
GEOMETRIC QUANTIZATION

LECTURE BY ALI SHEHPER

1. Classical physics

Let Q be our configuration manifold. Write M = T ∗Q. This is our phase space.
We will write (q, p) ∈ T ∗Q for q ∈ Q and p in the fiber. This has canonical
symplectic form locally given by ω =

∑
dpi ∧ dqi .

The space of classical observables is

(1) Acl = {f : T ∗Q→ R} .

Note that there exists H ∈ A such that H : T ∗Q→ R≥0, and for f ∈ A,

df

dt
= {f,H} = ω (Xf , XH)

where Xf is a vector field defined as

ω (Xf ,−) = df (−) .

The canonical transformation (or symplectomorphism) is generated by ξ:

Lξω = 0 =����ιξ ( dω ) + d (ιξω) ; d (ιξω) = 0 .

(Note L denotes the Lie derivative.) Locally ω = dA , and ιξω = df for some
f ∈ A. Conversely, for any f , define ξ such that ιξω = df , so each f ∈ A generates
a symplectomorphism. We call A the symplectic potential. Note that LξA = dΛ ,
where Λ = ιξA− f .

2. Quantization

The idea is to take the data ((M,ω) ,Acl) and get an irreducible representation
H : Aq ⟲ such that

(2)
[
f̂ , ĝ

]
= iÔ

for O = {fg}. This might be too strict for everything in Aq, but you at least want
it for some. This relation comes from the uncertainty principle.

Example 1. If M = T ∗Q, H = L2 (Q), then q̂i acts by multiplication, and p̂i by
−i∇qi . For example, f = qp goes to

f̂ =
q̂p̂+ p̂q̂

2
.

Notes by: Jackson Van Dyke; all errors introduced are my own.
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But what if M ̸= T ∗Q? Geometric quantization will give us

E

M

ψ

such that A is a connection on E with curvature ω.
Then

Lξψ = (ξµDµ + if)ψ

and H is the space of sections of E. Then a candidate for f̂ is

−i (ξµDµ + if)

and then the inner product between sections is given by

⟨ψ|ξ⟩ =
∫

dVol ψ∗ξ .

Let dimRM = 2n, and assume ωn is a nowhere vanishing 2n-form proportional
to dVol .

In one-dimensional quantum mechanics, Q = R, soM = T ∗R with ω = dp ∧ dq ,
A = p dx . Then

f̂ = −i (ξµDµ + if)

and

q̂ = i
∂

∂p
+ x p̂ = −i ∂

∂x
.

Restrict to ψ such that
∂ψ

∂p
= 0 .

We could have made a different choice for f , but we would have gotten isomorphic
representations.

But it is unclear how to deal with not being a cotangent bundle. If M is Kähler,
we can deal with this since we have a notion of holomorphicity. Being Kähler means
we have a metric g and an (almost) complex structure J such that

ω (u, v) = g (Ju, v) .

As a (1, 1) form

ω = igab̄ dz
a ∧ dz̄b̄

= i∂∂̄K

where K is the (real) Kähler potential. Note that ω = dA where

A = − i

2
∂AK dza +

i

2
∂āK dz̄a .

We want solutions of

Dāψ = 0

(
∂ā +

1

2
∂āK

)
ψ = 0 .

These all look like

ψ = e−K/2f (z)
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where f is some locally holomorphic function. Then we have that the inner product
of two sections is:

⟨1|2⟩ =
∫

dVol e−K .

Example 2. For X = R, ω = i dz ∧ dz̄ , and K = zz̄. Then

ψ = e−|z|2f (z) .

ẑ is multiplication by z, and ̂̄z = ∂z. Note that [z̄, z] = 1, and Hol (C) ≃ L2 (R).
In usual quantum mechanics, z̄ would be written as the annihilation operator a,

and z would be written as the creation operator a†. These names can be motivated
by considering how they act on a polynomial of a given degree.

Example 3. Let M = S2 with symplectic form

ω =
i dz ∧ dz̄(
1 + |z|2

)2 .

Note that ∫
S2

ω = 2π

so

K =
n

2
log

(
1 + |z|2

)
and ψ is always of the form

(3) ψ = e−K/2f (z) .

The inner product is given by

(4) ⟨ψ|2⟩ = i (n+ 1)

2π

∫
dz ∧ dz̄(

1 + |z|2
)n+2 f

∗
1 f2 .

This integral only converges1 for f (z) ∼ zk where k ∈ {0, . . . , n} which means
dimH = n+ 1. Recall so (3) acts on R3 ⊃ S2. As usual, write

J+ =

(
0 0
−1 0

)
J− =

(
0 −1
0 0

)
J3 =

1

2

(
−1 0
0 1

)
.

Then this action is given by

Ĵ+ = z2∂z − nz

Ĵ− = −∂z

Ĵ3 = z∂Z − n

2

So H is a representation of SU (2).
In the basis of H with basis vectors zk (k ∈ {0, . . . , n}) a J3 eigenvalue of zk is

k − n/2 for k ∈ {0, . . . , n}. This is an (n+ 1)-dimensional representation of su (2).

1We could get this dimension by just calculating the dimension of the holomorphic sections for

the sphere.
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3. Chern-Simons theory

Consider Chern-Simons theory for G = SU (2) on M3 = R+ × Σg. Then

δ =
k

2π

∫
AdA +

2

3
A ∧A ∧A

for k ∈ Z. So we get that the phase space consists of the flat SU (2) connections on
Σg. The form is given by

(5) ω =
k

4π

∫
Σ

δA ∧ δA .

Note that dimH = χ
(
M,L⊗k). χ is the index of ∂̄L⊗k , which is the integral of the

wedge of the Todd class with ec1(L). Then this should be equal to the following:(
k + 2

2

)g−1 k+1∑
j=1

(
sin

(
πj

k + 2

))
This is the Verlinde formula.
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