GEOMETRIC QUANTIZATION

LECTURE BY ALI SHEHPER

1. Classical physics

Let Q be our configuration manifold. Write $M = T^*Q$. This is our phase space. We will write $(q, p) \in T^*Q$ for $q \in Q$ and p in the fiber. This has canonical symplectic form locally given by $\omega = \sum dp_i \wedge dq_i$.

The space of classical observables is

(1)
$$\mathcal{A}_{\rm cl} = \{f: T^*Q \to \mathbb{R}\}$$

Note that there exists $H \in \mathcal{A}$ such that $H: T^*Q \to \mathbb{R}_{>0}$, and for $f \in \mathcal{A}$,

$$\frac{df}{dt} = \{f, H\} = \omega \left(X_f, X_H \right)$$

where X_f is a vector field defined as

$$\omega\left(X_f,-\right) = df\left(-\right) \;.$$

The canonical transformation (or symplectomorphism) is generated by ξ :

$$\mathcal{L}_{\xi}\omega = 0 = \underbrace{\iota_{\xi}(d\omega)}_{\xi} + d(\iota_{\xi}\omega) \qquad \qquad \rightsquigarrow \qquad \qquad d(\iota_{\xi}\omega) = 0.$$

(Note \mathcal{L} denotes the Lie derivative.) Locally $\omega = dA$, and $\iota_{\xi}\omega = df$ for some $f \in \mathcal{A}$. Conversely, for any f, define ξ such that $\iota_{\xi}\omega = df$, so each $f \in \mathcal{A}$ generates a symplectomorphism. We call A the symplectic potential. Note that $\mathcal{L}_{\xi}A = d\Lambda$, where $\Lambda = \iota_{\xi}A - f$.

2. QUANTIZATION

The idea is to take the data $((M, \omega), \mathcal{A}_{cl})$ and get an irreducible representation $\mathcal{H} : \mathcal{A}_q \bigcirc$ such that

(2)
$$\left[\hat{f},\hat{g}\right] = i\hat{\mathcal{O}}$$

for $\mathcal{O} = \{fg\}$. This might be too strict for everything in \mathcal{A}_q , but you at least want it for some. This relation comes from the uncertainty principle.

Example 1. If $M = T^*Q$, $\mathcal{H} = L^2(Q)$, then \hat{q}_i acts by multiplication, and \hat{p}_i by $-i\nabla_{q_i}$. For example, f = qp goes to

$$\hat{f} = \frac{\hat{q}\hat{p} + \hat{p}\hat{q}}{2} \ .$$

Notes by: Jackson Van Dyke; all errors introduced are my own.

But what if $M \neq T^*Q$? Geometric quantization will give us

$$\begin{array}{c} & E \\ & \uparrow \downarrow \\ & M \end{array}$$

such that A is a connection on E with curvature ω .

Then

$$\mathcal{L}_{\xi}\psi = \left(\xi^{\mu}D_{\mu} + if\right)\psi$$

and \mathcal{H} is the space of sections of E. Then a candidate for \hat{f} is

$$-i\left(\xi^{\mu}D_{\mu}+if\right)$$

and then the inner product between sections is given by

$$\langle \psi | \xi \rangle = \int d \operatorname{Vol} \psi^* \xi$$

Let $\dim_{\mathbb{R}} M = 2n$, and assume ω^n is a nowhere vanishing 2n-form proportional to d Vol.

In one-dimensional quantum mechanics, $Q=\mathbb{R},$ so $M=T^*\mathbb{R}$ with $\omega=\,dp\wedge dq\,,$ $A=p\,dx\,.$ Then

$$\hat{f} = -i\left(\xi^{\mu}D_{\mu} + if\right)$$

and

$$\hat{q} = i \frac{\partial}{\partial p} + x \qquad \qquad \hat{p} = -i \frac{\partial}{\partial x} \ . \label{eq:phi}$$

Restrict to ψ such that

$$\frac{\partial \psi}{\partial p}=0$$

We could have made a different choice for f, but we would have gotten isomorphic representations.

But it is unclear how to deal with not being a cotangent bundle. If M is Kähler, we can deal with this since we have a notion of holomorphicity. Being Kähler means we have a metric g and an (almost) complex structure J such that

$$\omega\left(u,v\right) = g\left(Ju,v\right) \ .$$

As a (1, 1) form

$$\begin{split} \omega &= ig_{a\bar{b}} \, dz^a \, \wedge \, d\bar{z}^b \\ &= i\partial \bar{\partial} K \end{split}$$

where K is the (real) Kähler potential. Note that $\omega = dA$ where

$$A = -\frac{i}{2}\partial_A K \, dz^a + \frac{i}{2}\partial_{\bar{a}} K \, d\bar{z}^a \; .$$

We want solutions of

$$D_{\bar{a}}\psi = 0$$
 $\left(\partial_{\bar{a}} + \frac{1}{2}\partial_{\bar{a}}K\right)\psi = 0$.

These all look like

$$\psi = e^{-K/2} f\left(z\right)$$

 $\mathbf{2}$

where f is some locally holomorphic function. Then we have that the inner product of two sections is:

$$\langle 1|2 \rangle = \int d \operatorname{Vol} e^{-K}$$

Example 2. For $X = \mathbb{R}$, $\omega = i dz \wedge d\overline{z}$, and $K = z\overline{z}$. Then

$$\psi = e^{-\left|z\right|^{2}} f\left(z\right) \; .$$

 \hat{z} is multiplication by z, and $\hat{\overline{z}} = \partial_z$. Note that $[\overline{z}, z] = 1$, and Hol $(\mathbb{C}) \simeq L^2(\mathbb{R})$.

In usual quantum mechanics, \bar{z} would be written as the annihilation operator a, and z would be written as the creation operator a^{\dagger} . These names can be motivated by considering how they act on a polynomial of a given degree.

Example 3. Let $M = S^2$ with symplectic form

$$\omega = \frac{i\,dz \wedge d\bar{z}}{\left(1+|z|^2\right)^2} \,.$$

Note that

 \mathbf{so}

$$K = \frac{n}{2} \log \left(1 + \left| z \right|^2 \right)$$

 $\int_{S^2} \omega = 2\pi$

and ψ is always of the form

(3)
$$\psi = e^{-K/2} f(z)$$

The inner product is given by

(4)
$$\langle \psi | 2 \rangle = \frac{i(n+1)}{2\pi} \int \frac{dz \wedge d\bar{z}}{\left(1+|z|^2\right)^{n+2}} f_1^* f_2 .$$

This integral only converges¹ for $f(z) \sim z^k$ where $k \in \{0, \ldots, n\}$ which means $\dim \mathcal{H} = n + 1$. Recall $\mathfrak{so}(3)$ acts on $\mathbb{R}^3 \supset S^2$. As usual, write

$$J_{+} = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}$$
$$J_{-} = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$$
$$J_{3} = \frac{1}{2} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Then this action is given by

$$\hat{J}_{+} = z^{2}\partial_{z} - nz$$
$$\hat{J}_{-} = -\partial_{z}$$
$$\hat{J}_{3} = z\partial_{Z} - \frac{n}{2}$$

So \mathcal{H} is a representation of SU(2).

In the basis of \mathcal{H} with basis vectors z^k $(k \in \{0, \ldots, n\})$ a J_3 eigenvalue of z^k is k - n/2 for $k \in \{0, \ldots, n\}$. This is an (n + 1)-dimensional representation of $\mathfrak{su}(2)$.

 $^{^1\}mathrm{We}$ could get this dimension by just calculating the dimension of the holomorphic sections for the sphere.

LECTURE BY ALI SHEHPER

3. Chern-Simons theory

Consider Chern-Simons theory for $G = \mathrm{SU}(2)$ on $M_3 = \mathbb{R}_+ \times \Sigma_g$. Then

$$\delta = \frac{k}{2\pi} \int A \, dA \, + \frac{2}{3} A \wedge A \wedge A$$

for $k \in \mathbb{Z}$. So we get that the phase space consists of the flat SU (2) connections on Σ_g . The form is given by

(5)
$$\omega = \frac{k}{4\pi} \int_{\Sigma} \delta A \wedge \delta A \; .$$

Note that dim $\mathcal{H} = \chi(M, \mathcal{L}^{\otimes k})$. χ is the index of $\bar{\partial}_{\mathcal{L}^{\otimes k}}$, which is the integral of the wedge of the Todd class with $e^{c_1(\mathcal{L})}$. Then this should be equal to the following:

$$\left(\frac{k+2}{2}\right)^{g-1}\sum_{j=1}^{k+1}\left(\sin\left(\frac{\pi j}{k+2}\right)\right)$$

This is the Verlinde formula.