$

is an open cover of Δ^{q}. But Δ^{q} is compact, so there is some $\epsilon>0$ such that for $A \subset \Delta^{q}$ with $\operatorname{diam} A<\epsilon$ then $A \subset \sigma^{-1}(\operatorname{int}(U))$ for some $U \in \mathcal{C}$, which implies $\sigma(A) \subset U$. By Lemma 5.22 there is some integer $m \geq 0$ such that

$$
\begin{equation*}
\operatorname{mesh} s^{m}\left(\mathrm{id}^{q}\right)<\epsilon \tag{5.142}
\end{equation*}
$$

and then

$$
\begin{equation*}
s^{m} \sigma=\sigma_{\#}\left(s^{m}\left(\mathrm{id}^{q}\right)\right) \in S^{\mathcal{C}}(X) \tag{5.143}
\end{equation*}
$$

Now let $m(\sigma)$ be the least such $m \geq 0$. Note $m(\sigma)=0$ iff $\sigma \in S^{\mathcal{C}}(X)$, and $m\left(\sigma_{(i)}\right) \leq m(\sigma)$ for $0 \leq i \leq q$.

Now we define $\theta: S(X) \otimes S^{\mathcal{C}}(X)$ by

$$
\begin{equation*}
\theta(\sigma)=s^{m(\sigma)}(\sigma) \tag{5.144}
\end{equation*}
$$

The trouble is this is not a chain map. So there is a bit more fussing. Define φ : $S(X) \rightarrow S(X)$ by

$$
\begin{equation*}
\varphi(\sigma)=\left(\mathrm{id}+s+\ldots+s^{m(\sigma)-1}\right)(\sigma) \tag{5.145}
\end{equation*}
$$

and 0 if $m(\sigma)=0$. Then we have

$$
\begin{equation*}
\theta-\mathrm{id}=(s-\mathrm{id}) \varphi . \tag{5.146}
\end{equation*}
$$

The point is that $T \varphi$ is a chain homotopy from $\rho=\theta+T(\varphi \partial-\partial \varphi)$ to the identity.
Then we just need to check that $\rho(S(X)) \subset S^{\mathcal{C}}(X)$. We know $\theta(S(X)) \subset S^{\mathcal{C}}(X)$, and that $T\left(S^{\mathcal{C}}(X)\right) \subset S^{\mathcal{C}}(X)$. Therefore it is enough to show that

$$
\begin{equation*}
(\varphi \partial-\partial \varphi)(S(X)) \subset S^{\mathcal{C}}(X) \tag{5.147}
\end{equation*}
$$

We can directly verify that:

$$
\begin{align*}
&(\varphi \partial-\partial \varphi)(\sigma)= \varphi\left(\sum_{i=1}^{q}(-1)^{i} \sigma_{(i)}\right)-\partial\left(\mathrm{id}+s+\ldots+s^{m(\sigma)-1}\right)(\sigma) \tag{5.148}\\
&= \sum_{i=0}^{q}\left(\mathrm{id}+s+\ldots+s^{m\left(\sigma_{(i)}\right)-1}\right)\left(\sigma_{(i)}\right) \tag{5.149}\\
& \quad-\left(\mathrm{id}+s+\ldots+s^{m(\sigma)-1}\right)\left(\sum_{i=0}^{q}(-1)^{i} \sigma_{(i)}\right) \tag{5.150}\\
& \in S^{\mathcal{C}}(X) \tag{5.151}
\end{align*}
$$

since $m\left(\sigma_{(i)}\right) \leq m(\sigma)$.
Finally, note that if $A \in \mathcal{C}$, then $\rho(S(A)) \subset S(A)$.
REmark 5.10. If $Z_{\tilde{H}} \neq A$, then Theorem 5.16 holds for \tilde{H}. If $X_{1} \cap X_{2} \neq \emptyset$ then Theorem 5.18 holds for \tilde{H}.

Let $\left\{X_{\lambda}\right\}_{\lambda \in \Lambda}$ be a collection of spaces. Recall the wedge of $\left\{\left(X_{\lambda}, x_{\lambda}\right)\right\}$ (where each $\left.x_{\lambda} \in X_{\lambda}\right)$ is

$$
\begin{equation*}
\bigvee_{\lambda} X_{\lambda}=\left(\coprod_{\lambda} X_{\lambda}\right) /\left(x_{\lambda} \sim x_{\lambda^{\prime}} \forall \lambda, \lambda^{\prime} \in \Lambda\right) \tag{5.152}
\end{equation*}
$$

Theorem 5.23. Let $\left\{X_{\lambda}\right\}$ be a collection of path-connected cell complexes. Then

$$
\begin{equation*}
\tilde{H}\left(\bigvee_{\lambda} X_{\lambda}\right) \cong \bigoplus_{\lambda} \tilde{H}\left(X_{\lambda}\right) \tag{5.153}
\end{equation*}
$$

Proof. Let X be the 1-complex obtained by attaching 1-cells to the discrete space $\left\{x_{\lambda}\right\} \cup\left\{x_{0}\right\}$ by the attached maps g_{λ} where $f_{\lambda}(-1)=x_{0}$ and $f_{\lambda}(1)=x_{\lambda}$. Let

$$
\begin{equation*}
Y=\left(C \cup \coprod_{\lambda} X_{\lambda}\right) /\left(x_{\lambda} \sim x_{\lambda}\right) \tag{5.154}
\end{equation*}
$$

Also let

$$
\begin{align*}
Y_{1} & =\bigcup_{\lambda} f_{\lambda}([-1,1 / 2)) \tag{5.155}\\
Y_{2} & =\coprod_{\lambda} X_{\lambda} \cup f_{\lambda}((-1 / 2,1]) \tag{5.156}
\end{align*}
$$

so that Y_{1} is contractible, $Y=Y_{1} \cup Y_{2}$, and

$$
\begin{equation*}
Y_{1} \cap Y_{2}=\coprod_{\lambda} f_{\lambda}((-1 / 2,1 / 2)) . \tag{5.157}
\end{equation*}
$$

The theorem is clearly true for \tilde{H}_{0}. By the $\mathrm{M}-\mathrm{V}$ sequence we get an isomorphism $H_{q}\left(Y_{2}\right) \rightarrow H_{q}(Y)$. Since C is contractible

$$
\begin{equation*}
Y \simeq Y / C \cong \bigvee_{\lambda} X_{\lambda} \tag{5.158}
\end{equation*}
$$

CHAPTER 6

Computations and applications

Let X be a topological space. The suspension $S X$ of X is

$$
\begin{equation*}
X \times[-1,1] /\left(\forall x, x^{\prime} \in X,(x, \pm 1) \sim\left(x^{\prime}, \pm 1\right)\right) \tag{6.1}
\end{equation*}
$$

Note that

$$
\begin{align*}
X \times[0,1] & \mapsto X_{1} \subset S X \tag{6.2}\\
X \times[-1,1] & \mapsto X_{1} \subset S X \tag{6.3}
\end{align*}
$$

where each $X_{i} \cong C X$.
Theorem 6.1. $\tilde{H}_{q}(S X) \cong \tilde{H}_{q-1}(X)$.
Proof. We have $S X=X_{1} \cup X_{2}, X_{1} \cap X_{2}=X$, and the X_{i} are contractible. Therefore the pair $\left\{X_{1}, X_{2}\right\}$ satisfies the remark after Theorem 5.18 , so we get a M-V sequence. We know

$$
\begin{equation*}
\tilde{H}\left(X_{i}\right)=0 \tag{6.5}
\end{equation*}
$$

which means

$$
\begin{equation*}
\tilde{H}_{q}(S X) \xrightarrow{\Delta} \tilde{H}_{q-1}(X) \tag{6.6}
\end{equation*}
$$

is an is isomorphism for all q.
Since $S^{n} \cong S S^{n-1}$ we get

Corollary 6.2.

$$
\tilde{H}_{q}\left(S^{n}\right) \cong \begin{cases}\mathbb{Z} & q=n \tag{6.7}\\ 0 & q \neq n\end{cases}
$$

Proof. this is true for $q=0$, now induct on n using Theorem 6.1.
Corollary 6.3. $S^{m} \simeq S^{n}$ iff $m=n$.
Corollary 6.4 (Invariance of dimension). $\mathbb{R}^{m} \cong \mathbb{R}^{n}$ iff $m=n$.
Proof. $\mathbb{R}^{m} \cong \mathbb{R}^{n}$ implies $S^{m} \cong S^{n}$, which implies $m=n$ by Corollary 6.3.
Corollary 6.5. There is no retraction $D^{n} \rightarrow S^{n-1}$ for $n \geq 1$.
Proof. We have

which gives us

which is a contradiction.
Corollary 6.6 (Brouwer fixed point theorem). Every map $f: D^{n} \rightarrow D^{n}$ has a fixed point.

1. Degree

For a map $f: S^{n} \rightarrow S^{n}(n \geq 0)$ we can consider the induced map

$$
\begin{equation*}
f_{*}: \underbrace{\tilde{H}_{n}\left(S^{n}\right)}_{\cong \mathbb{Z}} \rightarrow \underbrace{\tilde{H}_{n}\left(S^{n}\right)}_{\cong \mathbb{Z}} \tag{6.10}
\end{equation*}
$$

is multiplication by some $d \in \mathbb{Z} . d=\operatorname{deg} f$ is the degree of f.
Remark 6.1. (1) $\operatorname{deg}(i d)=1$.
(2) the degree of a constant map is 0 since it factors through $\tilde{H}_{n}(\mathrm{pt})=0$.
(3) $\operatorname{deg}(g f)=\operatorname{deg} g \operatorname{deg} f$.
(4) $f \simeq g$ implies $\operatorname{deg} f=\operatorname{deg} g$.
(5) If f a homotopy equivalence then $\operatorname{deg} f= \pm 1$.

Let $f: X \rightarrow Y$ be a map. Then

$$
\begin{equation*}
f \times \mathrm{id}: X \times[-1,1] \rightarrow Y \times[-1,1] \tag{6.11}
\end{equation*}
$$

induces a map

$$
\begin{equation*}
S f: S X \rightarrow S Y \tag{6.12}
\end{equation*}
$$

In particular, $f: S^{n} \rightarrow S^{n}$ induces a map $S f: S^{n+1} \rightarrow S^{n+1}$
Lemma 6.7. Let $f: S^{n} \rightarrow S^{n}(n \geq 0)$ be a map. Then $\operatorname{deg}(S f)=\operatorname{deg} f$.
Proof. By the proof of Theorem 6.1 we have a commutative diagram

$$
\begin{array}{ccc}
\tilde{H}_{n+1}\left(S S^{n}\right) \xrightarrow{\Delta} & \tilde{H}_{n}\left(S^{n}\right) \\
& \downarrow(S f)_{*} & \tag{6.13}\\
\tilde{H}_{n+1}\left(S S^{n}\right) \xrightarrow{\Delta} & { }^{\Delta} \tilde{H}_{n}\left(S^{n}\right)
\end{array}
$$

where Δ is an isomorphism.
Now we want to compute the degree of the antipodal map. Let $f_{n}: S^{n} \rightarrow S^{n}$ be

$$
\begin{equation*}
\left(x_{0}, x_{1}, \ldots, x_{n}\right) \mapsto\left(-x_{0}, x_{1}, \ldots, x_{n}\right) \tag{6.14}
\end{equation*}
$$

Lemma 6.8. $\operatorname{deg} f_{n}=-1$.

Proof. $f_{n+1}=S f_{n}$, so by Lemma 6.7 it is enough to do $n=0$. Recall $S^{0}=\{ \pm 1\}=$ $\left\{p_{ \pm}\right\}$. Then we have

$$
\begin{align*}
& S_{1}\left(S^{0}\right) \xrightarrow{\partial_{1}} S_{0}\left(S^{0}\right) \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow 0 \tag{6.15}\\
& \cong \uparrow \\
& \mathbb{Z} \oplus \mathbb{Z}
\end{align*}
$$

and in fact $\partial_{1}=0$. Therefore

$$
\begin{equation*}
\tilde{H}_{0}\left(S^{0}\right)=\tilde{Z}_{0}\left(S^{0}\right)=\operatorname{ker} \epsilon \cong \mathbb{Z} \tag{6.16}
\end{equation*}
$$

where this is generated by $p_{+}-p_{-}$. We know $f_{0}\left(p_{ \pm}\right)=p_{\mp}$ which means

$$
\begin{equation*}
f_{0 *}: \tilde{H}_{0}\left(S^{0}\right) \rightarrow \tilde{H}_{0}\left(S^{0}\right) \tag{6.17}
\end{equation*}
$$

is multiplication by -1 .
Let $a_{n}: S^{n} \rightarrow S^{n}$ be the antipodal map, $a_{n}(x)=-x$.
Lemma 6.9. $\operatorname{deg} a_{n}=(-1)^{n+1}$.
Proof. Let $f_{n}^{(i)}: S^{n} \rightarrow S^{n}$ be the map

$$
\begin{equation*}
\left(x_{0}, x_{1}, \ldots, x_{i}, \ldots, x_{n}\right) \mapsto\left(x_{0}, x_{1}, \ldots,-x_{i}, \ldots, x_{n}\right) \tag{6.18}
\end{equation*}
$$

Then $f_{n}^{(i)}$ us conjugate to f_{n}, which means

$$
\begin{equation*}
\operatorname{deg} f_{n}^{(i)}=\operatorname{deg} f_{n}=-1 \tag{6.19}
\end{equation*}
$$

Then

$$
\begin{equation*}
a_{n}=f_{n} f_{n}^{(1)} \ldots f_{n}^{(n)} \tag{6.20}
\end{equation*}
$$

so $\operatorname{deg} a_{n}=(-1)^{n+1}$ as desired.
Definition 6.1. A (tangent) vector field on S^{n} is a map $v: S^{n} \otimes \mathbb{R}^{n+1}$ such that $v(x)$ is orthogonal to x for all $x \in S^{n}$.

THEOREM 6.10. There exists a nowhere zero vector field on S^{n} iff n is odd.
Proof. (\Longleftarrow) : Assume $n=2 m+1$ is odd. Then define

$$
\begin{equation*}
v\left(x_{0}, \ldots, x_{2 m+1}\right)=\left(-x_{1}, x_{0}, \ldots,-x_{2 m+1}, x_{2 m}\right) \tag{6.21}
\end{equation*}
$$

$\Longrightarrow:$ Suppose $v: S^{n} \rightarrow \mathbb{R}^{n+1}$ is a nowhere zero vector field. Define $w: S^{n} \rightarrow S^{n}$ by

$$
\begin{equation*}
w(x)=\frac{v(x)}{\|v(x)\|} \tag{6.22}
\end{equation*}
$$

Now the claim is that we can use w to define a homotopy from the antipodal map to the identity. Define $F: S^{n} \times I \rightarrow S^{n}$ by

$$
\begin{equation*}
F(x, t)=\cos (\pi t) \cdot x+\sin (\pi t) w(x) \tag{6.23}
\end{equation*}
$$

Since these are orthogonal,

$$
\begin{equation*}
\|F(x, t)\|^{2}=\cos ^{2}(\pi t)+\sin ^{2}(\pi t)=1 \tag{6.24}
\end{equation*}
$$

for all t. But now notice that $F(x, 0)=x$ and $F(x, 1)=-x$. So the antipodal map is homotopic to the identity, and therefore $\operatorname{deg} \mathrm{id}=\operatorname{deg} a_{n}$, but we know $\operatorname{deg}(\mathrm{id})=1$ and $\operatorname{deg}\left(a_{n}\right)=(-1)^{n+1}$. Therefore n is odd.
Lemma 6.11. If $f: S^{n} \rightarrow S^{n}$ has no fixed point then $f \simeq a_{n}$.

Proof.

$$
\begin{equation*}
F_{t}(x)=\frac{(1-t) f(x)+t(-x)}{\|(1-t) f(x)+t(-x)\|} \tag{6.25}
\end{equation*}
$$

is a homotopy with $F_{0}=f$ and $F_{1}=a_{n}$.
An action of a group G on a space X is free if $g(x)=x$ (for some $x \in X$) implies $g=\mathrm{id}$.
Example 6.1. $\mathbb{Z} / p \mathbb{Z}$ acts freely on S^{1}. $\mathbb{Z} / p \mathbb{Z}$ acts freely on S^{3}. The quotient space gives us the Lens spaces $L(p, q)$. The antipodal maps define a free $\mathbb{Z} / 2 \mathbb{Z}$ action on S^{n} for all n.

THEOREM 6.12. $G \neq 1$ acts freely on $S^{2 n}$ iff $G \simeq \mathbb{Z} / 2 \mathbb{Z}$.
Proof. (\Longleftarrow) : The antipodal map defines such an action.
$(\Longrightarrow):$ Let $g \in G, g \neq 1$. Then g has no fixed points by hypothesis. Therefore by Lemma 6.11, $g \simeq a_{2 n}$, so $\operatorname{deg} g=(-1)^{2 n+1}=-1$, so for all $g, h \neq 1$

$$
\begin{equation*}
\operatorname{deg}(g h)=(-1)(-1)=1 \tag{6.26}
\end{equation*}
$$

so $g h=$ id, i.e. $G=\mathbb{Z} / 2 \mathbb{Z}$.

2. Homology of cell complexes and the Euler characteristic

Theorem 6.13. Let $X=Y \cup$ an n-cell, with attaching map $f: S^{n-1} \rightarrow Y$. Then

$$
\begin{equation*}
i_{*}: \tilde{H}_{q}(Y) \rightarrow \tilde{H}_{q}(X) \tag{6.27}
\end{equation*}
$$

is an isomorphism for $q \neq n, n-1$ and there exists an exact sequence

$$
\begin{equation*}
0 \rightarrow \tilde{H}_{n}(Y) \xrightarrow{i_{*}} \tilde{H}_{n}(X) \rightarrow \tilde{H}_{n-1}\left(S^{n-1}\right) \xrightarrow{f_{*}} \tilde{H}_{n-1}(Y) \xrightarrow{i_{*}} \tilde{H}_{n-1}(X) \rightarrow 0 \tag{6.28}
\end{equation*}
$$

Corollary 6.14. (1) $\tilde{H}_{n-1}(X) \cong \operatorname{coker} f_{*}$.
(2) $\tilde{H}_{n}(X) \cong \tilde{H}_{n}(Y) \oplus \operatorname{ker} f_{*}$.

Let A and B be abelian groups. For $\varphi: A \rightarrow B$ a homomorphism, the cokernel of φ is $\operatorname{coker} \varphi=B / \operatorname{im} \varphi$. So
(1) we always have an exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{ker} \varphi \rightarrow A \xrightarrow{\varphi} B \rightarrow \operatorname{coker} \varphi \rightarrow 0 \tag{6.29}
\end{equation*}
$$

and
(2) For

$$
\begin{equation*}
\ldots \rightarrow A_{q+2} \xrightarrow{\alpha_{q+2}} A_{q+1} \xrightarrow{\alpha_{q+1}} A_{q} \xrightarrow{\alpha_{q}} A_{q-1} \xrightarrow{\alpha_{q-1}} \ldots \tag{6.30}
\end{equation*}
$$

exact we have a SES

$$
\begin{equation*}
0 \rightarrow \operatorname{ker} \alpha_{q} \rightarrow A_{q} \xrightarrow{\alpha_{q}} \operatorname{im} \alpha_{q} \rightarrow 0 \tag{6.31}
\end{equation*}
$$

but in fact

$$
\begin{equation*}
\operatorname{ker} \alpha_{q}=\operatorname{im} \alpha_{q+1} \cong A_{q+1} / \operatorname{ker} \alpha_{q+1}=\operatorname{coker} \alpha_{q+2} \tag{6.32}
\end{equation*}
$$

so we get the SES

$$
\begin{equation*}
0 \rightarrow \operatorname{coker} \alpha_{q+2} \rightarrow A_{q} \rightarrow \operatorname{ker} \alpha_{q-1} \rightarrow 0 \tag{6.33}
\end{equation*}
$$

Lecture 21;
November 21, 2019

Corollary 6.15. If X is a cell complex of dimension n, then $H_{q}(X)=0$ for $q>n$.
Proof of Theorem 6.13. Let X_{1} be the image of the disk of radius $1 / 2,1 / 2 D^{n}$, in X. Let $X_{2}=Y \cup_{f} D^{n} \backslash \operatorname{int}\left(1 / 2 D^{n}\right)$. Then $X=X_{1} \cup X_{2}$ and

$$
\begin{equation*}
X_{1} \cap X_{2}=\partial\left(1 / 2 D^{n}\right) \cong S^{n-1} \tag{6.34}
\end{equation*}
$$

By the remark after Theorem 5.18 there exists a M-V sequence for $\left\{X_{1}, X_{2}\right\}$. Now notice that there exists a strong deformation retraction

$$
\begin{equation*}
\left(D^{n} \backslash\left\{\operatorname{int}\left(1 / 2 D^{n}\right)\right\}\right) \rightarrow \partial D^{n} \cong S^{n} \tag{6.35}
\end{equation*}
$$

which induces a strong deformation retraction

$$
\begin{equation*}
r: X_{2} \rightarrow Y \tag{6.36}
\end{equation*}
$$

so $X_{2} \simeq Y$. Now notice that

$$
\begin{equation*}
\left.r\right|_{X_{1} \cap X_{2}}: X_{1} \cap X_{2} \cong S^{n-1} \rightarrow Y \tag{6.37}
\end{equation*}
$$

is just f. So the M-V sequence is

$$
\begin{equation*}
\ldots \longrightarrow \tilde{H}_{q}\left(S^{n-1}\right) \xrightarrow{f_{*}} \underbrace{\tilde{H}_{q}\left(X_{1}\right)}_{=0} \oplus \tilde{H}_{q}(Y) \longrightarrow \tilde{H}_{q}(X) \longrightarrow H_{q-1}\left(S^{n-1}\right) \longrightarrow \ldots \tag{6.38}
\end{equation*}
$$

so unless $q=n, n-1$ we get equality, and when they are we get exactly the desired exact sequence.

Example 6.2.
Let Y be path-connected. Consider $X=Y \vee S^{1}$. We can view this as Y with a 1-cell attached. Theorem 6.13 gives us that for $q \neq 1$,

$$
\begin{equation*}
\tilde{H}_{q}(X) \cong \tilde{H}_{q}(Y) \tag{6.39}
\end{equation*}
$$

and we have an exact sequence:

$$
\begin{array}{rc}
0 \longrightarrow \tilde{H}_{1}(Y) \longrightarrow \tilde{H}_{1}(X) \longrightarrow \tilde{H}_{0}\left(S^{0}\right) \xrightarrow{f_{*}} \tilde{H}_{0}(Y) \\
\cong \uparrow & \| \tag{6.40}\\
\mathbb{Z} & 0
\end{array}
$$

so we get that

$$
\begin{equation*}
H_{1}(X) \cong H_{1}(Y) \oplus \mathbb{Z} \tag{6.41}
\end{equation*}
$$

This makes no assumptions on Y. However if if Y is e.g. a cell complex, then $\pi_{1}(X) \cong$ $\pi_{1}(Y) * \mathbb{Z}$. Then abelianizing, we get

$$
\begin{equation*}
\pi_{1}(X)^{\mathrm{ab}} \cong \pi_{1}(Y)^{\mathrm{ab}} \oplus \mathbb{Z} \tag{6.42}
\end{equation*}
$$

Then
FACT 6. For any space $X, H_{1}(X) \cong \pi_{1}(X)^{a b}$.
Example 6.3. This tells us that $H_{n}\left(\bigvee S^{1}\right) \cong \mathbb{Z}^{n}$. This also follows from Theorem 5.23.
Example 6.4. Let T_{g} be the closed orientable surface of genus g. Recall as in the discussion of the fundamental groups, we have the picture in Fig. 3 where we remove a disk to get Y, which consists of these strips coming off of a disk, i.e. it is a wedge of circles. Therefore $\pi_{1}(Y) \cong F_{2 g}$ so

$$
\begin{equation*}
H_{1}(Y) \cong \mathbb{Z}^{2 g} \tag{6.43}
\end{equation*}
$$

Then when we attach the disk, we attach along a map $f: S^{1} \rightarrow Y$, which induces a map $f_{*}: \pi_{1}\left(S^{1}\right)=\mathbb{Z} \rightarrow \pi_{1}(Y)$ which sends

$$
\begin{equation*}
1 \mapsto \prod_{i=1}^{g}\left[a_{i}, b_{i}\right] \tag{6.44}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
f_{*}: H_{1}\left(S^{1}\right) \rightarrow H_{1}(Y) \cong \pi_{1}(Y)^{\mathrm{ab}} \tag{6.45}
\end{equation*}
$$

is just 0 .
Note that $H_{0}\left(T_{g}\right) \cong \mathbb{Z}$. Also, T_{g} is a 2 -complex, so $H_{q}\left(T_{g}\right)=0$ for $q \geq 3$. Then we have an exact sequence

$$
\begin{array}{cc}
0 \rightarrow H_{2}(Y) \longrightarrow H_{2}\left(T_{g}\right) \xrightarrow{\Delta} H_{1}\left(S^{1}\right) \xrightarrow{f_{*}=0} H_{1}(Y) \longrightarrow H_{1}\left(T_{g}\right) \longrightarrow 0 \tag{6.46}\\
\| & \cong \uparrow \\
0 & \mathbb{Z}
\end{array}
$$

Therefore $\Delta: H_{2}\left(T_{g}\right) \rightarrow H_{1}\left(S^{1}\right) \cong \mathbb{Z}$ is an isomorphism, and $H_{1}(Y) \cong \mathbb{Z}^{2 g} \rightarrow H_{q}\left(T_{g}\right)$. In summary:

$$
H_{q}\left(T_{g}\right)= \begin{cases}\mathbb{Z} & q=0 \tag{6.47}\\ \mathbb{Z}^{2 g} & q=1 \\ \mathbb{Z} & q=2 \\ 0 & q \geq 3\end{cases}
$$

Example 6.5. Let $P_{h}=\#_{h} \mathbb{P}^{2}$. Recall from our calculation of $\pi_{1}\left(P_{h}\right)$, we had that when we removed a disk, we got a wedge of h circles, so $P_{h}=Y \cup$ a 2-cell and $\pi_{1}(Y)=F_{h}$, so $H_{1}(Y) \cong \mathbb{Z}^{h}$. Then the attaching map of the missing disk $f: S^{1} \rightarrow Y$ induces the map:

$$
\begin{gather*}
\pi_{1}\left(S^{1}\right) \xrightarrow{f_{*}} \pi_{1}(Y) \tag{6.48}\\
1 \longmapsto \prod_{i=1}^{h} a_{i}^{2}
\end{gather*}
$$

Therefore

$$
\begin{equation*}
f_{*}: H_{1}\left(S^{1}\right) \cong \mathbb{Z} \rightarrow H_{1}(Y) \cong \mathbb{Z}^{h} \tag{6.49}
\end{equation*}
$$

sends

$$
\begin{equation*}
f_{*}(1)=(2, \ldots, 2) \tag{6.50}
\end{equation*}
$$

Now M-V gives us

$$
\begin{array}{cc}
0 \rightarrow H_{2}\left(P_{h}\right) \longrightarrow H_{1}\left(S^{2}\right) \xrightarrow{f_{*}} H_{1}(Y) \rightarrow H_{1}\left(P_{h}\right) \longrightarrow 0 \\
\cong \uparrow & \cong \uparrow \tag{6.51}\\
\mathbb{Z} & \mathbb{Z}^{h}
\end{array}
$$

Now \mathbb{Z}^{h} has a basis

$$
\begin{align*}
e_{1} & =(1, \ldots, 1) \tag{6.52}\\
e_{2} & =(0,1, \ldots, 0) \tag{6.53}\\
& \ldots \tag{6.54}\\
e_{h} & =(0, \ldots, 1) \tag{6.55}
\end{align*}
$$

and $f_{*}(1)=2 e_{1}$. Therefore ker $f_{*}=0$ which implies $H_{2}\left(P_{h}\right)=0$. Now we have

$$
\begin{equation*}
H_{1}\left(P_{h}\right) \cong \operatorname{coker} f_{*} \cong \mathbb{Z}^{h-1} \oplus \mathbb{Z} / 2 \mathbb{Z} \tag{6.56}
\end{equation*}
$$

which means

$$
H_{q}\left(P_{h}\right)= \begin{cases}\mathbb{Z} & q=0 \tag{6.57}\\ \mathbb{Z}^{h-1} \oplus \mathbb{Z} / 2 \mathbb{Z} & q=1 \\ 0 & q \geq 2\end{cases}
$$

2.1. Coefficients. Let R be a commutative ring with unit. Instead of forming the free abelian group on the set of simplices, we could have defined $S_{q}(X, R)$ to be the free R-module on $\Sigma_{q}(X)$.

Example 6.6. For $R=\mathbb{F}$ a field we would get the \mathbb{F} vector space with basis $\Sigma_{q}(X)$. Then we get the singular homology of X with coefficients in $R, H(X ; R)$.

WARNing 6.1. If we take $R=\mathbb{Z} / 2 \mathbb{Z}$ we get $S_{q}(X ; \mathbb{Z} / 2) \simeq S_{q}(X ; \mathbb{Z}) \otimes \mathbb{Z} / 2$. So we might assume coefficients don't really matter. But when we pass to homology, $H_{q}(X ; \mathbb{Z} / 2) \nsucceq$ $H_{q}(X ; \mathbb{Z}) \otimes \mathbb{Z} / 2$. We can however relate these two. This is called the universal coefficient theorem.

Everything we've done (homotopy axiom, M-V, etc.) goes through for $H(X ; R)$.
2.2. Euler characteristic. Let \mathbb{F} be a field. Let X be a space such that $H_{q}(X ; \mathbb{F})$ is finite dimensional for all q and 0 for $q>m$ for some m. (E.g. X could be a cell-complex; by Theorem 6.13 with \mathbb{F}-coefficients.) Now define

$$
\begin{equation*}
\chi_{\mathbb{F}}(X)=\sum_{i=0}^{m}(-1)^{q} \operatorname{dim} H_{q}(X ; \mathbb{F}) \tag{6.58}
\end{equation*}
$$

Theorem 6.16. For X a finite cell complex then $\chi_{\mathbb{F}}(X)=\chi(X)$.
Corollary 6.17. If X and Y are finite cell complex and $X \simeq Y$, then $\chi(X)=\chi(Y)$.
Proof of Theorem 6.16. This is clearly true for 0 -complexes. Let Y be a finite cell complex. Take $X=Y \cup(n$-cell $)$ for $n \geq 1$. Therefore

$$
\begin{equation*}
\chi(X)=\chi(Y)+(-1)^{n} \tag{6.59}
\end{equation*}
$$

Theorem 6.13 implies $\tilde{H}_{q}(X) \cong \tilde{H}_{q}(Y)$ for $q \neq n, n-1$, and that there exists an exact sequence

$$
\begin{gather*}
0 \rightarrow \tilde{H}_{n}(Y ; \mathbb{F}) \rightarrow \tilde{H}_{n}(X ; \mathbb{F}) \rightarrow \tilde{H}_{n-1}\left(S^{n-1} ; \mathbb{F}\right) \xrightarrow{f_{*}} \tilde{H}_{n-1}(Y ; \mathbb{F}) \rightarrow \tilde{H}_{n-1}(X, \mathbb{F}) \rightarrow 0 \tag{6.60}\\
\cong \uparrow \\
\mathbb{F}
\end{gather*}
$$

By a problem on homework 9, we have that the alternating sum of the dimensions is 0 , i.e.

$$
\begin{equation*}
\operatorname{dim} \tilde{H}_{n}(X ; \mathbb{F})-\operatorname{dim} \tilde{H}_{n-1}(X ; \mathbb{F})=\operatorname{dim} \tilde{H}_{n}(Y, \mathbb{F})-\operatorname{dim} \tilde{H}_{n-1}(Y, \mathbb{F})+1 \tag{6.61}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\chi_{\mathbb{F}}(X)=\chi_{\mathbb{F}}(Y)+(-1)^{n} \tag{6.62}
\end{equation*}
$$

so by induction on the number of cells in X,

$$
\begin{equation*}
\chi(X)=\chi_{\mathbb{F}}(X) \tag{6.63}
\end{equation*}
$$

Lecture 22;
November 26, 2019

3. Separation properties of cells and spheres in spheres

Theorem 6.18. Let $E \subset S^{n}, E \cong D^{m}$ for $m \leq n$. Then

$$
\begin{equation*}
\tilde{H}\left(S^{2} \backslash E\right)=0 . \tag{6.64}
\end{equation*}
$$

Proof. Proceed by induction on m. For $m=0, S^{n} \backslash \mathrm{pt} \cong \mathbb{R}^{n}$ is contractible. Now let $m \geq 1$. Take $c \in S_{q}(X)$ and write it as $c=\sum n_{\sigma} \sigma$ for $\sigma \in \Sigma_{q}(X)$. Define the support of c to be

$$
\begin{equation*}
|c|=\bigcup\left\{\operatorname{im} \sigma \mid n_{\sigma} \neq 0\right\} \subset X . \tag{6.65}
\end{equation*}
$$

Note $|c|$ is compact.
Let $h: D^{m-1} \times I \rightarrow E$ be a homeomorphism. Let $D_{t}=h\left(D^{m-1} \times\{t\}\right)$ for $t \in I$. Let $u \in \tilde{H}_{q}\left(S^{n} \backslash E\right)$. We know $u=[z]$ for some $z \in \tilde{Z}_{q}\left(S^{n} \backslash E\right)$. By the induction hypothesis we have

$$
\begin{equation*}
\tilde{H}_{q}\left(S^{n} \backslash D_{t}\right)=0 \tag{6.66}
\end{equation*}
$$

for all t. Therefore for all t, there exists $c_{t} \in \tilde{S}_{q+1}\left(S^{n} \backslash D_{t}\right)$ such that $z=\partial c_{t}$. Notice D_{t} and $\left|c_{t}\right|$ are compact. Therefore

$$
\begin{equation*}
d\left(D_{t},\left|c_{t}\right|\right)=\epsilon_{t}>0 . \tag{6.67}
\end{equation*}
$$

Therefore for all t there is some $\delta_{t}>0$ such that if

$$
\begin{equation*}
I_{t}=\left[t-\delta_{t}, t+\delta_{t}\right] \cap I \tag{6.68}
\end{equation*}
$$

then

$$
\begin{equation*}
h\left(D^{m-1} \times I_{t}\right) \cap\left|c_{t}\right|=\emptyset . \tag{6.69}
\end{equation*}
$$

I being compact implies there exists

$$
\begin{equation*}
0=t_{0}<t_{1}<\ldots<t_{r}=1 \tag{6.70}
\end{equation*}
$$

such that for some I_{t}

$$
\begin{equation*}
\left[t_{k-1}, t_{k}\right] \subset I_{t} \tag{6.71}
\end{equation*}
$$

for all $1 \leq k \leq r$. Therefore $z=\partial c_{k}$ where

$$
\begin{equation*}
\left|c_{k}\right| \subset S^{n} \backslash h\left(D^{m-1} \times\left[t_{k-1} t_{k}\right]\right)=S^{n} \backslash E_{k} \tag{6.72}
\end{equation*}
$$

for $1 \leq k \leq r$. Therefore for all $k, i_{k *}(u)=0$ where

$$
\begin{equation*}
i_{k}: \tilde{H}_{q}\left(S^{n} \backslash E\right) \rightarrow \tilde{H}_{q}\left(S^{n} \backslash E_{k}\right) \tag{6.73}
\end{equation*}
$$

for $1 \leq k \leq r$.
Let

$$
\begin{equation*}
X_{k}=\bigcup_{j \leq k} E_{k} \tag{6.74}
\end{equation*}
$$

for $1 \leq k \leq r$. Note that

$$
\begin{equation*}
X_{r}=E \tag{6.75}
\end{equation*}
$$

$$
X_{k}=X_{k-1} \cap E_{k}
$$

$$
X_{k-1} \cap E_{k} \cong D^{m-1}
$$

Figure 1. The Fox-Artin arc. Source: wikipedia.

Now note that X_{k-1} and E_{k} are compact, S^{n} is Hausdorff, so these two are closed, and therefore

$$
\begin{equation*}
S^{n} \backslash X_{k-1} \quad \text { and } \quad S^{n} \backslash E_{k} \tag{6.76}
\end{equation*}
$$

are open. Then we have

$$
\begin{equation*}
\left(S^{n} \backslash X_{k-1}\right) \cup\left(S^{n} \backslash E_{k}\right)=S^{n} \backslash \underbrace{\left(X_{k-1} \cap E_{k}\right)}_{\cong D^{m-1}} \tag{6.77}
\end{equation*}
$$

Therefore by the induction hypothesis

$$
\begin{equation*}
\tilde{H}\left(\left(S^{n} \backslash X_{k-1}\right) \cup\left(S^{n} \backslash E_{k}\right)\right)=0 \tag{6.78}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left(S^{n} \backslash X_{k-1}\right) \cap\left(S^{n} \backslash E_{k}\right)=S^{n} \backslash\left(E_{k-1} \cup E_{k}\right)=S^{n} \backslash X_{k} \tag{6.79}
\end{equation*}
$$

Therefore M-V gives us the isomorphism

$$
\begin{equation*}
\tilde{H}\left(S^{n} \backslash X_{k}\right) \stackrel{\cong}{\rightrightarrows} \tilde{H}\left(S^{n} \backslash X_{k-1}\right) \oplus \tilde{H}\left(S^{n} \backslash E_{k}\right) \tag{6.80}
\end{equation*}
$$

so by induction on k

$$
\begin{equation*}
\tilde{H}\left(S^{n} \backslash X_{k}\right) \stackrel{\cong}{\bigoplus} \bigoplus_{k=1}^{k} \tilde{H}\left(S^{n} \backslash E_{j}\right) . \tag{6.81}
\end{equation*}
$$

for $k=r$ this gives us

$$
\begin{equation*}
\tilde{H}_{q}\left(S^{n} \backslash E\right) \stackrel{\cong}{\bigoplus} \bigoplus_{j=1}^{r} \tilde{H}_{q}\left(S_{n} \backslash E_{j}\right) . \tag{6.82}
\end{equation*}
$$

In particular this sends

$$
\begin{equation*}
u \mapsto\left(i_{1 *}(u), \ldots, i_{r_{*}}(u)\right)=(0, \ldots, 0) \tag{6.83}
\end{equation*}
$$

but this is an isomorphism, so $u=0$. But this was an arbitrary element so $\tilde{H}_{q}\left(S^{n} \backslash E\right)=$ 0 .

Warning 6.2. One might imagine that not only does the complement of a disk in a sphere have no homology, but that it is contractible. Indeed this is true in S^{2}, but already in S^{3} this is not true.

Counterexample 4 (Fox-Artin). As it turns out there exists $A \subset S^{3}$ such that $A \cong D^{1}$ such that $\pi_{1}\left(S^{3} \backslash A\right) \neq 1$. This arc looks as in Fig. 1. The idea is to apply van Kampen repeatedly and then there will be a nontrivial map to the symmetric group on 5 letters.

ThEOREM 6.19 (Jordan-Brouwer separation theorem). Consider $\Sigma \subset S^{n}$ such that $\Sigma \cong S^{m}$ for $m<n$. Then

$$
\tilde{H}_{q}\left(S^{n} \backslash \Sigma\right) \cong \begin{cases}\mathbb{Z} & q=n-m-1 \tag{6.84}\\ 0 & o / w\end{cases}
$$

Proof. Proceed by induction on m. For $m=0$

$$
\begin{equation*}
S^{n} \backslash \Sigma \cong \mathbb{R}^{n} \backslash\{\mathrm{pt}\} \cong S^{n-1} \times \mathbb{R} \simeq S^{n-1} \tag{6.85}
\end{equation*}
$$

Therefore

$$
\tilde{H}_{q}\left(S^{n} \backslash \Sigma\right)= \begin{cases}\mathbb{Z} & q=n-1 \tag{6.86}\\ 0 & \text { o/w }\end{cases}
$$

Now let $m \geq 1$. Let $h: S^{m} \rightarrow \Sigma$ be a homeomorphism. Divide S^{m} into the standard hemispheres D_{+}^{m} and D_{-}^{m} and write

$$
\begin{equation*}
E_{\omega}=h\left(D_{ \pm}^{m}\right) \tag{6.87}
\end{equation*}
$$

Note that $E_{+} \cap E_{-} \cong S^{m-1}$. Since the $S^{n} \backslash E_{ \pm}$are open,

$$
\begin{equation*}
\tilde{H}\left(S^{n} \backslash E_{ \pm}\right)=0 \tag{6.88}
\end{equation*}
$$

(by Theorem 6.18). Then M-V for $\left\{\left(S^{n} \backslash E_{+}\right),\left(S^{n} \backslash E_{-}\right)\right\}$gives an isomorphism

$$
\begin{equation*}
\tilde{H}_{q+1}\left(S^{n} \backslash\left(E_{+} \cap E_{-}\right)\right) \stackrel{\Delta}{\longrightarrow} \tilde{H}_{q}\left(S^{n} \backslash \Sigma\right) \tag{6.89}
\end{equation*}
$$

Example 6.7. For any knot $K \subset S^{3}$ (i.e. $K \cong S^{1}$) then $H_{1}\left(S^{3} \backslash K\right)=\mathbb{Z}$. Recall this was not true for π_{1}. The fundamental group of the unknot was \mathbb{Z}, yet π_{1} of the trefoil was

$$
\begin{equation*}
\left\langle a, b \mid a^{2}=b^{3}\right\rangle \not \approx \mathbb{Z} \tag{6.90}
\end{equation*}
$$

Corollary 6.20. If $\Sigma \subset S^{n}$ such that $\Sigma \cong S^{n-1}$, then $S^{n} \backslash \Sigma$ has two components U and V and

$$
\begin{equation*}
\tilde{H}(U)=\tilde{H}(V)=0 \tag{6.91}
\end{equation*}
$$

Note S^{n} is lpc so U and V are the path components of $S^{n} \backslash \Sigma$.
Example 6.8. Consider $\Sigma \subset S^{3}$ such that $\Sigma \cong S^{2}$. Then $S^{3} \backslash \Sigma=U \amalg V$. These have no homology, so in particular $H_{1}(U) \cong H_{1}(V)=0$.

Warning 6.3. One might assume that these two pieces are in fact contractible, but this is not true.

EXAMPLE 6.9. As it turns out there is a sphere $\Sigma \subset S^{3}$ (known as the Alexander horned sphere) such that $\pi_{1}(U) \neq 1$ and $\pi_{1}(V) \neq 1$.

In Corollary 6.20, one can show that $\Sigma=\operatorname{Fr}(U)=\operatorname{Fr}(V)$ where $\operatorname{Fr}()$ denotes the frontier (the closure minus the interior).

Lemma 6.21. Let $f: D^{n} \rightarrow S^{n}$ be 1-to-1 and continuous. Then $f\left(\operatorname{int}\left(D^{n}\right)\right)$ is open in S^{n}.

Proof. Everything here is compact and Hausdorff. We know that

$$
\begin{equation*}
f:\left.D^{n} \rightarrow f\left(D^{n}\right) \quad f\right|_{S^{n-1}}: S^{n-1} \rightarrow f\left(S^{n-1}\right) \tag{6.92}
\end{equation*}
$$

are homeomorphisms. Therefore

$$
\begin{equation*}
H_{0}\left(S^{n} \backslash f\left(D^{n}\right)\right) \cong \mathbb{Z} \tag{6.93}
\end{equation*}
$$

by Theorem 6.18. Therefore this is path-connected, so

$$
\begin{equation*}
S^{n} \backslash f\left(S^{n-1}\right) \tag{6.94}
\end{equation*}
$$

has two path-components by Corollary 6.20. But then we have the open set

$$
\begin{equation*}
S^{n} \backslash f\left(S^{n-1}\right)=f\left(\operatorname{int}\left(S^{n}\right)\right) \amalg\left(S^{n} \backslash f\left(D^{n}\right)\right) \tag{6.95}
\end{equation*}
$$

so $f\left(\operatorname{int}\left(D^{n}\right)\right)$ is one of the components of $S^{n} \backslash f\left(S^{n-1}\right)$, so it is open in S^{n}.
REmark 6.2. $S^{n} \cong \mathbb{R}^{n} \cup\{\infty\}$ so this also holds for $f: D^{n} \rightarrow \mathbb{R}^{n}$.
Corollary 6.22 (Invariance of domain). Let $U, V \subset \mathbb{R}^{n}$ such that $U \cong V$ and U is open in \mathbb{R}^{n}. Then V is open in \mathbb{R}^{n}.

The point is that being open in \mathbb{R}^{n} is a topological invariant. This is very far from true for arbitrary topological spaces.

Counterexample 5. Consider the unit interval. The whole interval is open, and homeomorphic to any proper closed subinterval, which is of course closed inside the interval.

Proof. Let $f: U \rightarrow V$ be a homeomorphism. Let $y \in V, x \in U$ be such that $f(x)=y$. Then U open in \mathbb{R}^{n} implies there is a disk $D \subset U$ such that $x \in \operatorname{int}(D), D \cong D^{n}$. Then $y=f(x) \in f(\operatorname{int}(D))$ which is open by Lemma 6.21 , and so therefore V is open.
Corollary 6.23. There does not exist a continuous injection $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ if $m>n$.
Proof. Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a 1-to-1 map. Because $m>n$, we have

$$
\begin{equation*}
S^{n} \subset \mathbb{R}^{n+1} \subset \mathbb{R}^{m} \tag{6.96}
\end{equation*}
$$

so we have a 1-to-1 map $h: S^{n} \rightarrow \mathbb{R}^{n}$. D^{n} is compact, \mathbb{R}^{n} is Hausdorff so $h\left(S^{n}\right) \subset \mathbb{R}^{n}$ is closed. But now for any point $x \in S^{n}, x \in \operatorname{int}(D)$ for some $D \subset S^{n}$ such that $D \cong D^{n}$. Therefore $h(x) \in h(\operatorname{int}(D))$ is open in \mathbb{R}^{n} by Lemma 6.21. Then $h(\operatorname{int}(D)) \subset h\left(S^{n}\right)$ so $h\left(S^{n}\right)$ is open in \mathbb{R}^{n}, so $h\left(S^{n}\right)$ is a component of \mathbb{R}^{n}, so $h\left(S^{n}\right)=\mathbb{R}^{n}$ but $h\left(S^{n}\right)$ is compact and \mathbb{R}^{n} is not, so this is a contradiction.

REMARK 6.3. We could turn this around and ask for a continuous surjection $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, but this is harder to prove.

Lecture 23;
December 3, 2019

4. Lefschetz fixed point theorem

Let \mathbb{F} be a field. Then assume $H_{q}(X ; \mathbb{F})$ is finite dimensional for all q and 0 for $q>n$. (E.g. we could take X to be a finite n-dimensional cell complex.) Recall $f: X \rightarrow X$ induces a map

$$
\begin{equation*}
f_{*}=f_{q}: H_{q}(X ; \mathbb{F}) \rightarrow H_{q}(X ; \mathbb{F}) \tag{6.97}
\end{equation*}
$$

Since $H_{q}(X ; \mathbb{F}) \cong \mathbb{F}^{m}$ we have that f_{q} is given by a $m \times m$ matrix A / \mathbb{F} with respect to some basis for H_{q}. Define $\operatorname{tr} f_{q}=\operatorname{tr} A$. Note this is well-defined by the usual properties of traces of matrices, e.g. a change of basis is given by matrix conjugation, and $\operatorname{tr}\left(B^{-1} A B\right)=\operatorname{tr}(A)$.

Define the Lefschetz number to be

$$
\begin{equation*}
\lambda_{\mathbb{F}}(f)=\sum_{q=0}^{n}(-1)^{q} \operatorname{tr}\left(f_{q}\right) \tag{6.98}
\end{equation*}
$$

REMARK 6.4. (1) $\lambda_{\mathbb{F}}(\mathrm{id})=\chi_{\mathbb{F}}(X)$. This is the Euler characteristic for X a finitedimensional cell complex.
(2) $f \simeq g$ implies $\lambda_{\mathbb{F}}(f)=\lambda_{\mathbb{F}}(g)$.
(3) We write $\lambda_{\mathbb{F}}$ since a priori it might depend on \mathbb{F}, but we will often suppress this notation.

Theorem 6.24 (Lefschetz fixed point theorem). Let X be a finite simplicial complex, $f: X \rightarrow X$ a map with $\lambda(f) \neq 0$. Then f has a fixed point.

The proof uses the simplicial approximation theorem (see Hatcher). The idea is that if there is no fixed point then after subdividing enough, every simplex is moved off of itself. Then we can use simplicial homology to compute singular homology. Then clearly the induced map will have zero trace, so the Lefschetz number is 0 .

Corollary 6.25. If X is a finite simplicial complex with $\chi(X) \neq 0, f: X \rightarrow X$ such that $f \simeq$ id then X has a fixed point.

Proof. Since $f \simeq \mathrm{id}$ we have

$$
\begin{equation*}
\lambda(f)=\lambda(\mathrm{id})=\chi_{\mathbb{F}}(X)=\chi(X) \neq 0 \tag{6.99}
\end{equation*}
$$

so f has a fixed point by Theorem 6.24.
Corollary 6.26. For X a finite simplicial complex such that $\tilde{H}(X, \mathbb{F})=0$ for some field \mathbb{F} then X has the FPP.

Proof. Since $\tilde{H}=0, H_{0}(X ; \mathbb{F})=\mathbb{F}$ and $H_{q}(X, \mathbb{F})=0$ for $q>0$. Let $f: X \rightarrow X$ be any map. Then $\operatorname{tr} f_{q}=0$ for $q>0$, and for $q=0$,

$$
\begin{equation*}
f_{*}: H_{0}(X ; \mathbb{F}) \rightarrow H_{0}(X ; \mathbb{F}) \tag{6.100}
\end{equation*}
$$

is the identity, so $\lambda(f)=1 \neq 0$. Then f has a fixed point by Theorem 6.24.
Corollary 6.27. Let X be a contractible finite simplicial complex. This implies X has the $F P P$.

Proof. For X contractible, $\tilde{H}(X, \mathbb{F})=0$ for all \mathbb{F} so the result follows from Corollary 6.26 .

This implies the Brouwer fixed point theorem.
REmark 6.5. There exists a contractible compact $X\left(\subset \mathbb{R}^{3}\right)$ such that X does not have the FPP.

5. Transfer homomorphism

Let $p: \tilde{X} \rightarrow X$ be a 2 -fold covering projection. Define $\tau: S(X) \rightarrow S(\tilde{X})$ as follows. For $\sigma \in \Sigma_{q}(X)$ with two lifts $\tilde{\sigma}_{1}, \tilde{\sigma}_{2} \in \Sigma_{q}(\tilde{X})$ let

$$
\begin{equation*}
\tau(\sigma)=\tilde{\sigma}_{1}+\tilde{\sigma}_{2} \tag{6.101}
\end{equation*}
$$

then extend linearly. Note that this is a chain map (i.e. $\tau \partial=\partial \tau$) so it induces a map

$$
\begin{equation*}
\tau_{*}: H(X) \rightarrow H(\tilde{X}) \tag{6.102}
\end{equation*}
$$

called the transfer homomorphism:

$$
\begin{gather*}
H(\tilde{X}) \\
p_{*}\left(\int_{\tau_{*}}\right. \tag{6.103}\\
H(X)
\end{gather*}
$$

Clearly

$$
\begin{equation*}
p_{\#} \tau: S(X) \rightarrow S(X) \tag{6.104}
\end{equation*}
$$

is given by multiplication by 2 . In fact we have the following.
Lemma 6.28. $p_{*} \tau_{*}: H(X) \rightarrow H(X)$ is multiplication by 2 .
This holds for arbitrary coefficients so we get:
Corollary 6.29. $p_{*}: H(\tilde{X} ; \mathbb{R}) \rightarrow H(X ; \mathbb{R})$ is onto.
Proof. $p_{*} \tau_{*}$ is an isomorphism by Lemma 6.28 so p_{*} is onto.
Example 6.10. Now we're going to use the transfer homomorphism to calculate the homology of $\mathbb{R P}^{n}$ with real coefficients. Recall

$$
\begin{equation*}
\mathbb{R P}^{n}\left(=\mathbb{P}^{n}\right)=S^{n} /\left(x \sim-x, \forall x \in S^{n}\right) \cong D^{n} /\left(x \sim-x, \forall x \in S^{n-1}\right) \tag{6.105}
\end{equation*}
$$

Therefore $\mathbb{P}^{n} \cong \mathbb{P}^{n-1}$ union an n-cell with attaching map $S^{n-1} \rightarrow \mathbb{P}^{n-1}$ the quotient map, which is a 2 -fold cover.

Corollary 6.30.

$$
\chi\left(\mathbb{R P}^{n}\right)= \begin{cases}0 & n \text { odd } \tag{6.106}\\ 1 & n \text { even }\end{cases}
$$

Theorem 6.31.

$$
\tilde{H}_{q}\left(\mathbb{R P}^{n}, \mathbb{R}\right) \cong \begin{cases}\mathbb{R} & q=n, \quad \text { odd } \tag{6.107}\\ 0 & o / w\end{cases}
$$

Proof. Proceed by induction on n. This is certainly true for $n=0$. Now let $n \geq 1$. By Theorem 6.13, we get

$$
\begin{equation*}
i_{*}: \tilde{H}_{q}\left(\mathbb{P}^{n-1}\right) \rightarrow \tilde{H}_{q}\left(\mathbb{P}^{n}\right) \tag{6.108}
\end{equation*}
$$

is an isomorphism for $q \neq n, n-1$, and otherwise we get an exact sequence

$$
\begin{align*}
& \tilde{H}_{q}\left(\mathbb{P}^{n-1}\right) \longrightarrow \tilde{H}_{n}\left(\mathbb{P}^{n}\right) \longrightarrow \tilde{H}_{n-1}\left(S^{n-1}\right) \xrightarrow{p_{*}} \tilde{H}_{n-1}\left(\mathbb{P}^{n-1}\right) \longrightarrow \tilde{H}_{n-1}\left(\mathbb{P}^{n}\right) \longrightarrow 0 \\
& \quad \| \tag{6.109}\\
& 0
\end{align*}
$$

where this is 0 by Corollary 6.15 .

Now assume n is odd. Then $\tilde{H}_{n-1}\left(\mathbb{P}^{n-1}\right)=0$ by the induction hypothesis, so we have an exact sequence

$$
\begin{equation*}
0 \rightarrow \tilde{H}_{n}\left(\mathbb{P}^{n}\right) \cong \tilde{H}_{n-1}\left(S^{n-1}\right) \rightarrow 0 \tag{6.110}
\end{equation*}
$$

If n is even we get

$$
\begin{array}{r}
0 \rightarrow \tilde{H}_{n}\left(\mathbb{P}^{n}\right) \longrightarrow \tilde{H}_{n-1}\left(S^{n-1}\right) \xrightarrow{p_{*}} \tilde{H}_{n-1}\left(\mathbb{P}^{n-1}\right) \tag{6.111}\\
\| \\
\mathbb{R} \xrightarrow{\cong} \quad \mathbb{R}
\end{array}
$$

so $\tilde{H}_{n}\left(\mathbb{P}^{n}\right)=0$.

Corollary 6.32. If n is even then $\mathbb{R P}^{n}$ has the FPP.
Proof. Take $\mathbb{F}=\mathbb{R}$ in Corollary 6.26.

Note that Corollary 6.32 is false for n odd. Let $n=2 m-1$. Take the map $\mathbb{R}^{2 m} \rightarrow \mathbb{R}^{2 m}$ which sends

$$
\begin{equation*}
\left(x_{1}, \ldots, x_{2 m}\right) \mapsto\left(-x_{2}, x_{1}, \ldots,-x_{2 n}, x_{2 n-1}\right) \tag{6.112}
\end{equation*}
$$

This restricts to a map $f: S^{2 m-1} \rightarrow S^{2 m-1}$ such that $f(-x)=-f(x)$ so f induces a map on the quotient by the antipodal map, i.e. we get a map $\bar{f}: \mathbb{P}^{2 n-1} \rightarrow \mathbb{P}^{2 n-1}$. Then we can easily check that this does not have a fixed point.

6. Borsuk-Ulam theorem

We will work with $\mathbb{Z} / 2$ coefficients. Let $p: \tilde{X} \rightarrow X$ be a 2 -fold cover. Then we have this transfer homomorphism $\tau: S(X ; \mathbb{Z} / 2) \rightarrow S(\tilde{X} ; \mathbb{Z} / 2)$. Then we have this sequence

$$
\begin{equation*}
0 \longrightarrow S(X ; \mathbb{Z} / 2) \xrightarrow{\tau} S(\tilde{X} ; \mathbb{Z} / 2) \xrightarrow{p_{\#}} S(X ; \mathbb{Z} / 2) \longrightarrow 0 \tag{6.113}
\end{equation*}
$$

Exercise 6.1. Show this is exact.
Note that the fact that we have $\mathbb{Z} / 2$ coefficients is important here. For example one thing we are claiming is that $\operatorname{im} \tau \subset \operatorname{ker} p_{\#}$, i.e. $p_{\#} \tau=0$. For $\sigma \in \Sigma_{q}(X), p_{\#} \tau(\sigma)=2 \sigma=0$. Which of course is not true if we aren't working with $\mathbb{Z} / 2$ coefficients.

This induces an exact sequence

$$
\begin{equation*}
\cdots \rightarrow H_{q}(X) \xrightarrow{\tau_{*}} H_{q}(\tilde{X}) \xrightarrow{p_{*}} H_{q}(X) \xrightarrow{\Delta} H_{q-1}(X) \longrightarrow \cdots \tag{6.114}
\end{equation*}
$$

Lemma 6.33. $\Delta: H_{q}\left(\mathbb{P}^{n}\right) \rightarrow H_{q-1}\left(\mathbb{P}^{n}\right)$ is an isomorphism for $1 \leq q \leq n$.

Proof. This follows immediately from (6.114) unless $q=1$ or n. We leave $q=1$ as an exercise. For $q=n$ we have

So we have the exact sequence

$$
\begin{equation*}
0 \longrightarrow H_{n}\left(\mathbb{P}^{n}\right) \longrightarrow \mathbb{Z} / 2 \longrightarrow H_{n}\left(\mathbb{P}^{n}\right) \xrightarrow{\Delta} \mathbb{Z} / 2 \longrightarrow 0 \tag{6.116}
\end{equation*}
$$

and the alternating sum of the dimensions is 0 , so $H_{n}\left(\mathbb{P}^{n}\right) \simeq \mathbb{Z} / 2$ and Δ is an isomorphism.

Corollary 6.34.

$$
H_{q}\left(\mathbb{R P}^{n} ; \mathbb{Z} / 2\right) \cong \begin{cases}0 & q>n \tag{6.117}\\ \mathbb{Z} / 2 & 0 \leq q \leq n\end{cases}
$$

Lemma 6.35. If $f: S^{n} \rightarrow S^{n}$ is a map such that $f(-x)=-f(x)$ for all $x \in S^{n}$, then

$$
\begin{equation*}
f_{*}: H_{n}\left(S^{n}, \mathbb{Z} / 2\right) \rightarrow H_{n}\left(S^{n}, \mathbb{Z} / 2\right) \tag{6.118}
\end{equation*}
$$

is an isomorphism.
Theorem 6.36 (Borsuk-Ulam). Let $g: S^{n} \rightarrow \mathbb{R}^{n}$ be a map. Then there exists some $x \in S^{n}$ such that $g(x)=g(-x)$.

REMARK 6.6. Map the earth to \mathbb{R}^{2} by sending a point to its temperature and barometric pressure. Then there are always two antipodal points with the same temperature and barometric pressure.

Proof. Define $h: S^{n} \rightarrow S^{n-1}$ by

Lecture 24;
December 5, 2019

$$
\begin{equation*}
h(x)=\frac{g(x)-g(-x)}{\|g(x)-g(-x)\|} . \tag{6.119}
\end{equation*}
$$

Note that $h(-x)=-h(x)$. If $\left.h\right|_{S^{n-1}}=f$, then $f(-x)=-f(x)$.
We know $H_{n-1}\left(S^{n-1}, \mathbb{Z} / 2\right) \rightarrow H_{n-1}\left(S^{n-1}, \mathbb{Z} / 2\right)$ is an isomorphism from Lemma 6.35 . We also know that f extends by h over $D_{+}^{n} \subset S^{n}$, so $f \simeq$ a constant map, which factors through $H_{n-1}(\mathrm{pt}, \mathbb{Z} / 2)$.
Corollary 6.37. There does not exist an injective map $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ if $m>n$.
Proof. $S^{n} \subset \mathbb{R}^{n+1} \subset \mathbb{R}^{m}$ so $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ injective gives $g: S^{n} \rightarrow \mathbb{R}^{m}$ injective.
Corollary 6.38 (n-dimensional ham-sandwich theorem). Let A_{1}, \ldots, A_{n} be compact subsets of \mathbb{R}^{n}. Then there exists an affine hyperplane $\left(\cong \mathbb{R}^{n-1}\right)$ which bisects each A_{i}.

7. Real division algebras

Lemma 6.39. Let M and N be n-manifolds with empty boundary with M compact, N connected, $f: M \rightarrow N$ an injective map. Then f is a homeomorphism.

Counterexample 6. The following is a continuous bijection which is not a homeomorphism. ${ }^{6.1}$ One space will be \mathbb{R} and the other will be S^{1} with an interval with an (open) interval stuck on. Send the origin to the point where the interval is glued on, the positive half to the circle, and the negative half to the open interval. But this is not a homeomorphism since the latter space is not even simply connected.

Proof. Now that since N is Hausdorff and M is compact, $f(M)$ is closed in N. For $x \in M$, let V be a neighborhood of $f(x)$ in $N, V \cong \mathbb{R}^{n}$. Let U be a neighborhood of x in M such that $U \cong \mathbb{R}^{n}$ and $f(U) \subset V$.

Let $D \subset U$ be homeomorphic to $D^{n}, x \in \operatorname{int}(D)$. Then $f(x) \in f(\operatorname{int}(D)) \subset V \cong \mathbb{R}^{n}$. Therefore $f(\operatorname{int}(D))$ is open in V, so $f(M)$ is open in N. Since N is connected, this implies $f(M)=N$. Therefore f is a continuous bijection, and therefore a homeomorphism by the exercise in the homework.

An n-dimensional commutative division algebra over \mathbb{R} is a bilinear function (multiplication) on an n-dimensional vector space:

$$
\begin{equation*}
\mu: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \tag{6.120}
\end{equation*}
$$

such that $\mu(a, b)=\mu(b, a)$, it is bilinear, and for all $a \in \mathbb{R}^{n} \backslash\{0\}, \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $x \mapsto \mu(a, x)$ is an isomorphism. ${ }^{6.2}$ In other words, for all $a, b, c \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$ we have
(1) $a b=b a$,
(2) $a(b+c)=a b+a c$,
(3) $(\alpha a) b=a(\alpha b)=\alpha(a b)$, and
(4) $\forall a \in \mathbb{R}^{n} \backslash\{0\}, x \mapsto a x$ is an isomorphism.

Example 6.11 . For $n=1, \mathbb{R}$ with ordinary multiplication is an example. For $n=2$, $\mathbb{C} \cong \mathbb{R}^{2}$ with complex multiplication.

ThEOREM 6.40 (Hopf). There are n-dimensional commutative division algebras over \mathbb{R} iff $n=1$ or $n=2$.

Remark 6.7. If we drop "commutative", then $n=1,2,4$, or 8 . For example we have $\mathbb{R}, \mathbb{C}, \mathbb{H}$ (quaternions), and \mathbb{O} (octonions).

There is a famous story about Hamilton trying to come up with a way to multiply in higher dimensions. So his kids would come down for breakfast and say "daddy have you gotten your triplets to multiply yet?" and he would say "shut up and eat your cereal". Then one day he was crossing a bridge and he thought of the quaternions. And he was so excited he vandalized a bridge with the quaternion relations.

Proof of Theorem 6.40. Define $f: S^{n-1} \rightarrow S^{n-1}$ by

$$
\begin{equation*}
f(x)=\frac{x^{2}}{\left\|x^{2}\right\|} \tag{6.121}
\end{equation*}
$$

$\left(x \neq 0\right.$ implies $x^{2} \neq 0$ by the fourth axiom.)
ExERCISE 7.1. Axiom two and three imply that μ is actually continuous.

[^14]Therefore f is continuous. Now notice that $f(-x)=f(x)$. Therefore f induces a map $\bar{f}: \mathbb{P}^{n-1} \rightarrow S^{n-1}$.

Claim 6.1. \bar{f} is injective.
Consider the diagram

Let $\bar{x}, \bar{y} \in \mathbb{P}^{n}$ be such that $\bar{f}(\bar{x})=\bar{f}(\bar{y})$. Then there are $x, y \in S^{n}$ such that $\bar{x}=p(x)$ and $\bar{y}=p(y)$. Then

$$
\begin{equation*}
\bar{f}(\bar{x})=f(x) \tag{6.123}
\end{equation*}
$$

$$
\bar{f}(\bar{y})=f(y)
$$

so $f(x)=f(y)$, so

$$
\begin{equation*}
\frac{x^{2}}{\left\|x^{2}\right\|}=\frac{y^{2}}{\left\|y^{2}\right\|} \tag{6.124}
\end{equation*}
$$

so $x^{2}=\alpha^{2} y^{2}$ for

$$
\begin{equation*}
\alpha=\left(\frac{\left\|x^{2}\right\|}{\left\|y^{2}\right\|}\right)^{1 / 2} \tag{6.125}
\end{equation*}
$$

Therefore $(x-\alpha y)(x+\alpha y)=0$. By the fourth axiom, $x=\omega \alpha y$. Since $x, y \in S^{n-1}$ and $\alpha \in \mathbb{R}$ we have $x= \pm y$ so $\bar{x}=\bar{y}$. This proved the claim.

Therefore we have a continuous injection $\bar{f}: \mathbb{P}^{n-1} \rightarrow S^{n-1}$. For $n=1$ this works. For $n>1, S^{n-1}$ is connected, so by Lemma $6.39 \bar{f}$ is a homeomorphism. Now for $n=2$ we have $\mathbb{P}^{1} \cong S^{1}$. For $n>2 \pi_{1}\left(\mathbb{P}^{n-1}\right) \cong \mathbb{Z} / 2$ but $\pi_{1}\left(S^{n-1}\right) \cong 1$, which is a contradiction.

[^0]: ${ }^{0.1}$ Once Professor Gordon was giving a job talk about knot cobordisms. As it turns out these form a semigroup rather than a group. But if you add some sort of 4 dimensional equiv relation you get an honest group. So he was going on about how semigroups aren't so useful. After the talk he found out the chairman of the department worked on semigroups.

[^1]: 0.2 When he proved this Lebesgue contacted him saying that he could prove it too. So he sent him his proof, and Brouwer saw some errors. So over many years he eventually corrected it. In the end Brouwer summarized it by saying that it was really just his own proof.

[^2]: ${ }^{1.1}$ Recall $X \subset \mathbb{R}^{n}$ is convex if $x, y \in X$ implies $t x+(1-t) y \in X$ for all $t \in I$.

[^3]: 1.2 Which is supposed to look like a comb.

[^4]: ${ }^{2.1}$ Professor Gordon says our ignorance is extensive.

[^5]: ${ }^{2.2}$ Since $R>1$

[^6]: ${ }^{3.1}$ Boone was at UIUC at the time. He had only one copy of his manuscript and when he biked home in the snow, he lost it. So he summoned his graduate students to find it.

[^7]: ${ }^{3.2}$ The name of the Klein bottle is actually a joke in German based on the German words for surfaces and bottles.

[^8]: ${ }^{3.3}$ Once Professor Gordon was giving a big important talk at a conference about knots. He prepared a joke for the beginning of his talk, which was that it's hard not to give knot puns in your talk. So a nice woman comes up to introduce him and says something along the lines of: 'He's talking about knots, not talking about not knots". So he gets up and says the line anyway, for it was just too late. And as he was saying it, he was thinking to himself how bad of an idea it was.

[^9]: ${ }^{4.2}$ Professor Gordon accidentally misnumbered this lemma. He then reminded us that there are three kinds of mathematicians.

[^10]: ${ }^{4.3}$ It is clear that it is locally euclidean and Hausdorff. It is not so clear that it is second countable, but it is.
 ${ }^{4.4}$ Even if you don't want non-Hausdorff spaces, they might want you.

[^11]: ${ }^{4.5}$ In fact, only the homotopy type.
 ${ }^{4.6}$ If you look outside you see why these are called trees. Same reason pigs are called pigs and shrimp are called shrimp.

[^12]: ${ }^{4.7}$ These two wrote a book once, but since they didn't have Xerox machines, they only had one copy. They left it in a car in Berlin and it was stolen. Well the briefcase it was in was probably stolen.

[^13]: ${ }^{5.1}$ E.g. for $R=\mathbb{Z}$ these are abelian groups, for $R=\mathbb{R}$ these are vector spaces.

[^14]: ${ }^{6.1}$ One can always mess around with non Hausdorff things, but in this example they are even Hausdorff.
 ${ }^{6.2}$ I.e. we can "divide" by a.

