
Algebraic geometry in machine learning

Jackson Van Dyke

October 20, 2020

Jackson Van Dyke Algebraic geometry in machine learning October 20, 2020 1 / 36



I originally gave this talk in Professor Yen-Hsi Tsai’s course “Mathematics
in Deep Learning” (M393) at UT Austin in Fall 2020.
It is based off of this talk, by Professor Lek-Heng Lim.
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Motivation

raw data ; {vi} ∈ RN ; subspace ⊆ RN

Example
If we start with k images, we can split it into N squares and take the
grayscale values to get k vectors in RN . Then we can

take the span,
take the affine span, or
take the smallest ellipsoid containing the vectors.

Before doing anything else with these subspaces, we want to develop some
notion of distance between them.
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Distance

Question
What is the distance between two linear subspaces?

Example
For lines in R2, we just need to take the angle.

;

So now we want to formalize this in high dimensions.
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Higher-dimensional picture

A
B

;

A

B

distance (A,B) = blue.
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Higher-dimensional setup

Let a1, . . . , ak ∈ RN and b1, . . . , bk ∈ RN be (separately) linearly
independent sets of vectors. Write their spans as:

A := Span {a1, . . . , ak} ⊂ RN B := Span {b1, . . . , bk} ⊂ RN .

Since the vectors were linearly independent, A and B are both
k-dimensional linear subspaces of RN .

Therefore A and B are points of the Grassmannian.

A,B ∈ Gr (k,N) :=
{

k − dim’l linear subspaces of RN
}
.
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Principal vectors and angles

Write â1 ∈ A and b̂1 ∈ B for the vectors which

maximize aT b
such that ‖a‖ = ‖b‖ = 1

for a ∈ A, b ∈ B.
Write â2 ∈ A and b̂2 ∈ B for the vectors which

maximize aT b
such that ‖a‖ = ‖b‖ = 1

aT â1 = 0, bT b̂1 = 0

for a ∈ A and b ∈ B.
In general we ask for âj (resp. b̂j) to be orthogonal to âi (resp. b̂i ) for
all i < j .

Jackson Van Dyke Algebraic geometry in machine learning October 20, 2020 10 / 36



Grassmann distance

We can think of the principal vectors as forming a basis which is
convenient for measuring angles.
Define the principal angles θj by

cos θj = âT
j b̂j .

Note that θ1 ≤ . . . ≤ θk .
The Grassmann distance between the linear subspaces A and B is
given by:

dk (A,B) =
( k∑

i=1
θ2

i

)1/2

.

Jackson Van Dyke Algebraic geometry in machine learning October 20, 2020 11 / 36



Principal angles in Gr (2, 3)
Consider two planes in R3 given by

A = Span (e1, e2)
B = Span (e2, e3) .

The principal vectors are:

â1 = e2 b̂1 = e2

â2 = e1 b̂2 = e3

So the principal angles are:

θ1 = 0 θ2 = π/2

and
d (A,B) = π/2 . (1)
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Metric

We have been using the word “distance” a bit loosely.

Technically, d defines a metric on Gr (k,N) because it satisfies:
1 d (A,B) = 0 if and only if A = B,
2 d (A,B) = d (B,A), and
3 d (A,C) ≤ d (A,B) + d (B,C)

for all A, B, and C ∈ Gr (k,N).
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An example

By separating images into three regions:

2 images of someone’s face ; v1, v2 ∈ R3

If v1 and v2 are linearly independent, we get a plane:

F := Span (v1, v2) = {m1v1 + m2v2 |m1,m2 ∈ R} ⊂ R3 .

For two new photos of someone, again we get a plane and we can
take the distance to F as a way to compare to the original photos.
But what if I only have one picture of someone, and I want to
compare it to the two I started with?

Question
How do we compare subspaces of different dimensions?
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Schubert varieties
For k ≤ `, we would like a notion of distance between

A ∈ Gr (k,N) B ∈ Gr (`,N) .

Consider the set of `-planes containing A:

Ω+ (A) := {P ∈ Gr (`,N) |A ⊆ P}

and the set of all k-planes containing B:

Ω− (B) := {P ∈ Gr (k,N) |P ⊆ B} .

These are examples of Schubert varieties. E.g.

Ω+ (the line) = {planes containing the line}
Ω− (the plane) = {lines contained in the plane} .

Strategy: measure distance from A to Ω− (B), and B to Ω+ (A) and
compare.
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Distance between linear subspaces of different dimensions

The distance from A to Ω− (B) is given by:

δ− = min {dk (P,A) |P ∈ Ω− (B)} .

and the distance from B to Ω+ (A) is given by

δ+ = min {d` (P,B) |P ∈ Ω+ (A)} .

Theorem 1 (Ye-Lim 2016 [YL16])
δ+ = δ−, and the common value is:

δ (A,B) =

min(k,`)∑
i=1

θ2
i

1/2

.
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Example
Now A is still a line, but B is a plane, both still in R3.

BA

The distance is the only principal angle that can be defined: the first one.
So

δ (A,B) = green .
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Metric?

Recall d was a metric on Gr (k,N).
The space of all linear subspaces in all dimensions is the doubly
infinite Grassmannian: Gr (∞,∞) = t∞k=1 Gr (k,∞).

Question
Does δ define a metric on Gr (∞,∞)?

No: it only satisfies symmetry.

δ (A,B) = 0 ⇐⇒ A ⊆ B or B ⊆ A

Counterexample
Let L1, L2 ∈ Gr (1,N), P ∈ Gr (2,N) such that L1, L2 ⊂ P.
Triangle inequality =⇒ δ (L1, L2) = δ (L1,P) = 0. Contradiction.
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Premetric.

Instead, δ is what is called a premetric (or distance) on Gr (∞,∞), since
it satisfies:

1 d (A,B) ≥ 0,
2 d (A,A) = 0, and
3 d (A,B) = d (B,A)

for all A,B ∈ Gr (∞,∞).

This can be thought of more as a way to measure separation, in the sense
of the distance between a point and a set.
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Metric after all?

Recall we can express δ (A,B) =
(∑min(k,`)=k

i=1 θ2
i

)1/2
.

Instead of stopping at k, we can just define θi = π/2 for i  k.
Then

d∞ (A,B) =

max(k,`)=`∑
i=1

θ2
i

1/2

(2)

is a metric on Gr (∞,∞).
When restricted to Gr (k,∞), this agrees with dk .
Geometrically this is saying that we stabilize the smaller subspace by
crossing with copies of R and then taking the ` metric.
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Affine subspaces

Let A ∈ Gr (k,N) be a k-dimensional linear subspace and b ∈ RN to
be thought of as the “shift” away from the origin.
Write {a1, . . . , ak} for some basis of A.
The associated affine subspace is:

A + b :=
{

m1a1 + . . .+ mkak + b ∈ RN
∣∣∣λi ∈ R

}
⊂ RN .

In particular, they don’t have to contain the origin.

E.g. Graff (0,N) = RN , and Graff (1,N) =

Together, the affine subspaces form the Grassmannian of affine
subspaces:

Graff (k,N) =
{

k-dim’l affine subspaces of RN
}
.
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Embedding Graff in (a bigger) Gr

Strategy: view affine subspaces as linear subspaces of a
higher-dimensional space, and take dGr:

Graff (k,N) Gr (k + 1,N + 1)

A + b Span (A ∪ {b + en+1})

i

When k = 0 and N = 1, i sends points of R to lines of R2.
Given a point •, taking this span is the same as drawing a line from
the point a unit distance above • through the origin.

b A + b

i (A + b)

e2
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Embedding Graff in (a bigger) Gr

Graff (1, 2) Gr (2, 3)

A + b Span (A ∪ {b + e3})

i

b

e3

A + b

i (A + b)
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A metric on Graff

We use this embedding to define the distance between two affine
subspaces:

dGraff(k,N) (A + b,B + c) := dGr(k+1,N+1) (i (A + b) , i (B + c)) .

dGraff is a metric because dGr is.
If b = c = 0, this is just the usual Grassmannian distance.
Just as the distance between linear subspaces was calculated using
the principal angles, there are affine principal angles such that this
distance is written as before.
These angles are also computationally manageable.
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An example

By separating two images into three regions we get v1, v2 ∈ R3.
If they are linearly independent, we get a line L which contains those
points:

L := {m1v1 + m2v2 |m1 + m2 = 1,m1,m2 ∈ R} ⊂ R3 .

This is the affine span/hull of v1 and v2.
The affine hull is the smallest affine subspace containing the data. In
particular, it is contained in the linear subspace F from before.
For two new photos of someone, again we get a line and we can take
the distance to L to compare to the originals.

Question
How do we compare subspaces of different dimensions?
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Distance for inequidimensional affine subspaces

For k ≤ `, we would like a notion of distance between

A + b ∈ Graff (k,N) B + c ∈ Graff (`,N) .

As in the linear case, define

Ω+ (A + b) := {P + q ∈ Graff (`,N) |A + b ⊆ P + q}
Ω− (B + c) := {P + q ∈ Graff (k,N) |P + q ⊆ B + c} .

Theorem 2 (Lim-Wong-Ye 2018 [LWY18])
dGraff(k,N) (A + b,Ω− (B + c)) = dGraff(`,N) (B + c,Ω+ (A + b)), and it is
explicitly given via the affine principle angles.

dGraff is a metric because dGr is.
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Generalizations

This whole story holds for ellipsoids in RN as well.
The distance between two ellipsoids is the distance between the
matrices defining them.
Therefore it reduces to the analogous calculations in the cone of real
symmetric/complex Hermitian matrices.
These techniques should extend to any situation where your space
looks like a space of matrices.
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Future directions

A category is (roughly) a collection of objects and arrows between
the objects which satisfy some conditions.
In [DHKK13], the authors define a notion of distance between any
two objects of a category.

Example
The collection of half-dimensional subspaces of a given even-dimensional
manifolda fit naturally into a category called the Fukaya category.
Roughly, we have an object for every subspace, and an arrow whenever
they intersect.

aTechnically they’re Lagrangians in a symplectic manifold.

Question
Is this a useful distance for our purposes? Is it computable?
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Graph quotients

In [Lin17], they study graph quotients as “sheaves” over graphs.

Example 1
Consider the following (real) tweets:

Dating a skeleton.
If you’re skeleton you can buy velveeta with bones.

12 foot Home Depot skeleton.

Each word is a vertex and an edge connects two vertices when the
words are neighboring.
Then we collapse all of the vertices corresponding to “skeleton” to a
point.
The stalk (preimage) over “skeleton” consists of the different
instances of skeleton in the data.
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Summary:

Assume we have a way to pass from raw data to a subspace:

raw data ; {vi} ∈ RN ; subspace ⊆ RN

When the subspace is linear, affine, or an ellipsoid, there is a metric (or
premetric) which on the space of such subspaces (of any dimension!)
which is realistic to calculate.

So we can distinguish data by measuring the distance between the
associated subspaces.
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