GEOMETRIC QUANTIZATION

LECTURE BY ALI SHEHPER

1. Classical physics

Let Q be our configuration manifold. Write $M=T^{*} Q$. This is our phase space. We will write $(q, p) \in T^{*} Q$ for $q \in Q$ and p in the fiber. This has canonical symplectic form locally given by $\omega=\sum d p_{i} \wedge d q_{i}$.

The space of classical observables is

$$
\begin{equation*}
\mathcal{A}_{\mathrm{cl}}=\left\{f: T^{*} Q \rightarrow \mathbb{R}\right\} \tag{1}
\end{equation*}
$$

Note that there exists $H \in \mathcal{A}$ such that $H: T^{*} Q \rightarrow \mathbb{R}_{\geq 0}$, and for $f \in \mathcal{A}$,

$$
\frac{d f}{d t}=\{f, H\}=\omega\left(X_{f}, X_{H}\right)
$$

where X_{f} is a vector field defined as

$$
\omega\left(X_{f},-\right)=d f(-)
$$

The canonical transformation (or symplectomorphism) is generated by ξ :

$$
\mathcal{L}_{\xi} \omega=0=\iota_{\xi}(d \omega)+d\left(\iota_{\xi} \omega\right) \quad \leadsto \quad d\left(\iota_{\xi} \omega\right)=0 .
$$

(Note \mathcal{L} denotes the Lie derivative.) Locally $\omega=d A$, and $\iota_{\xi} \omega=d f$ for some $f \in \mathcal{A}$. Conversely, for any f, define ξ such that $\iota_{\xi} \omega=d f$, so each $f \in \mathcal{A}$ generates a symplectomorphism. We call A the symplectic potential. Note that $\mathcal{L}_{\xi} A=d \Lambda$, where $\Lambda=\iota_{\xi} A-f$.

2. Quantization

The idea is to take the data $\left((M, \omega), \mathcal{A}_{\mathrm{cl}}\right)$ and get an irreducible representation $\mathcal{H}: \mathcal{A}_{q} \emptyset$ such that

$$
\begin{equation*}
[\hat{f}, \hat{g}]=i \hat{\mathcal{O}} \tag{2}
\end{equation*}
$$

for $\mathcal{O}=\{f g\}$. This might be too strict for everything in \mathcal{A}_{q}, but you at least want it for some. This relation comes from the uncertainty principle.

Example 1. If $M=T^{*} Q, \mathcal{H}=L^{2}(Q)$, then \hat{q}_{i} acts by multiplication, and \hat{p}_{i} by $-i \nabla_{q_{i}}$. For example, $f=q p$ goes to

$$
\hat{f}=\frac{\hat{q} \hat{p}+\hat{p} \hat{q}}{2}
$$

[^0]But what if $M \neq T^{*} Q$? Geometric quantization will give us

such that A is a connection on E with curvature ω.
Then

$$
\mathcal{L}_{\xi} \psi=\left(\xi^{\mu} D_{\mu}+i f\right) \psi
$$

and \mathcal{H} is the space of sections of E. Then a candidate for \hat{f} is

$$
-i\left(\xi^{\mu} D_{\mu}+i f\right)
$$

and then the inner product between sections is given by

$$
\langle\psi \mid \xi\rangle=\int d \operatorname{Vol} \psi^{*} \xi
$$

Let $\operatorname{dim}_{\mathbb{R}} M=2 n$, and assume ω^{n} is a nowhere vanishing $2 n$-form proportional to $d \mathrm{Vol}$.

In one-dimensional quantum mechanics, $Q=\mathbb{R}$, so $M=T^{*} \mathbb{R}$ with $\omega=d p \wedge d q$, $A=p d x$. Then

$$
\hat{f}=-i\left(\xi^{\mu} D_{\mu}+i f\right)
$$

and

$$
\hat{q}=i \frac{\partial}{\partial p}+x \quad \hat{p}=-i \frac{\partial}{\partial x}
$$

Restrict to ψ such that

$$
\frac{\partial \psi}{\partial p}=0
$$

We could have made a different choice for f, but we would have gotten isomorphic representations.

But it is unclear how to deal with not being a cotangent bundle. If M is Kähler, we can deal with this since we have a notion of holomorphicity. Being Kähler means we have a metric g and an (almost) complex structure J such that

$$
\omega(u, v)=g(J u, v)
$$

As a $(1,1)$ form

$$
\begin{aligned}
\omega & =i g_{a \bar{b}} d z^{a} \wedge d \bar{z}^{\bar{b}} \\
& =i \partial \bar{\partial} K
\end{aligned}
$$

where K is the (real) Kähler potential. Note that $\omega=d A$ where

$$
A=-\frac{i}{2} \partial_{A} K d z^{a}+\frac{i}{2} \partial_{\bar{a}} K d \bar{z}^{a}
$$

We want solutions of

$$
D_{\bar{a}} \psi=0 \quad\left(\partial_{\bar{a}}+\frac{1}{2} \partial_{\bar{a}} K\right) \psi=0
$$

These all look like

$$
\psi=e^{-K / 2} f(z)
$$

where f is some locally holomorphic function. Then we have that the inner product of two sections is:

$$
\langle 1 \mid 2\rangle=\int d \operatorname{Vol} e^{-K}
$$

Example 2. For $X=\mathbb{R}, \omega=i d z \wedge d \bar{z}$, and $K=z \bar{z}$. Then

$$
\psi=e^{-|z|^{2}} f(z)
$$

\hat{z} is multiplication by z, and $\widehat{\bar{z}}=\partial_{z}$. Note that $[\bar{z}, z]=1$, and $\operatorname{Hol}(\mathbb{C}) \simeq L^{2}(\mathbb{R})$.
In usual quantum mechanics, \bar{z} would be written as the annihilation operator a, and z would be written as the creation operator a^{\dagger}. These names can be motivated by considering how they act on a polynomial of a given degree.
Example 3. Let $M=S^{2}$ with symplectic form

$$
\omega=\frac{i d z \wedge d \bar{z}}{\left(1+|z|^{2}\right)^{2}}
$$

Note that

$$
\int_{S^{2}} \omega=2 \pi
$$

so

$$
K=\frac{n}{2} \log \left(1+|z|^{2}\right)
$$

and ψ is always of the form

$$
\begin{equation*}
\psi=e^{-K / 2} f(z) \tag{3}
\end{equation*}
$$

The inner product is given by

$$
\begin{equation*}
\langle\psi \mid 2\rangle=\frac{i(n+1)}{2 \pi} \int \frac{d z \wedge d \bar{z}}{\left(1+|z|^{2}\right)^{n+2}} f_{1}^{*} f_{2} \tag{4}
\end{equation*}
$$

This integral only converges ${ }^{1}$ for $f(z) \sim z^{k}$ where $k \in\{0, \ldots, n\}$ which means $\operatorname{dim} \mathcal{H}=n+1$. Recall $\mathfrak{s o}(3)$ acts on $\mathbb{R}^{3} \supset S^{2}$. As usual, write

$$
\begin{aligned}
J_{+} & =\left(\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right) \\
J_{-} & =\left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right) \\
J_{3} & =\frac{1}{2}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

Then this action is given by

$$
\begin{aligned}
& \hat{J}_{+}=z^{2} \partial_{z}-n z \\
& \hat{J}_{-}=-\partial_{z} \\
& \hat{J}_{3}=z \partial_{Z}-\frac{n}{2}
\end{aligned}
$$

So \mathcal{H} is a representation of $\mathrm{SU}(2)$.
In the basis of \mathcal{H} with basis vectors $z^{k}(k \in\{0, \ldots, n\})$ a J_{3} eigenvalue of z^{k} is $k-n / 2$ for $k \in\{0, \ldots, n\}$. This is an $(n+1)$-dimensional representation of $\mathfrak{s u}(2)$.

[^1]
3. Chern-Simons theory

Consider Chern-Simons theory for $G=\mathrm{SU}(2)$ on $M_{3}=\mathbb{R}_{+} \times \Sigma_{g}$. Then

$$
\delta=\frac{k}{2 \pi} \int A d A+\frac{2}{3} A \wedge A \wedge A
$$

for $k \in \mathbb{Z}$. So we get that the phase space consists of the flat $\mathrm{SU}(2)$ connections on Σ_{g}. The form is given by

$$
\begin{equation*}
\omega=\frac{k}{4 \pi} \int_{\Sigma} \delta A \wedge \delta A \tag{5}
\end{equation*}
$$

Note that $\operatorname{dim} \mathcal{H}=\chi\left(M, \mathcal{L}^{\otimes k}\right) . \chi$ is the index of $\bar{\partial}_{\mathcal{L}^{\otimes k}}$, which is the integral of the wedge of the Todd class with $e^{c_{1}(\mathcal{L})}$. Then this should be equal to the following:

$$
\left(\frac{k+2}{2}\right)^{g-1} \sum_{j=1}^{k+1}\left(\sin \left(\frac{\pi j}{k+2}\right)\right)
$$

This is the Verlinde formula.

[^0]: Notes by: Jackson Van Dyke; all errors introduced are my own.

[^1]: ${ }^{1}$ We could get this dimension by just calculating the dimension of the holomorphic sections for the sphere.

