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Overview of mirror symmetry

The course is topics in algebraic geometry. We will be doing some sort of mirror sym-
metry. We will start with some historical overview.

1. Enumerative mirror symmetry

Let X be a CY manifold. In particular we will focus on CY 3-folds. This means
Kx =detT% ~ Ox is trivial as a holomorphic line bundle. Typically this means we want
b1 = 0 and irreducible.

EXAMPLE 0.1 (Quartic in P4). Take f € C [z, ..., 74] homogeneous of degree 5. If it is
sufficiently general, the zero locus is smooth inside P* and is an example of a CY three-fold.

‘We have
(0.1) 0—Z/I* = Op:|y — Ox =0

where Z = (f) C Opa. We also have that 7/I? = T ®¢,, Ox is an invertible sheaf so this
first map sends f — df. This implies

(0.2) Kpi|y = det Ops|y =T/ @ Kx
and
(0.3) Kpi = Opa (=5) .

Then Z < Opa which has a section with poles of order 5. The point is we can make f into
a five by dividing by z§, so we have that, as an abstract sheaf,

(0.4) 7~ Opa (—5) .
Then we have that

(0.5) I/T? ~ Ox (-5)
and we can just take the tensor product to get

(0.6) Kpi|y ~ Ox (—5)

so Kx ~ Ox must be trivial.

Now we want to produce a string theory out of this. This is a very delicate process.
There are things called ITA (X) and I1B (X) theories. These are the ones relevant in mirror
symmetry. These come from the super-symmetric o-models with target some 10-dimensional
space’! R3 x X. These are the so-called super conformal field theories SCFT4 (X) and
SCFTg (X). These are different theories which produce observables, e.g. the Hodge number
of X can be computed from these theories. In particular we can compute hj i (X) and
hg.1 (X) which correspond to some physical variables. On the B-side we make the same
computation but get he 1 (X) and hy 1 (X). Then we postulate that there is some other X’

0-1T6 have an anomaly free theory.

Lecture 1, August
29, 2019



1. ENUMERATIVE MIRROR SYMMETRY 8

where these are not flipped. In particular the observation is, for very specific X, we can find
a CY Y with

(0.7) SCFT4 (X) = SCFTs (Y) SCFTg (X)=SCFT4(Y) .

Somehow then the idea is that if this is really a model for string theory, we should really be
swapping

(0.8) ITA(X)“="IIB(X) IIB(X)“="IIA(Y) .

But this might be a bit much to ask.

1.1. Topological twists. There is something called a topologically twisted o-model
introduced by Witten in 1988. This produces a completely different theory. We get two
theories, one called A (X)), and one B (X).

WARNING 0.1. As it turns out, A (X) ends up computing things in certain limits of the
IIB(X) theory.

REMARK 0.1. A priori these are unrelated to SCFT,4 (X) and SCFTg (X).
As it turns out, if we have SCFT4 (X) = SCFTgp (Y), then we have
(0.9) AX)=B(Y) B(X)=A(Y) .

A (X) and B (X) compute certain limits, called Yukawa-couplings, for SCFTs (V) and
SCFT, (X).

Note that by this twisting procedure A (X) sees (X,w) (where w is the K&hler form)
only as a symplectic manifold, and B (X) depends only on the complex manifold (X, I).

1.2. Useful calculations. The reason people really got excited about mirror symme-
try is that it helps us make calculations we couldn’t make before.

In [4] the Yukawa couplings for the quintic and the mirror quintic were computed. In
particular they computed Fp of the mirror quintic Y;, and claimed this is in fact equal to
F4 of the quintic. Geometrically F4 has to do with counts of (genus 0) holomorphic curves.
Fp has to do with period integrals

(0.10) / Qy, = Fg (1)

for « € H3(Y:). So they predicted some counts, then someone computed it directly and
they agreed.

WARNING 0.2. This Qy, is only defined up to scale so really the case is that

(0.11) Fgp(t) =exp </a1 Qyt,//a0 Qyt)

for a; € Hs (V).

Then Morrison/Deligne in 1992 described Fp (V) in terms of Hodge theory/more pa-
rameters for CY moduli. This is when Gromov-Witten theory entered the scene in 1993 to
make F4 (X)) precise. So at least we had a mathematical statement.



1. ENUMERATIVE MIRROR SYMMETRY 9

1.3. Homological mirror symmetry. In 1994 Kontsevich gave his legendary ICM
talk. This is where homological mirror symmetry took off. He said that as mathematicians
we don’t really know SCFTs. But what should be true is really:

(0.12) DFuk (X) = D" (Oy) .
This is a formulation, not an explanation.
Professor Siebert would like to convince us of a procedure to construct mirror pairs.

1.4. Proving numerical mirror symmetry. In 1996 Givental gave a proof that in
the case of hypersurfaces F4 really is Fg of the mirror. This was somehow a computation
showing that the sides do in fact agree. This is not very satisfying to Professor Siebert. In
1997 Lian, Liu, and Yan proved it more generally.

1.5. Proving HMS. In 2003 Paul Seidel proved HMS for the quartic in P2, Essentially
he shows that both sides have enough rigidity to do a very minimal computation. This is
also not very satisfying to Professor Siebert. It was then proved in 2011 by N. Sheridan for
all CY hypersurfaces.

1.6. Modern state. There are many other manifestations of mirror symmetry. As it
turns out even geometric Langlands can be viewed as some form of mirror symmetry.

As for HMS, some symplectic people are trying to prove this for so-called SYZ fibered
symplectic manifolds with a rigid space as the mirror.

Then there are intrinsic constructions, things which Professor Siebert has worked on
(with Mark Gross) with many applications. The idea is to use mirror symmetry as a tool
in mathematics rather than just a phenomenon in physics. The point is one has to find a
way of producing mirrors.

This entire story is genus 0, what physicists would call tree-level. There is also a higher
genus case. From the representation theory side this has something to do with quantum
groups. This is called second quantized mirror symmetry.%2 There is an entire field called
topological recursion related to this.

1.7. Plan for the class.

(1) part of the COGP computation (periods)

(2) Gromov-Witten theory, virtual fundamental class/moduli stacks

(3) toric degenerations and mirror constructions®3

(4) One strategy for proving HMS is to compute homogeneous coordinate rings of both
sides. Polishchuk has shown that this ring determines D’ (Oy). It would be nice
to make the analogous symplectic calculation because this would be a very sneaky
proof of HMS.

(5) Higher genus: Donaldson-Thomas invariants play some sort of unclear role in MS
because they will have something to do with the higher genus story. One can
make these computations using “crystal melting”. This is some kind of statistical
mechanics.

0-2This term comes from QFT.
0-3This will include some introduction to toric geometry.



CHAPTER 1

Mirror symmetry for the quintic

1. The quintic threefold, its mirror, and COGP

Take some quintic CY in P*, i.e. V (f) C P* for some homogeneous degree 5 f. First
let’s do a dimension count for homogeneous polynomials in xg, ..., x4 of degree 5. This is
just drawing with replacement, so we have

(1.1) iy © IRY
(1.2) ToT a2 © -1l
and we get

(1.3) (2) =126

which means

(1.4) dime {Z (f) CP*} =126 — 1 =125 .
Now we mod out by PGL (5), which is of dimension 5-5 — 1 = 24. So we get
(1.5) dim Ms =101 .

moduli space of quintics

Indeed: for a projective CY manifold X, the moduli space of CY manifolds deforma-
tion equivalent to X is a smooth orbifold of complex dimension h! (©x), where Ox is the
holomorphic tangent bundle. We will compute this number as an exercise next time. For
V (5) € P* this is 101.
Lecture 2;
September 3, 2019

2. Quintic 3-folds

We will be looking at quintic 3-folds V (5) C P* given by Z (f) for some homogeneous
degree 5 polynomial.

THEOREM 1.1. For X a projective C'Y manifold then the moduli space of C'Y deformation-
equivalent to X is a smooth space of dimension h' (©x).

By an elementary argument we saw that dim My ) = 101.

2.1. Computation of H' (Ox). We will compute in the case X = V (5) C P*. We

start with the Euler sequence. We have P* = ProjC [z, ..., z4] and
0
1.6 i02; = Tim—
(16) 0, = wi

10



2. QUINTIC 3-FOLDS

are well-define logarithmic vector fields. Then the sequence is

0 Opa Opa (1)®° Ops 0

(1.7) l— Zei

e; —— x;04,
Then we have the conormal sequence

(1.8) 0 —— I/I? — |, —= Q% —— 0

|x
where 7 is the ideal sheaf of X. This is dual to

(19) 0 —— x — @IP>4|X —_— NX/]P’4 ~ Ops (5) — 0

TZ/T? can be computed because Z ~ O (—5). The restriction sequences are:

(110) 0 —— O[pm (—5) O]p4 OX 0

(111) 0—— ®P4 (75) @IP4 @]P>4|X — 0

Now (1.9) gives us
(1.12)

H°(©x) —— H°(Opi|y) —— H°(Ops (5)) —— H'(Ox) —— H' (Opa|y)

| H |

0 (C24 (C125 (CIOI 0
For H' (Opi|y), (1.11) give us:
(1.13) H' (©p1) —— H'(Opa|y) — H?(Ops (—5))
The Euler sequence gives us:

H (Ops (1))®° —— H! (Opa) —— H2 (Opa)
(1.14) ‘

0 0

then we can tensor the Euler sequence with O (—5) to get

Hi (Ops (—4)) —— H (Opa (=5)) —— H (Op1)
(1.15) ‘ ‘

0 0 0

11



3. HODGE DIAMOND

For H? (Ops (5)| i) we can tensor (1.10) with O (5) to get

0 —— HO(Ops) — HO (Ops (5)) — H° (Ox (5)) — H' (Ops)
(1.16) H 4 H
C

C126 s C125 0

Now for H? (Ogp1|y) we have that (1.11) gives us

HO (®P4 (—5)) — HO (9[@4) — HO(®P4|X) — H! (@[le (—5))

(1.17) H :T
0 C* ———= C*# 0
Then the result is that:
(1.18) r' (©x) =101 .

3. Hodge diamond

12

3.1. Dolbeault cohomology. Let X be a compact Kahler manifold. Recall we have

the Dolbeault cohomology ng is the cohomology of the sequence

(1.19) Aid 9y gisit
where this looks like
1.20 huwdzy, A...Adz, Adz,, A...Adz,.
1% 248 M 1 J

where the hy, € C*.
Then we have the following facts:

(1) We have a canonical isomorphism from the Dolbeault cohomology

(1.21) HY = HI (X,Q%) = HY'
which implies
(1.22) dim Hz? = hij = hj; .
(2)
(1.23) HE ™" = g7 (X, Q) = M (X Ky (057)") 1Y
which, in particular, means h;; = hp—; pn—j.
(3)
(1.24) H*(X,C) = Hjp (X)= @@ HE .

i+j=k
Recall b; = dimc H* (X,C). For CY n-folds, by = 0 by the definition of CY
implies h1g = ho1 = 0. Moreover

(1.25) H"=H X Kx | ~C.
(@]
X

1'1By Serre duality

. This



3. HODGE DIAMOND 13

This implies that
(1.26) hno=hon=1.

We say a CY is irreducible if the universal cover X — X is not a nontrivial product of
CY. This is equivalent to H*? =0 for k=1,...,n — 1.

COUNTEREXAMPLE 1. The product K3 x K3 is not irreducible.

3.2. Hodge diamond. The hodge diamond is the following:

h33 < H6
has h3o +— Hb
hi3 ha2 h31
(1.27)
01 hio ha1 h3o
hog hll h20
ho1 h1o
hoo

The only interesting part is the center:

1
haa
(1.28) 1 hia —“— hor 1
T

0 h11 0
0 0
1
since
1.29 HUO)=H' |0y2 Ky | = H' (O~ 1) = gr—11
(1.29) (©x) x \B'X/ (0x7)
X

So the question is reduced to making these calculations. In the V (5) case ho; = 101 as we
Saw.
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3.3. Lefschetz theorem on (1,1)-classes. Now we work at the generality of com-
pact Kihler manifolds. The Néron-Severi group NS (X), is the preimage of H>! under
H?(X,Z) — H?(X,C). So somehow morally NS (X) = H?(X,Z) N H"'. Now we have
the exponential sequence of abelian sheaves:

(1.30) 1 7 =2 Oy 0% 1

H'(X,Z) — H'(X,0x) — H' (X,0%) — H?*(X,Z) — H?(X,0¢)
(1.31) [ [

HO Pic (X)

So ¢; (Pic (X)) = NS (X).

Now we know how to compute Pic (X) for CY n-folds. In particular, as long as n > 3,
hiy = rankz NS (X) and Pic (X) ~ NS (X) since Pic’ (X) = 0 in the CY case.

3.4. Hard Lefschetz theorem. Let X C P” be a Kahler manifold. This tells us that
(1.32) H* (P",Z) — H* (X,7)

is an isomorphism for k¥ < n — 1 = dim X and surjective for k =n — 1.

Now for a CY 3-fold we have 0 = H! (P",Z) = H'(X,Z) and H? (P",Z) ~ Z —»
H? (X,7Z) which means NS (X) ~ Z. This is generated by the hyperplane class ¢; (O (1))
and then restricting to X gives the ample line bundle on X and this generates the group.

So today we learned that the interesting part of the diamond in the quintic case looks
like

(1.33) 101 101

1
and then as it turns out, the mirror quintic will look like
101

(1.34) 1 1

101

so we have a huge Picard group.
Lecture 3;
September 5, 2019

4. Lefschetz hyperplane theorem
This is an addendum to last lecture. Let X C P" be a hypersurface. Then

(1.35) HY (P, Z) =5 H" (X, Z)

is an isomorphism for k¥ < n — 1 and surjective for k =n — 1.
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5. The mirror quintic

We should have mirrored Hodge numbers. Recall the interesting part of the Hodge
diamond for the original quintic is

1
(1.36) 101 101
1
and then the mirror diamond should be:
101
(1.37) 1 1
101

So hoy (Y) = 1, i.e. it has a one-dimensional moduli space, but hy; (Y) = 101 so it has a
big Pic ().

5.1. Construction. This is physically motivated by the orbifold of the “minimal CFT”
related to the Fermat quintic, i.e. the one given by 23 +...+z3 = 0. (Z/5)° acts diagonally
on P*. This gives an effective action of (Z/5)* = (Z/5)° / (Z/5) since one copy of Z/5 acts
trivially. Now we take the finite quotient

(1.38) Y =X/ (z/5)" .

The action is not free, so this is not a manifold, i.e. it has some orbifold singularities. (X is

smooth by Jacobi criterion.) The stabilizer Gy C (Z/ 5)4 is nontrivial. There are two cases:

o z; =x; =0 (i # j), in which case Gy ~ Z/5. This gives quintic curves C~’ij =

Z (x;,2;) C X. The local action is given by ( (21, 22, 23) = ({21, ‘22, 23). This

gives rise to the singularity given by uv = w®, the A, singularity in C* (with
coordinates u, v, w).

o z; =x; =x, =0 (i, j, k pairwise disjoint), where we get Gy ~ (Z/5)>. This gives

us
(1.39) Pijr— PjLeY .
Now the local action looks like
(1.40) (C.€) - (21,22, 23) = (C€21,¢ P20, 6 1 2s)
REMARK 1.1. Inside Y we have
(1.41) Co1 = Z (0, 1,25 + 25 + 23) / (Z)5)° ~ Z (u+v+w) ~P' c P?.

Any C;; looks like a P!.

We want to blow these singularities up locally, but this is delicate if we want to stay in
the world of projective algebraic varieties, i.e. we might just not have an ample line bundle
after blowing up. So we have to prove something extra.

Proposition 1.2. There exists a projective resolution Y — Y.
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This is done most efficiently by toric methods, but can be done by hand.

Let’s count the independent exceptional divisors in 1T'. We have 4 over each C;; and 6
over each Pj;i. So we have 40 from the C;; and 60 from the FP;;; and we have 100 in total.
Together with the hyperplane class they span the H?2.

Proposition 1.3. hyy (V) =101, hey (V) = 1.
The proof was done directly by S.S. Roan and done by by toric methods by Batyrev.

5.2. Mirror families. This mod G construction generalizes to what is called the
“Dwork family”. In particular we have Xy, = V (fy) where

(1.42) fw:$8+...+x2—5w$0$1...$4

and 1 is a complex parameter. So we have

@/5)" = {(Go.- - C)ITTG =1} C(2/5)

(1.43) 1 1
G = (2/5) (z/5)*
and
Xy =Z(fy)
(1.44) l/(z/"’)?’

Yw — Yw
Note that Y9 ~ Y¢, for ¢° = 1. Then we have

y Ly
(1.45) l
P, L2, pl
where z := (5¢)°. This is a family of CY 3-folds which are smooth for z # 0, cc.
The special fibers are as follows.

e 2=0: 29...24 = 0 implies

(1.46) Yoo ~ | JP? c P
5

is a union of coordinate hyperplanes.

e z =57% ie 1 = 1. This corresponds to one 3-fold A; singularity. X; has 125
three dimensional A;-singularities. Which locally look like z2 + y2 + 22 + w? = 0.
They all lie in one (Z/ 5)3—0rbit. Y5-1 has one three dimensional A; singularity
sometimes called the “conifold”.

e z = 00, i.e. ¥ = 0: this is the Fermat quintic. This has an additional Z/5
symmetry because we drop the condition that the product of the x; has to be 1.

So this is really an orbifold point.

Now, at least from a physics point of view we are done.'?

L-2professor Siebert says that maybe mathematicians would be better off like this: not worrying so
much and just seeing what life brings.
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6. Yukawa couplings

6.1. A-model. The A-model (symplectic) will deal with the quintic. So we have
H?(X,Z) =7 h for h = PD (hyperplane). Then the Yukawa coupling is

(1.47) (hyhyh), = Nad’q” .

deN

At this point (historically) it was not clear what the N, actually were because Gromov-
Witten theory was sort of being developed in parallel. Nowadays we know that the Ny are
Gromov-Witten (GW) counts of rational curves (g = 0) of degree d. If we write ng for the
primitive counts, then

d
(1.48) 54+ dng 13 . €Qlq -
>0 q

multiple cover of degd curves

6.2. B-model. Now we consider the mirror quintic Y,, z = (5w)_5. Now the Yukawa
coupling is given by:

(1.49) (0,0,,0,) g = / Q¥ (2) A O2QY (2)
Y.
where ¥ is a “normalized” holomorphic volume form:

(1.50) / Q¥ = constant
Bo

where 8y € Hy (Y, Z).

We need some kind of mirror to the vector field A on the moduli space of symplectic
structures. What we really want is actually the exponentiated thing e?™**. So as it turns
out on this side of mirror symmetry this looks like /0w which corresponds to a vector field
on the complex moduli space of Y.

It turns out

(1.51) w= [ Q(2)
where 81 € H5 (Y, Z).

6.3. Mirror symmetry. Now the actual statement of mirror symmetry is that
(152) <h7h7h>A = <8Za3278z>3

where ¢ = e>™G) (w =c-z+ O (2?)).
So now we have to:

(1) write down the holomorphic 3 form (not too bad)
(2) do the normalization period integral (not too bad)
(3) computing this second integral (more bad)

(4) computing the Yukawa coupling.
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6.4. Computation of the periods. There is an account of this in lecture notes by
Mark Gross (Nordfjordeid). Recall we have:

Yy
(1.53)

X, 8 v,

We know Hj (Yy,Z) ~ Z*. Near 1) = oo (large complex structure limit) we have a vanishing
cycle.

This looks like Professor Siebert’s favorite picture of a degeneration. Consider zw = t.
At t = 0 this looks like two disks meeting at a point. For ¢ # 0 this looks like a cylinder.
But now if we do a Dehn twist, we see that there is an S! which gets collapsed in this
degeneration. A similar story holds in higher dimension.

In particular, our vanishing cycle looks like 8y = T°. Locally

(1.54) Up...us = 2,00 = {\ul\ =...=|w|= |z\1/47Argu1...U4:0}

where the u; are holomorphic coordinates.
If we lift to X, we get an explicit three-torus
(1.55)

T= {|$0| = |z1] = |2a| = 6 < 1,23 = 3 (w0, 21, 22) soln of fy (z1,22,23,1) = 0,3 2% 0}

Recall we have Lecture 4;
v September 10, 2019
P

(1.56)
X, L% v,

where G = (Z/5Z)°. Recall last time we discussed:
(1) Vanishing cycle T3, 8y =€ H3 (Yy,Z),
(2) Holomorphic 3-form,
(3) Normalization,
(4) Further periods, and
(5) Canonical coordinate/mirror map.

7. Holomorphic 3-form

We will construct the holomorphic 3-form as the residue of a meromorphic/rational
4-form on P* with zeros along Xy:

Q ,
(1.57) Q) =5y Resx, 1 €T (X¢, Qg(w)
where
(1.58) Q= widug Ao Adr; A A day

Locally x4 =1, 0., f # 0,

dx() AN diCl AN diEQ

(1.59) Q) =59 9oits

X P
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8. Normalization

Now we deal with normalization. We have ¢g := [ 5o Q (¢), then

(1.60) 0= 050 (w)
is normalized with resides
(1.61) omi | Q) = / 5y drg dry e drs
Bo T
dzg ... dzrs 1
1.62 _
- /T @o...x3  (itebt.+ed)
5¢xg...T3

(163) __Z/ dIde3<1+m8++xg)"

| — Jre @023 (59)" (z0...23)"

. = Jrs wo...x3 (5¢)5” (o . ..x3)5n
(1.65)

where all summands in both the numerator and denominator must be 5th powers to con-
tribute. So from some combinatorics we have

(1.66) 2mi / 0 Q) =—(@2mi)' Y W)g’(% =: 0o (2)

where z = (1/5¢)°. The number (5n)!/ (n!)® is the number of terms

(1.67) A (1—|—x8—|—...—|—x§)5n .

9. Further periods

There is a procedure called Griffith’s reduction of pole order. This involves the Picard-
Fucks equation.

Locally H? (Yy, C) is constant with dimension 4. This gives a trivial holomorphic vector
bundle

E=UxC*
(1.68) L

My «— U

This has a flat connection VM called the GauB-Manin connection. Pointwise

(1.69) E,= P H"(Xy)
p+q=3

and we have seen ) (1)) € H*9. Now consider:
(1.70) Q(2) 0,9 (2) 020 (2) 230 (2) 20 (2)

which are related by a fourth order ODE with holomorphic coefficients called the Picard-
Fuchs equation.
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9.1. Derivation of the equation. Take X = Z(f,) C P4, We can produce more
3-forms from forms with higher-order poles. Consider the long-exact sequence:
(1.71)

H* (P*,C) — H*(P*\ X,C) —— H® (P}, P*\ X;C,) —— H® (P*,C)
H5 (U,U\ X;C)
H5 (U, 0U;C)
LDH

Hz U\ oU;C)

HB (X,(C) = HS (X,(C)

where X C U is a tubular neighborhood and we are using the form of Lefschetz duality which
states that HY (M,0M) = H,,_, (M \ OM) and in the last step we use Poincare duality. So
we start with things of high pole order, this gives us some class in H3, then in our case we
take derivatives, and for certain classes we know they should be zero and this gives us some
equations.

9.2. Griffiths’ reduction of pole order. If we have

Q)
(1.72) e (P*, 2o x )

then we must have degg = 5l — 5 (I = 0 earlier so we had no g). The exact forms look like

1

(173) d ﬁ Z(—l)i+j (xigj—xjgi) dxo /\.../\Ea;/\.../\ d/.’;?\j A...dxy

i<j

Q
(1.74) = (Zzgjaxjf - fzazjgj) L

If 13 9i0:,f € T (f) = (Og, f) then up to an exact form, it is of lower order since one copy
of f cancels. Le. the first term over f*! is of order [ + 1, and the second term over f'*1 is
order [. The upshot is that the numerator g € J (f) can reduce [.

So the algorithm is as follows: Compute Q(2), 8.Q(2), 92Q(2), ..., 92Q(2) = gfl/fi
where g € J (fy). Then we express g modulo (1.74) as a linear combination of the 98 (z).

Proposition 1.4. Any period

(1.75) o= [ 2w
fulfills the ODE
(1.76) [0* — 52 (50 4+ 1) (50 + 2) (50 + 3) (50 + 4)] ¢ (z) =0

where 0 = 20,.
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REMARK 1.2. This is easy to check for

(L.77) ¥ =%o = Z

n>0

(5m)
(n!)°

Zn

(1.76) is an ODE with a regular singular pole:
(1.78) Op (z) = A(2) ¢ (2)
for ¢ (2) € C*.

THEOREM 1.5. (1.78) has a fundamental system of equations of the form

(1.79) D (2) =S (2) "
with S (z) € M (s,00), Re M (S,C), and
(1.80) 2R =T+ (logz) R+ (logz)*R*+ ... .
If the eigenvalues do not differ by integers, we may take R = A(0).
For (1.76)
0 1

(1.81) ao=~| ",

0
and S = (¢, ...,1¥3) where ¢; € Oép' This gives us a fundamental system of solutions:
(1.82) @0 (2) = 1o (single-valued)
(1.83) 01 (2) =g (2)log 2 + 91 (2)
(1.84) 2 (2) = o (2) (log 2) + 41 (2)log 2 + 92 (2)
(1.85) 3 (2) = o (2) (log 2)" + ... + 13 (2) .

This has something to do with monodromy. In particular, the monodromy of z4()

reflects the monodromy T of H?(Y,,C) about z = 0 (or ¢ = o0). In fact, one can show
that there exists a symplectic basis Sy, 1, a1, ag € H3 (Y,,Q) with N =T — I. Then we
have

(1.86) Qg — 0 51 — ﬁo — 0

which means

(1.87) %/DQ(z),w/lmz),m/mQ(z),sag/aoma .

10. Canonical coordinate/mirror map

Looking at the solution set, we don’t have much choice. The solution, when exponenti-
ated should behave like z. Indeed, the canonical coordinate is

(1.88) q =™
where

a2 o
(1.89) w—w—/lﬂ(z).
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Then ¢1 (2) = ¢ (2) log z + 11 (2) which is easy to obtain as series solution of (1.76).

5n

(1.90) b (=53 O[5~ L)

5
n>1 (n!) jent1?

(up to constant cs).

Last time we learned how to do these period calculations, get canonical equations, and Lecture 5;
reduce pole order with the Picard Fucks equation. The remaining topic is the Yukawa September 12, 2019
coupling.

11. Yukawa coupling

We want to compute

(1.91) (0.,0,,0.) 5 :/ Q(2) ANO2Q(2)
Y.
where Q (z) = w%(z)Q (2).
We introduce the auxiliary terms
(1.92) Wi :/ Q(2) AOSQ(2)
Y,

for k=0,...,4. So really we just want W3. Rewrite the PF equation as
4 3 k
(1.93) <;+chci,€> Q(z2)=0.
k=0
This gives us
3
(1.94) Wi+ cxWi=0.

k=0

11.1. Griffiths-transversality. Now we need to put some important information in
called Griffiths-transvr. This has to do with how one defines the variation of Hodge struc-
tures. Let U be open inside the moduli space. Now define a decreasing filtration

(1.95) F=H3Y,C) @0y =F > F' > F* > F3
([:4
where
(1.96) F* = P RIm, 0%
q>k

This is the Hodge filtration. Note that Q € T | U, R Q% ). So why do we write it this
——

=F3~0
way instead of using the direct sum decomposition we seem to have? Abstractly we have

that
(1.97) VEMFR C PRl o0l .

This inclusion comes from the definition /construction of V& and Hodge/Dolbeault theory.
Moreover HP¢ | H?4 unless p+p' =3 = q + ¢ (from Jyanp=0).
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Together this gives us that Wy = W; = W5 = 0. In particular

d>Wy

(1.98) 0= 7.2 =...=2W;—-W,

and (1.94) tells us that
1
(199) Wé + §C3W3 =0.
Now we compute
6 255

1.1 -
(1.100) &5 () =5 - T
which by separation of variables gives us

1

(1.101)

T @2mi)P B (55— 1)

for ¢ some integration constant. Finally, reexpress in ¢ = e
When we expand we get

2miw

where w = ¢1 (2) /o (2).

1 1950750 ¢, 5 10277490000 ¢;
1.102 Owy Ow, O p = —C1 —BTH—q— —— — g3 - — "~
( ) < ) “ 02q 2 c%q 6 c
1 3 qd
(1.103) :'5+Zdnd1_qd
d>1
(1.104) =54+n1g+ 8na+n1) @+ 2Tz +n1) @+ ... .

This predicts that n; = 2875 (which was classically known) and ny = 6092500 was also
correct (as was shown just a few years earlier than this development by Katz in 1986).
Then n3 = 317206375 which originally disagreed with the result, but they found out there
was an error in the computation so it also agreed. The first proof of this was in 1996 by
Givental.

Lessons learned:!-

(1) The prediction depends on the large complex structure limit because this has
something to do with the Kéahler cone:

(1.105) Kx =d{[w] € Hip (X)|w Kéhler} .
3
In particular the monodromy in H3 (Y) = @ HP*P corresponds to — [wx] on
p=0
3
@ HPP (X). Note however that () is defined on all of Mp!
p=0

(2) Orbifolding construction of the mirror is special to the quintic. Batyrev/Borisov
consider a mirror for complete intersections in toric varieties.

L.3Besides that computations are hard. ..



CHAPTER 2

Stacks

We will learn some things about moduli spaces and stacks to motivate a discussion
of Gromov-Witten theory. Hopefully also the logarithmic version and Donaldson-Thomas
theory.

The general task is to make sense of curve counting, e.g. the number of genus 0 holo-
morphic curves in a quintic. Then we have the following problems:

e Classical enumerative algebraic geometry: “general position arguments” needed to
make counts work. Transversaily can be very difficult.

e Translate into problem of topology, e.g. intersection theory in Grassmannian
Gr (k,n) (Schubert calculus).

e Generally, spaces of curves, e.g. on a given quintic don’t have the right dimension.

ExAMPLE 2.1. Consider the Dwork family f; = 0. There are 375 isolated
lines (~ P!), e.g. (u,v7 —Cka, —Ckv70) for u,v € P', (® =1,0<k, ! <4 and then
two irreducible families. In degree > 1 we also always have multiple covers that
come in families.

So how do we count in the absence of general deformations? The solution
is that there is a virtual formalism. This is exactly what Gromov-Witten theory
does. Invariants are constant in families of targets.

1. Moduli spaces

So we are interested in a set of closed points. In particular, this consists of isomorphism
classes of certain algebraic geometric objects e.g. varieties, subvarieties. Then we want so
somehow give it some extra structure. The best scenario would be to view it as a variety.

Let T — M be the structure sheaf. Then the point is that holomorphic maps correspond
to families of objects over T'.

EXAMPLE 2.2. Fix some N. The Hilbert scheme Hilb (]P’N ) will somehow classify closed
subschemes. In particular it has the universal property that for any

Z c TxPN
(21) \Lﬂat, proper
T

24
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we have a unique map ¢ such that

L=2r ——— Z

i !
(2.2) T x PN — Hilb (PV) x PV

! ¢

T —*— Hilb (PV)
In categorical terms this says that we have a functor

Sch F Set

(2.3)
T+ {Z—T,Z— T xP" flat, proper}

which is corepresented by Hilb (]P’N ) This means we have a natural isomorphism F —
hom (-, Hilb (IP’N)). In particular we get that idgjb@E-r) € hom (Hilb (}P’N) , Hilb (]P’N))
corresponds to F (Hilb (IP’N )), e.g. the universal family.

Discouraging observation: For families of curves®! we cannot have
(co-)representability.
The reason is that there are families of curves where all of the fibers are isomorphic but

they are not globally a product. So if we had such a corepresentation then this can’t pull
back to the identity.

1.1. The problem of moduli for curves. We will kind of follow [9]. [8] is where
stacks were first really worked out.
We want to repeat the story of Hilb for complete curves of genus g.
Recall the notion of families. If S is a scheme (think of this as some sort of parameter
space), then a curve of genus g over S is a morphism 7 : C' — S such that:
(1) = is proper, flat;
(2) recall the geometric fibers

(2.4) Cs =SpecK xgC
for K algebraically closed, fit into the diagram

CS — C
(2.5) 1l 1
Spec K — S

Then we ask that:
(a) Cgs is reduced, connected, dim Cg = 1,
(b) h'(Cs,0Oc¢) = g (arithmetic genus).
One can also restrict the allowed singularities of these fibers, but this is not necessary
for us at the moment. E.g. one might ask for Cs to be non-singular.

21y any other moduli proble with objects with automorphisms

Lecture 6;
September 17, 2019
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Now we have a fundamental problem. The functor

F
g Set

Sch
(2.6)

S —— {X — S| non-singular curve of genus g}

cannot be representable since there are nontrivial isotrivial families of curves, i.e. 7 : X — S
which becomes trivial only after (finite) base change. To see that this is the case, proceed
by contradiction. Suppose it is representable by some My, then

TxCop — X —— (}
(2.7) l J |

T finite S P Mg

onstant

but this map being constant implies ¢ is constant which is a contradiction.

EXAMPLE 2.3. Let Cy be a curve with Aut (Cp) # {1}, e.g. Co — P! a two-to-one
hyperelliptic curve, e.g. the projective closure of
(2.8) (V¥ -(@—g-1D@—-—g)...(z—D(z+1)...(z+g+1)=0) .
We have one automorphism which swaps the two branches and one which sends © — —x
so we have (Z/2)* symmetry. Take ¢ to be any automorphism such that ¢ = id. Recall
Gy = SpecC [z,271]. Take Cy x G,/ (Z/a). The action is as follows. For C* 3 ¢ # 1,
(* =1 we have
(2.9) (0,0 : (1) = (p(2),¢ 1)
So this is a nontrivial bundle over G,,.

REMARK 2.1. If automorphisms are the problem, then why not just stick to ones without

them. As it turns out, restricting to Cg with Aut(Cs) = {1} would indeed make Fy
representable, but it is not very useful.

Instead, we will construct the moduli space as an algebraic stack, which is a generaliza-
tion of the notion of a scheme accomodating automorphisms from the beginning.

2. Stacks

Another good reference (which is unfortunately only in French??) is [20].

The idea here is to formalize the notion of a “family of objects parameterized by a
scheme along fibrewise automorphisms”.

Fix a base scheme S (think C). Write S = Sch/S for the category of schemes over S.

DEFINITION 2.1. (1) A category over S is a category F together with a functor
pr: F — 8. For B € Obj(S), we have a fibre category F (B) which is a subcate-
gory of F with objects

(2.10) {X € Obj (F) |pr (X) =B}
and morphisms

(2.11) { € Hom (F) |pr (¢) = idp} .

2-2professor Siebert says it isn’t a big deal since French is basically English.
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(2) A category over S is a groupoid over S (or fibered groupoid) if
(a) For all f: B"— Bin S and X € Obj (F) there exists ¢ : X’ — X in F with

pr(p) = f:
X Yo X
(2.12) 3 DPF :
BB

(b) For all commutative diagrams

X/
(2.13)
B/
(i.e. pr (¢') = pr (¢") o h) there exists unique x : X' — X" and ¢’ = ¢" o x.
REMARK 2.2. (i) (ii) implies that ¢ : X’ — X is an isomorphism iff px (¢) is an

isomorphism.
(ii) pr : F — S groupoid over S implies F (B) are groupoids.
(iii) (ii) implies

X' - y X
(2.14) o
BB
X' is unique up to unique isomorphism. Write f*X := X’. This is called the
pull-back. This construction is functorial in the sense that ¢ : X" — X' in F (B)
yields a canonical morphisms f*¢ : f*X” — f*X’ ie. f: B’ — B gives us
(2.15) f*:F(B)— F(B) .

EXAMPLE 2.4 (Representable functors). Let F : & — Set be a contravariant functor.
This yields a groupoid. The objects are (B, §) such that B € Obj (S) and g € F (B). The
idea is that pr : (B, ) — B. Then

(2.16) hom ((B', ), (B,B)) ={f : B' = BIF () (8) =8} .

For example if X is an S-scheme then this defines (is equivalent to) the functor F' (B) =
Homg (B, X) and

(2.17) F(p:B = B):(f:B=X)— (fop:B = X) .
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The associated groupoid X = F has objects f : B — X in Y = Sch/S with morphisms
B/
(2.18) l¢ X

B

N A

and px : (B — X) — B.

EXAMPLE 2.5 (Quotient stack). Let X/S be a scheme with an action of a (flat) group
scheme G/S (e.g. GL,,). Then we can take the quotient [X/G]. The objects are diagrams

E-L x

(2.19) 1
B

where E/B is a G-principal bundle and f is G-equivariant. The morphisms are given by

oy B

(2.20) l l

B —— B
where the square on the left must be cartesian.
FACT 1. G acts freely on X and X/G exists as a scheme so [X/G] = X/G.
EXAMPLE 2.6 (Classifying spaces of principal G-bundles). For X = pt, BG = [pt/G].
So we have three main examples. First, if X is scheme we get Lecture 7;
(2.21) X () = Hom (S, X) . September 19, 2019

(Note that S = §).

Then for G & X we get [X/G]. For F : Sch/S — Set we get F an S-groupoid.

Third, we have the moduli groupoid M,. The objects are curves X — B, for B any
scheme, X, non-singular for all s. The morphisms are given by cartesian diagrams:

X — X
(2.22) l J

B —— B
Note this is not the groupoid associated to Fy,.

Similarly, one defines the universal curve C, over M. The objects are pairs (X — B, o)
where 0 : B — X is a section.

2.1. Morphisms of groupoids.
DEFINITION 2.2. A morphism between groupoids F}, Fy over S is a functor
F1 # F2

(2.23) N
s "

where pp, = pr, o p. Note this is equality of functors.
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EXAMPLE 2.7. We have the forgetful functor C;, — M, which simply forgets the section.

ExAMPLE 2.8. Let f : X — Y be a morphism of schemes. This is equivalent to
p: X — Y being a morphism of the associated groupoids.

PROOF. = : On objects, p (B N X) =x Iy On morphisms

B B ¢
N N
(2.21) ) l P
u/( fou'
B’ B’

(«<): If we have

X —2 5y

(2.25) N
S

then p (X 1x, X) = (X ER Y) € ObjY (X) for some f. This is exactly the setup of
Yoneda’s Lemma: p can be viewed as a natural transformation between

(2.26) Homgs (-, X) : S — Set
and another functor G : § — Set. Then Yoneda says that
(2.27) Nat (Homs (-, X),G) — G (X)

where ® — & (idx ). This shows us that p is induced by f. |

EXAMPLE 2.9. Similarly, for a scheme B and a groupoid over S F', we get that
(2.28) {p:B— F}=F(B)
where p — p(idp).

ExampLE 2.10. § = S and for any groupoid F over S, we can view pp : F' — S as a
morphism of groupoids F' — S.

EXAMPLE 2.11. Let X/S be a scheme with the action of a group scheme G/S. This

yields a quotient morphism ¢ : X — [X/G].
On objects:

(g7b) — gs(b)

(2.29) (Bi”()H GCGXxB — X

|

B
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On morphisms

X
B—L B s
(2.30) N L 7| exBYExB
X + |

B —I B

REMARK 2.3. Isomorphisms of groupoids are given by equivalences of categories over
S. In particular, p; : F1 — F, may not have an inverse, just a quasi-inverse q : Fy — F}
such that pq is naturally isomorphic to idg, and gp naturally isomorphic to idg, .

S-groupoids in fact form a 2-category Grpd/S. The objects are groupoids over S. The
1-morphisms are functors over S between the groupoids. But now we in fact have another
kind of morphism, called a 2-morphism which are morphisms between morphisms.

REMARK 2.4. We can’t even define what a cartesian diagram is without talking about
these 2-morphisms so it really is necessary to understand them.

Proposition 2.1. Let X and Y be schemes. Then X ~ Y as schemes iff X ~ Y as
groupoids over S.

PROOF. (= ): Let f : X — Y be an isomorphism. Then the induced mapp: X - Y
is a strong equivalence. Indeed, f~! induces ¢ : Y — X with pg = idy and gp = idx.
(«<=): Let p: X — Y be an equivalence, ¢ : ¥ — X a quasi-inverse. As we have seen

this means p, g are induced by f: X — Y and ¢ : Y — X which implies gp (X Iy, X) =

(X LING'e ) as objects in X. Hence ¢ is a quasi-inverse of p, which implies there exists an

isomorphism

(2.31) N v
X

and similarly for fg, so f is an isomorphism. ([l

REMARK 2.5. So this tells us we have some kind of subcategory of schemes inside of
groupoids. In the future we will write X instead of X. Similarly we will also write S, S,
and S for the same thing.

2.2. Fibre products and cartesian diagrams.

DEFINITION 2.3. Consider three groupoids F, G, and H over S and morphisms f :
F — G, h: H— G. The fiber product is as follows. The objects (over a base B) are triples
(x,y,%) where z € F(B),Y € H(B), and ¢ : f (z) — h(y) is an isomorphism in G (B).
The morphisms (over B) (z,y,%) — (2',y', ") are pairs

(2.32) (m' %y D Y)
such that
(2.33) bof(@)=h(B)oy .
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So now this fits in the diagram

FxgH -1+ H

(2:34) IE |n

F—1a

which only commutes up to 2-morphisms.

WARNING 2.1. This diagram does not commute in general. We have that

(2.35) fo(z,y,¢) = f(z) 99 (z,y,9) = h(y) .

But there is is a natural isomorphism of functors fp ~ hq, i.e. the diagram Eq. (2.34) is
2-commutative. So we need this ¢ twisting to get them to agree.

Then F' X H has the universal property for 2-commutative diagrams:

(2.36) FxgH— H -

F——G
ExAMPLE 2.12. For X, Y, and Z schemes we have
(2.37) XxzgY=XxzY.

EXAMPLE 2.13 (Base change). If ' — S is a morphism of schemes then T' xg F' is a
groupoid over T. Actually, for all B — T, F' (B) and (T xg F') (B) are equivalent

X € F(B)

(2.38) l Ny

2.3. Definition of stacks. We want to get closer to something which allows us to do
algebraic geometry.

DEFINITION 2.4 (Iso-functor). Let (F,pr) be a groupoid over S, B a scheme over S,
and X,Y € Obj (F (B)). Then

(2.39) Isop (X,Y) : Sch/B — Set
is the following contravariant functor. On objects:
(2.40) (B’ ER B) o {f*X 2 Yy ’ 0 iso} .
On morphisms we get:
B h B
(2.41) \i . = (X = fY)—= [ X —>h*fY
f ~—— ~——

B =g*X =9*Y
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THEOREM 2.2 (Deligne-Mumford). Take two curves X/B, Y/B of genus 2. The iso-
functor Isop (X,Y) is represented by a scheme.

PrOOF. We know we have the relative holomorphic cotangent bundles wx,p and wy, p.
These are ample, so they give us an embedding into projective space over B. These are
canonical bundles, so any isomorphism f*X — ¢*Y (for any f : B’ — B) preserves this
polarization. Now we can use the relative Hilbert scheme (for the graph of f*X — f*Y). O

REMARK 2.6. Isop (X,Y) is finite and unramified over B, but not in general flat (e.g.
fibre cardinalities can jump).

DEFINITION 2.5 (Stack). A groupoid (F,pr) over S is a stack if:
(1) for any B over S and any X, X’ € Obj (F (B)), Isop (X, X’) is a sheaf in the étale
topology;
(2) for {B; — B} an étale covering of B, X; € Obj (F (B;)), isomorphisms
(242) Yij * Xj|Bi><BBj — Xi‘BiXBBj

satisfying the cocycle condition, they glue, i.e. there exists X € Obj (F (B)) and
isomorphisms X| B, == X; inducing @;;.

REMARK 2.7. The first condition could be thought of as some sort of descent for mor-
phisms, and the second can be thought of as descent for objects.

Etale topology. The authoritative reference on this subject is [18], [23] is easier to
read. Replace Zariski open subsets by étale morphisms U — X. The intuition is to think
of these as being an unbranched morphism which is locally a diffeomorphism in U. The
intersection of U — X, V — X is given b y U xx V — X. This is an example of what is
called a Grothendieck topology.

Formally, smooth/unramified/étale morphisms f : X — Y are morphisms of schemes
(of finite type). Let T = Spec A — T" = Spec A’ be an infinitesimal extension, i.e. A= A"/T
where I™ = 0 for some n.

EXAMPLE 2.14. Speck < Speck[e] / (€") < Speck[e]/ (e"*!). For n = 2 this is a
square zero extension Spec k < Speck [e] / (€?).

In this situation, we look at all diagrams:

T —"> X
7 A
(2.43) jﬂw’f/ lf
Ty
Then we ask for the properties:
= i
e uniqueness of .
DEFINITION 2.6. f is formally
(1) smooth iff this exists,
(2) unramified iff this is unique, and
(3) étale iff it exists and is unique.

EXAMPLE 2.15. The 2 : 1 cover in Fig. 1 is étale but is not smooth.

Lecture 8;
September 24, 2019
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FI1GURE 1. The two to one cover of the curve V (y2 e xg).

The smooth case should look like a projection. So we can lift a tangent vector but it
won’t be unique. The étale case looks like mapping two curves onto one, then we choose a
point upstairs using ¢ and the lift is unique. Then a ramified example (which is not smooth)
is the cover A — Al corresponding to the algebraic map z + 2z2. The only vector with
unique lift is the 0 vector, and the others can somehow lift to anything.

2.4. Examples of stacks.
EXAMPLE 2.16. Let F be the groupoid associated to a functor
(2.44) F:S8 — Set .

Then F is a stack iff F'is a sheaf (of sets) in the étale topology. If we take F' = Homgs (—, X)
and X € S then this is a stack (needs étale descent for morphisms). Note that F' =
F, (moduli functor) is not a stack since families might not glue, i.e. (2) from the definition
might not be satisfied.

EXAMPLE 2.17. The moduli groupoid M, is a stack.

Proposition 2.3. If G/S is a flat (affine/separated) group scheme C X then [X/G| is a
stack.

PROOF. For (2) we need an étale descent for principal bundles (G-torsors).
For (1) we claim that Isog (f, f') is represented by a scheme where

eLx

(2.45) N
B

It is enough to check étale locally on B, so we may assume E = Bx G = E’. So the situation
we have 0 : B — E and ¢’ : B — E’. Then we get f oo and f’' o ¢’ are two morphisms
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B — X, and then
(2.46) Isog (f,f')=Bxx B
which fits into the fiber diagram:

BxxB —— B

(2.47) l J oot

B 17 . x
O

REMARK 2.8. The étale descent for schemes themselves (not their morphisms) leads to
the notion of algebraic spaces (Artin, Knutson).

ExXAMPLE 2.18. If F, G, H are stacks with maps F — G and H — G then F xg H is a
stack.

2.5. Representable morphisms. Some morphisms of stacks are “scheme-like”:

DEFINITION 2.7. A morphism f : F — G of stacks is representable if for any scheme B
and morphism B — G the fiber product F x g G is (the groupoid associated to) a scheme
(better: an algebraic space).

EXAMPLE 2.19. Consider X — [X/G]. E such that the following diagram is fibered:

F— X
(2.48) [
B — [X/G]

is a scheme.

ExXAMPLE 2.20. Recall we have M, the moduli space of genus g curves over B, and
then we have C;, — M, which consists of curves along with sections. Then we have a fibered
diagram

C —Cy

(2.49) 1 1
B — M,

The idea is that if we have properties of morphisms of schemes stable under base change
(so they are compatible with the philosophy of stacks) then we can move these properties
to the world of stacks.

DEFINITION 2.8. Let F — G be representable. Then this has property P (of morphisms
of schemes), stable under base change,?? if for any B — G, for B a scheme, B xg F — B
has this property.

EXAMPLE 2.21. For G smooth over S, G ¢ X, X — [X/G] is smooth.

2'3E.g. finite type, separated, flat, affine, proper, ...
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2.6. Definition of DM-stack.

DEFINITION 2.9. A stack F is a Deligne-Mumford stack if

(1) Az : F — F xg F is representable, quasi-compact, and separated;>* If Ar is in
addition proper, one says F is separated.
(2) There is an étale surjective morphism (an étale atlas) ¢ : U — F with U a scheme.

Now we have some comments.
(1) The first is the representability of Ax.

Proposition 2.4. Ax is representable iff any morphism B — C where B is a
scheme and is representable.

PROOF. (= ): So we for two schemes B and B’ we want to show that
B’ x x B is a scheme:

B'xx B —— B

(2.50) l Jf .
B —4 X

But this is implied by Ax being representable:

B xxB——— B

(2.51) l iAX

B xgB -9 X xg X

O

Another aspect is that X,Y € Obj (F (B)) implies Isop (X, Y) is representable
by a scheme.

PROOF. Isop (X,Y) is represented by the following. X and Y correspond to
two maps f,g: B — X. Then the fiber product

BXXXsXX X

(2.52) l i

B—Y9 | xi.x

represents the iso-functor and hence it is a scheme. O

(2) Ax is quasi-compact: we don’t want Isog (X,Y) to be too wild. This can be
relaxed (as in the Stacks project).

(3) Ax separated: an isomorphism is the identity if it is so generally.

(4) When is Ax proper? This should be related to the separatedness of the stack X.
For schemes we act for X — X xg X to be a closed embedding.

2-4The latter two conditions are sometimes relaxed.

Lecture 9;
September 26, 2019
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(5) The atlas provides what are called versal deformation spaces for deformations over
Artin rings. Write A = A/I such that I = 0 The idea is that we have

(2.53) I / l

and we get unique maps.

(6) Atlas is étale: makes Ap unramified, i.e. automorphisms are somehow discrete.
If we only have a smooth atlas this is what is called an Artin stack (or algebraic
stack).

EXAMPLE 2.22. If we take BG = [pt/G] for G/S flat (not étale) this is an
Artin stack.

Separatedness of stacks.

Lemma 2.5. Let f : F — G be a morphism of stacks fulfilling condition 1 Then Ap,q :
F — F xq F is representable.

PROOF. See [20]. O
A criterion for an Artin stack to be DM.

THEOREM 2.6. Let F be an algebraic stack over a Noetherian scheme S with a smooth
atlas U — F of finite type over S. Then F is DM iff Ax is unramified.

PROOF. See [20] or [9] Theorem 2.1. O

Corollary 2.7. Let G/S be a smooth affine group scheme acting on a Noetherian scheme
X/S, both of finite type over S, such that the geometric points have finite and reduced
stabilizers.

Then

(i) [X/G] is a DM-stack (for trivial stabilizers, an algebraic space)
(i) [X/G] is separated iff action is proper.

PROOF. (1) Having finite reduced stabilizers implies that for all
E— X
(2.54) B—[X/Gl=| |
B

which means Isop (£, E) /B is unramified. Then this means A[x /¢ is unramified
and X — [X/G] is smooth which implies (by the above theorem) that [X/G] is
DM.

]

3. Stable curves

For a complete (read: compact) moduli stack of curves we need to add singular curves.
The insight of Deligne-Mumford was that adding node?® suffices.

2-5This means that étale locally it looks like V (zw) C A2.
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DEFINITION 2.10. A (DM) stable curve over a scheme S is a proper flat morphism
m:C — S such that

(i) the geometric fibers Cy are reduced, connected, one-dimensional with at most
nodes as singularities,

(ii) if E C Cg is non-singular rational, v : E — E the normalization, then the number
of the preimage of singular points under v is > 3.

We also want Cs to not be smooth of genus 0 or 1.
REMARK 2.9. Condition (ii) is equivalent to Aut (Cg) being finite.

Note that the genus is g = h! (Cs, Ocy). B
This gives us immediately that this is a groupoid of stable curves of genus g: M, which
is (at this point) a stack over Z.

3.1. M, is a DM-stack. Recall that for a stable curve, 7 : C'— § is an étale locally
complete intersection morphism and hence has a relative dualizing invertible sheaf w¢/g.
Explicitly on geometric fibers we have the normalization:

C:g —r CS
(2.55)

x;,y; +— ith node
Then we can write
(2.56) Viwos =wor (T1+ ..+ 2+ Yy + .+ ye)

For @ € weg (U) (where U is a neighborhood of the ith node) we have that v*« is a rational
1-form with

(2.57) ‘Resm (v*a) 4+ Resy, (v ) = O‘ .

Now use w%}ls to embed C/S into PY for some N.

THEOREM 2.8. Forg > 2, w?}ls is relatively very ample forn > 3. Moreover, m, (w??s)
is locally free of rank (2n — 1) (g — 1).

Lecture 10; October

1, 2019
SKETCH PROOF. For C' smooth, w%?s is relatively very amply for all n > 2. Let’s

consider the case S = Speck. By Riemann-Roch and Serre duality we can compute:

(2.58) RO (C,wE™) = h' (C,wg™) + deg (wE™) +1—g

(2.59) — po (c, WgM '@ wc) Yn2g—2)+1—g.

For C smooth we get that (w?}n)_l ® we = wy ", and the degree is (1 —n) (29 — g2) < 0,
so this gives so h® (C7 (wéf”)) =0 and we get

(2.60) K (CowE™) =(2n—-1)(g—1) .

We can also twist h° (C’, w%” (—p1 — pg)) and this is still zero. So we can separate points
and tangents, which is a criterion for being very ample.
For C nodal, we can take the normalization v : ¢/ — C where C’ is smooth. Then

(2.61) Csing = {21, -+, %} v () = {zi, i} .
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For a € H? (U,wc) we have that v*« is a rational section of wer = QF, with simple poles
at {x;,y;} (with Res,s (v*a) + Resy, (v*a) = 0) so we have

(2.62) Voo = Qe (Z o yz> .

This shows, in any case, that w%" is very ample for n > 3. Worse case we have a rational

(g = 0) irreducible component D of C with 3 special points which gives us
(2.63) v'welp ~ Op (1) .
Finally, use cohomology and base change. |

Corollary 2.9. Every stable curve C' of genus g can be (n-canonically) embedded into PN
for N=2n—-2)(g—1)—1 (n > 3) with Hilbert polynomial

(2.64) Pyn (t) =(2nt —1) (g — 1)
DEFINITION 2.11. Fg,n C Hilbg;‘(,’" consists of n-canonically embedded nodal curves.
This is an open subscheme (nodes can at most smooth out)

REMARK 2.10. (a) Having a morphism S — H , is the same as for a stable curve
m:C — S of genus ¢g having an isomorphism P (w* (wg;g)) =, S x PN
(b) PGL (N + 1) acts on H,, by its action on P".
THEOREM 2.10. My ~ [H,,/PGL (N +1)].

Proor. We will define a functor

(2.65) p: My — [Hypn/PGL(N +1)] .
On objects:

C E
(2.66) == 1

B B

where F is the PGL (IV + 1)-principal bundle associated to P (mw?%) = P/B. We still

need a morphism F — H, , which is PGL (N + 1) equivariant. Consider

CXBEHC

(2.67) l J,, .
E

— B

Now
(2.68) ExpP=P (7 (w3, 5p))

is trivial, because it is a principal bundle with a (tautological) section.
On morphisms we have

C'——C

(2.69) l’“ lﬂ

B -2+ B
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which implies

(2.70) T (wg,”/B,) = p*m, (‘*@73)
which leads to a cartesian square:

E—— F

(2.71) l l

B —— B

REMARK 2.11. p is fully faithful and essentially surjective. These properties have geo-
metric meaning. The fact that p is faithful tells us that a nontrivial automorphism on C'
induces a non-trivial automorphism of P (H 0 (w%’")) The fact that p is full tells us that
if ® € PGL (N + 1) with ® (C) = C then ® is induced by an automorphism of C, i.e. an
n-canonical embedding is not contained in a linear subspace.

Essential surjectivity tells us the following. Let

E—H

(2.72) | " € Obj[Hy,/PGL(N +1)] .
B

Then we have ng : Cp — E and an isomorphism

(2.73) P (7. (wop ) =~ E x P .

Then this descends to

(2.74) B=FE/PGL(N+1),C=Cg/PGL(N +1) .

O

Corollary 2.11. M, is a separated Deligne-Mumford stack of finite type over S (e.g.
S=7k.)

PROOF. To show this we use a criterion of [8], and for separatedness we check finiteness
of Isop (C',C) — B.
See [8] for details. O

3.2. Further properties.
Proposition 2.12. M, is proper (over Z or k).

DIGRESSION 1 (Properties of (morphisms) stacks). For those properties that are local in
the smooth (D-M,étale) topology (flat, smooth, unramified, locally Noetherian, normal. . .)
we can just check it on a smooth atlas. Properness is not of this form.

DEFINITION 2.12. A morphism of stacks f : X — Y is proper if it is separated, of finite
type and universally closed (for the Zariski topology®® on the sets | X| and |Y).

We won’t use this definition directly. One instead typically uses the valuative criteria
for properness.

2.6 This is generated by representable open embeddings U — X (resp. U — V).
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First we state the condition for schemes. Let R be a discrete valuation ring. Write K
for the quotient field of R. Then we have

Spec K —— X
(2.75) | - J

SpecR —— Y

Then in this setting uniqueness of such an arrow is separatedness and existence is properness.
Now in the case of stacks, we ask for a finite extension K’/K and then write R’ for the
normalization of R in K’. Then the question is if this exists/is unique:

Spec K’ —— Spec K —— X
(2.76) i i J

Spec R’ ; SpecR —— Y
In moduli theory this goes by the name of stable reduction.

Consider the case M,/ SpecZ, g > 2. As it turns out Lecture 11; October

_ 3, 2019
THEOREM 2.13. M, is proper.

By the above valuative criteria it suffices to show the following:

THEOREM 2.14. Let R be a DVR, B = Spec R, and k be the quotient field of R. Consider
some stable curve f : Xx — Spec K. Then there is a finite extension K'/K and a unique
stable curve X' — B’, B’ = Spec R’ where R’ is the normalization of R in K', with

(277) XK/ ~ XK XSpec R Spec K’
which fits into

X' D) Xy — Xk

(2.78) l l l

B O SpecK' —— SpecK

PROOF. (In characteristic 0). First extend arbitrary by projectivity as a reduced
scheme:

XK‘—>Y - Pg

(2.79) J J

Spec K —— B ——— SpecR

Note that X is a surface. Now we desingularize X — X. We can do this explicitly by
repeatedly blowing up. Taking the fiber at 0 gives us a nodal curve Xy, but this may not
be reduced.

The DVR R has a uniformizing parameter ¢ € R, so we have m = () maximal. Now
complete a base change®7 t — t! where [ is the least common multiple of multiplicities of
Xo. This gives us X’ — B = Spec R’ and )~(6 is a reduced nodal curve. But this might not
be stable. But now we can contract the nonstable cusps. O

2-TThis is where we use characteristic 0. If p divided [, then this would be very nasty.
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THEOREM 2.15. M, is smooth, connected, and My \ My (where M, parameterizes
smooth curves) is a normal crossings divisor with L%J irreducible components.

PROOF. Smoothness: We can check this on a smooth atlas H,,, —» M,. Checking this
is really just deformation theory.

Connectedness: We can define the Hurwitz space to be:

simply branched, deg = k,
(2.80) Hury , = { C — P! | number of branch points = b,
glc)=b/2—-k+1

Hurwitz proved that Huryp is always connected, and for £ > g + 1 we have a surjection
Hury , - Mg, so M, is connected. O

There are variations of this thing.

(a) M, consists of the stable curves of genus g with k marked points. Then the
finiteness condition on the automorphisms becomes:

(2.81) Aut (C,z) < o0
where = (z1,...,2). In this case 2g — 24+ k > 0, so we don’t allow:
(2.82 M, Mo,g, M075, e

M270,... .

b) We can also consider pre-stable curves. This just means we drop the stability con-
dition. Fortunately the stacks project comes to our rescue here. Here everything
happens in much greater generality. For example, we ask for representability of
the Iso functor by algebraic spaces, and this holds very generally. This only forms
an Artin stack.

)

(2.83) Mro, Mg,
)
(



CHAPTER 3

Gromov-Witten theory and virtual techniques

1. Stable maps

Let X be a scheme (/C or some other field of char = 0).
DEFINITION 3.1.
C—— X | (Cx) € My (B)

(3.1) Mg (X) = ﬂ(lﬁ ¥ geom. pts s — B :
# Aut (CsaisafS) < oo

where M, 1, (B) is the stack of nodal curves, and

(3-2) Aut (Cs, z,, fo) = {p € Aut (X) [ @ (1) = Vi, fop = [} .
The class of f, for s = SpecC is fi[c] € H2(X,Z) or Hy (X,Q) or A; (X) where
[c] € Hy (C,Z). For fixed § € Hy (X,Z) (the “degree”) we get
(3.3) My (X,8) C Mg (X)
is open.

Now we provide an explanation for this definition. Let f : (C,z) — X/SpecC. Then
for any irreducible component ¢’ C C we get a corresponding f : C' — X. There are only
two possibilities, either this map is either constant or finite. If it is finite, then already
#Aut (C', f) < oo. So really the contracted components (where f is constant) are the
interesting pieces.

For g = 1 smooth, everything gets mapped to a point, so we can rule this case out.
Besides this, the stability condition is equivalent to saying that any contracted component
C’" C C has at least three special points. Note that a node is two special points on the
normalization. For d = 3 in P2 Fig. 1 shows a degeneration as embedded curves to something
like 3% — 23 = 0.

Motivation. For P (n > 3) the space of embedded curves of fixed arithmetic genus is
highly singular, but from the stable maps point of view, at least for the genus 0 case:

THEOREM 3.1. My (P™) is smooth.

PROOF. First consider the stack of nodal curves (pre-stable) M (0, k). This is smooth,
so it suffices to prove that the forgetful map Mg (P*) — My (which sends (C, z, f) —
(C,z)) is a smooth morphism of stacks.

42
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frd t—0

y2_x3_ =0

FIGURE 1. Family f; of stable maps into P'. When we send ¢t — 0 we are
forced to contract the genus one part of the curve which gives us the cusp.

This amounts to checking the following. For I = A/I (where I? = 0) then we have

Spec A —— M 1. (P")

(3.4) J ’ l

Spec A/4> /\;lo,k

43
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and we want to find the dashed arrow. In other words we want to find:

f

(3-5) Ce———C’

! |

Spec A —— Spec A

Le. given f, we want to find f. The obstruction class is in H* (C’, f*@x). Stability from
before gives us f*Ox is globally generated on each irreducible component C’ € C. So we
have

— 0

(3.6) 0 K o f*Opn

Cv/
For g = 0 we have

(3.7) 0=H"(0c)® —— H' (f*Opn

) —— H*=0 .

THEOREM 3.2. M, (X, ) is a proper, separated Deligne-Mumford stack.

Proor. Write mgy j, for the Artin stack of nodal curves with k& marked points. If we
have a diagram

C — X

(3.8) EQ

T

this is really the same data as

C — X xT —— X

2 U ]

T T pt

This is really a morphism over 7', so this tells us the following. We have that

Cyg>myg
(3.10) l
my
is a universal curve, so we have
(3.11) My — Homp,, (Cg,mg x X)

is an Artin stack, locally of finite type.
Now since stability is open we want to show:

Lemma 3.3. This is an open substack.

Lecture 12; October
8, 2019
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FIGURE 2. r + 1 hyperplanes in P" transversely intersection Cj.

Once we fix B € Hy(X,Z) there are only finitely many “combinatorial types”! of
stable maps. This tells us that M ; (X, 8) is quasi-compact.

The harder part is the stable reduction which tells that this is separated and proper.
The idea (due to Fulton-Pandharipande) is that for X C P" gives us the closed embedding
M(X,5) = M(P",d),so WLOG X = P". The point is that £ = w.® f*Opr (1) is relatively
ample for C/T. Then there exists some number [ depending on g, k, and the degree d such
that £ is relatively very ample. O

Consider the picture in Fig. 2. These hyperplanes H; = (t; = 0), for t;, € T'(P",O (1))
give rise to additional marked points on C. Then locally M (P, d) is isomorphic to the
rigidified space R with objects

C
(3.12) a=(ai) Q’T
T

3'1By this we mean the intersection pattern of irreducible cusps, generate, and classes 3; of each
component with 8 =37, 8;.
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such that we have a bunch of properties. Define

(3.13) Hi=0c (g1 + - +dia) -
Then for all i we require

(3.14) e (H ' @ Ho) — Hi' @ Ho

is an isomorphism (and for all ¢, j H; ~ H;). We also require Xg,... A, : T' = G, to scale
the canonical section s; of H;.
Now the idea is to do stable reduction on the rigidified level.

2. GW-invariants for hypersurfaces, g =0

Let X C P"*! be a hypersurface of degree I, X = Z (F). Then M, (X, d) C M, (P, d)
is defined by the zero locus of a section of a vector bundle:

CO ([Pm+1) f IP’"'H
(3.15) lﬁ
MO (Pn+1)

On a geometric fiber f*O (1) has degree > 0 on each irreducible component. g = 0 implies
H! (f*O (1)) = 0. Then base change gives us

(3.16) R'm.f*fO(l)=0,
E =m. f*O(l) is locally free. Then
(3.17) rank & = h° (Cy, f2O (1)) = deg ffO() + (1 —g) =dl + 1

by Riemann-Roch. Then F defines o € I' (M, (P"F1),€) with o ((Cs, fs)) = 0, ie.
fs (Cs) C X.

DEFINITION 3.2 (Kontsevich).

(3.18) Mo (X, d)] iy = Car1 (E) N [Mo (P, d)] .
Note that by definition

(3.19) Mo (X, d)],y € A (M (PNTd)) — Haw (Mo (P™H,d)) .
First note that

(3.20) dim Mo (P"*!,d) = deg f¥Opn+1 + (n+1) (1 —g) — 3
dim Aut(P1)
(3.21) =dn+1)+n—2.

For n =3, | =5 we have rank & = 5d + 1 and by the above computation,

(3.22) dim Mg (P*,d) =5d +1 .



3. DIGRESSION ON INTERSECTION THEORY 47

3. Digression on intersection theory

The book [11] is a good reference. Let X be a scheme over a field. We say finite sums

(3.23) > n; [Vi]

for V; C C irreducible, reduced, closed, subschemes. A rational equivalence is generated by
W C X an irreducible subvariety, f € K (X) \ {0} a rational function. Then we can define
the divisor of f to be the sum over V- C W which is a codimension 1 irreducible subvariety:

(3.24) [div (f)] = > ordyf-[V] .
Vcw
We now define the fundamental class of X. Write
(3.25) | X| =U;X;

for a decomposition into irreducible components. Define

(3.26) (X] = mi[X]
with m; the length of Ox x, over Ox x,.

ExXAMPLE 3.1. Take X = Spec A to be a thick point where dimy A < co. Then for
M € A-Mod we want to know the length [. By definition maximal sequence of submodules
M, C ... M; = M such that the quotients are just quotients by prime ideals, i.e. M;y1/M; ~
A/p; for primes p;.

For example we can take A = k[e] / (e**!). Then the length of A as and A-module is
k + 1 which comes from the length of the sequence:
(3.27) () =0c () c...c(egcA.
In general, for an artinian local ring we should obtain the dimension.

Then the Chow groups are
(328) A* (X) = Z* (X)/ ~rat’l
forx=0,1,2,....

EXAMPLE 3.2. The Chow groups vanish for affine space: A, (A™) = 0.
For projective space we have

(3.29) Ag (P") = {OZ Z/ZWO” .

Lecture 13; October

9, 2019
Proper push-forward and flat pull-back. We will define a notion of a proper push-

forward. Let f: X — Y be a proper morphism. The definition is very simple. For V C X
a subvariety we insist that W = f(Y),, C Y is also a subvariety. This gives us a field
extension K (W) < f# K (V). Then we define:

{0 dimW < dimV/

(3.30) V] = [K(V): K(W)]-[W] dimW =dimV '

Now we have to prove

Proposition 3.4. f.[V] descends to f.: Ac(X) — A (Y).
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Now we need flat pullback. Let f: X — Y be a flat morphism of relative dimension n.
Then for V C Y a subvariety of dimension k, then we can pullback to get f~! (V) 4 C X
which is a union of subvarieties.

DEFINITION 3.3. f*[V]:= [f~1(V)].
Then we show this commutes with rational equivalence.

Excision. We now consider the form of excision we have in this “homology” theory.
Consider a closed embedding i : Y < X. Then we get an open embedding j : X \' Y — X.

Then we get A, (X) EEN'S (X' \Y), and this actually turns out to be surjective. Then we
have kernel A, (Y'), but this might not be injective. So we get an exact sequence:

(3.31) A (Y) — A, (X) 25 A, (X\Y) — 0
ProOOF.
(3.32) Z(Y) = Zp (X)) = Zi (X \Y) =0

O

Weil divisors. Now we have the notion of Weil divisors. Take X be to be n-dimensional.
Then the Weil divisors are

(3.33) D= "miD;€ Zy 1 (X) .

What we really want to intersect with are not these “homology” classes, but rather some
“cohomology” classes called the Cartier divisors. For X any scheme, we first cover X by
open subsets U,. Then in the total ring of quotients we have

(3.34) fo € R(Ua) \ {0}

for each U,. These look like g/h for h a non-zero divisor. Then for all « and 8 we want
that fo/fs € O (U, NUg), i.e. it invertible. Then a Cartier divisor is {(Uy, fo)} which
gives us an invertible sheaf O (D).

Let X be pure n-dimensional. We have some kind of map from Cartier divisors to
A1 (X) sending

(3.35) {Ua;, fa)} = Uldiv (fa)] -
We will use the notation that D ~— [D].

Cartier divisors. Now we study intersections with Cartier divisors. So we have D =
{(Uq, fa)} and some subvariety j : V < X of pure dimension k. Then we define

[j_lD] VgD

(3.36) D-[V]= {[C’] C C V Cartier div. s.t. Oy (C) ~ Ox (D)|y,

This defines:
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First Chern class and Segre classes. Define the first Chern class as follows. Let L
be a line bundle. This implies L = Ox (D) for D some Cartier divisor. Then we define

c1(L)

A, (X) A1 (X)

(3.38)
z=3,.m;lz] —— D-z

To get higher Chern classes we will define the Segre class of a vector bundle E | X. Write
& for the sheaf of section of E. Write r for the rank. Then

(3.39) E = Spec Sym* &Y
where
(340) g\/ = Hom@X (E,Ox) .

Then the lines in E form the projective bundle
(3.41) P (E) = ProjSym*® (EY) .
This comes with Op(gy (1). The morphism
(3.42) p:P(E)— X

is proper and flat, so we have the above pullback and pushforward for this morphism. Then
the Segre classes (for i > 0) are

(3.43) $i (B): Ap (X) = Ap—; (X)
and we define
(3.44) 5i (B) ~ ai=p. (e1 (Osi) (1)) 77 ~p'a) .

Now we want a projection formula for Segre classes, but this just follows from the formula
for Cartier divisors. Let f: X — Y be proper. For ' | Y a vector bundle we have

(3.45) fe(si (JPE) ~ ) = 5i (E) ~ [ (@) .
Corollary 3.5. s (E) =id.

PrOOF. We will use the projection formula for the inclusion of a subvariety ¢ : V — X.
It is sufficient to show this for one variety, i.e. WLOG let V' = X. We can compute

(3.46) fe (si (ffa) —~ p*a) = m; [X]

since there are no other classes in Ay (X) = Z - [X]. So now we just have to compute the
m;. But this can be done locally, where we have that

(3.47) P(E)=X xPr!
and Op(g) (1) is just pulled back from P"~!. Then we have
(3.48) c1 (Opr—1 (1) ~ [P = [pt] € Ag (P771)

which means m = 1. O
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Chern classes. Now we get Chern classes from Segre classes. We have
(3.49) st(E) = s (E)t' € End (A, (x))[1]
(3.50) ¢ (B)=s (B)" .

This really needs that s;s; = s;s; for all ¢ and j.
Then we have the sum formula which tells us that whenever we have

(3.51) 0—-FE -E—E' =0
we get
(3.52) e (B)=ci (B) —cr (E) .

Gysin pullback. Let V be a pure k-dimensional variety, ¢ a regular embedding of
codimension c¢. Then this is equivalent to being locally given by I = (x1,...,a4) C A. Note
each a; is not a zero-divisor in A/ (ay,...,a;—1) for i = 1,...,d. So we have a cartesian
square:

W ——V
(3.53) l lf .
X Y

For an ideal sheaf Z we have Z/Z? is locally free of rank d, so a vector bundle of rank
d. Define the normal bundle

(3.54) Nx/y = SpecSym®T/I” .

Similarly, for Z an ideal sheaf of W < V (Z/Z? need not be locally free in this case!) we
define the normal cone:

Cwyv = Spec, D /741
d>0
(3.55) j i
Ny)y === Sym’7/1?

Proposition 3.6. For V pure k dimensional, Cyy v is purely k-dimensional.
Now comes a basic construction. First write

(3.56) s0: W — Cwyy

for the zero section. We know we have

(3.57) Cw/v = Nwyv = 9" Nx/v

so we can define

DEFINITION 3.4.

(3.58) J [V] = s5 [Cwyv]
where st = (7*) " and

REMARK 3.1. Geometrically we should think of this as intersection with the zero section.

Then this makes sense since we have:
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Proposition 3.7. ©* is an isomorphism.
PROOF. Surjectivity is easy: it follows from excision. Injectivity is harder. O

Slogan: Take Cyy,y, embed in g* (Nx,y ), and finally intersect with the zero-section.

This was all for one variety V.
Consider a diagram Lecture 14; October

. 15, 2019
(3.60) z4y L x

where ¢ is Ici. Let W C X be a subvariety of dimension d. Then we get

Wy —— W
I
(3.61) X; — X -
lg Jf
Z ——Y
Then we have
(3.62) Cw,/w = Specy, @ I¢/7%!
d>0

pure of dimension d. Then we can pull the normal bundle back and we have:

Then
(3.64) W] =g [Cwy, yw] € A (Wz) — Al [X] ..

But why the normal cone? We have something called the deformation to the normal
cone.*? Consider M := Blx, (o3 Y x Al. Over t € A"\ {0} we just have X — Y. Over
t=20
(3.65) X < Cx;y =P (Cx/y ®A") UBIx Y .

The point is that for problems that vary nicely in flat families and are local near X, such
as intersection multiplicities, X < Y is as good as X < Cx/y.

Now we have the following application. We want to calculate the virtual fundamental
class (VFC) for Mo (X) where X = Z(f) C P"" where deg f = I. Recall we have

My (IE””“‘I) < ¢ 2 Pt and then we have a vector bundle of rank r

E =me*0(l)
(3.66) .
MO (]Pm-i-l) - M

called the deformation bundle. Then we have a section s € I" (E) defined by f with (s = 0) =
My (X) C Mg (P"H1). Now intersect im (s) with the zero section:

Mo(X) «— M

(3.67) l J .

M—> s F

3-2This should really be called a degeneration, but everyone says deformation.
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Then we get:
(3.68) sy [M] € Adim Mo (x)—r (Mo (X)) .

4. Obstruction theories and VFC

4.1. The idea. This idea is from [21]. Locally, say on U C M, embed U in a smooth
space V. This corresponds to an ideal sheaf Z on V. Then we have the diagram:

Cuv = Specy (EBId/Id‘H) «—— Ny,v = Specy (Sym' I/IQ)
(3.69) 1
Tyl = Specy (Sym® Oy l,)

Note that the additive action of Ty |, leaves Cy /v invariant.

Now we want to embed Ny, < Ej into some vector bundle and globalize. (This is
the same as a Ty |;; action on Cy v .)

The patching data is as follows. Whenever we have

Ty |y, — Eo

(3.70) i J

Ny —— Er

we get a sequence
(371) TV|U —>E0€BNU/V — F1—0

and we ask for it to be exact.

There are two main ways to achieve compatibility. The first is with Artin style obstruc-
tion theory as in [21]. Alternatively we could use the cotangent complex/derived categories
as in [3]. We will do this second option.

4.2. Digression on the cotangent complex. For f : X — Y we have an exact
sequence
(372) f*Qy — Qx — Qx/y — 0.

For f smooth the arrow f*{dy — Qx is injective. In general, we need to replace Qx /v, Q2x,
... by a complex LS /v L3, ... of quasi-coherent sheaves. Then in the derived category we
have an exact sequence

(3.73) .= LfPLy = L% = L)y = Lf" Ly [1] = L% [1] — ...

which means this is an exact triangle. This is an extension of what we started in the sense
that

(3.74) Bt ( ;(/Y) S hO(LFFLY) = hO(L%) > Qxjy  —0=h(LFLY) .
- T ()

Now we define the category DQCoh (Ox). The objects are complexes

d=2 a=1
(3.75) s FE I I PO
where

(3.76) d*=d%: F* = F°[1] .
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The morphisms ¢*® : F* — G*® are Hom spaces as complexes moduli homotopy, i.e. ¢® ~ ¢*®
iff there exists h® : F* : G® [—1] such that

(3.77) ©* —® =h*od% —dgoh® .

Then we localize (make invertible) quasi-isomorphisms.
Therefore a morphism F* — G* in DQCoh (Ox) is

(3.78) % a X?’)
Fe ®* g

Now consider derived functors. Let f: X — Y. Then we want to define Rf,. Replace
F* by quasi-isomorphic complex Z% of injective sheaves [choose one for each F*]. Then
define

(3.79) RfF® = f.I% .

REMARK 3.2. The left-derived tensor product ®% and pullback Lf* = f~! @ Ox are
more subtle, but they work.

Now the cotangent complex is as follows. First consider the affine case. For a ring map
¢ : A — B, we can resolve B freely as an A algebra. We can even do this canonically. This
means we have p, =& B — 0 with

(3.80) Po=[..— A[A[B]] = A[B]] .
Then in this case:

(3.81) B/a =P, 4 @pP B,

ie.

(3.82) Lty =Qp,ja®p, B.

Let X — Y be a morphism of algebraic stacks. Then there is a similar “simplicial”
resolution for =10y — Ox. See [19] or the stacks project for more information.
The following is important. We can always embed in something smooth:

X —— 7
(383) & lsmooth .
Y

Now writing Z = Zx,; we have

(3.84) > 1Ly = |Z/T° = Ozv|y
N—_——
gy

Le. at the level of linear fibre spaces:

(3.85) [Tzv|x = Nx/z]

as needed for the globalization of Cx;z < Nx/z.
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4.3. Behrend-Fantechi definition.

DErFINITION 3.5. Let f : X — Y be a morphism of algebraic stacks. Assume X
is Deligne-Mumford. A perfect obstruction theory on X/Y is a 2-term complex F* =
[F~1 — F°] of locally free coherent sheaves, together with a morphism (in DQCoh (Ox))

(3.86) ot F* = Ly)y

such that

(1) h°(¢®) is an isomorphism,
(2) h=1(¢®) is an epimorphism.

The point is the following. Locally embed X in some smooth space Z over Y Lecture 15; October
17, 2019
X —7Z

(3.87) lf /
Y

Assuming ¢* is an honest morphism of complexes, then we already know that 7LS Iy =

[Z/I* = Qz/v|]. In this situation we get a commutative diagram

Ft—— I/17

(3.89) J |

]:0 E— QZ/Y|X

This gives us a complex
(3.89) 0> F ' FaI/I* - Qzy|, —0.

Then we can ask for exactness at the different terms. At the first term this is equivalent
to h=1 (¢®) is injective. At the second term this is equivalent to h=! (®) surjective and
RO (¢°) is injective. Then at the third term this is equivalent to h° (¢*) being surjective.

The conditions in the definition of the definition of a perfect obstruction theory give us
that the following sequence is exact:

(3.90) 0= Tzyv|y = Fo®Nzyx = F1

where F; = L (F~") = Specy Sym*® F .

Lemma 3.8. (a) There exists a unique cone Cye C Fy with
(391) 0— TZ/Y’X%FO@CZ/X_)OQ%O
exact.
(b) Cye is independent of the choice of Z and is invariant under homotopy of com-
plexes.

PROOF. (a) Fi islocally free, so we can split the sequence (3.90), then it is trivial.
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(b) For two choices Z and Z’ we have

X — 7

e

Y

(3.92)

O

This was the sort of patching picture. There is a more intrinsic story in [3]. This is not
so bad if we are okay with Artin stacks. Now define

(3.93) Mxyy = [Nxjz/ Tzyv| ]
called the intrinsic normal sheaf, and the intrinsic normal cone
(3.94) Cx/y = [Cx/z/ Tzyv|y)

which is pure 0-dimensional.
For F* we get also get a stack

(3.95) RO/RY (F*) = [F1/Fy) .
Then ¢*® : F* — LB(/Y is a perfect obstruction theory iff
(3.96) My < B° /W (F*)

is a monomorphism. Then in this case we construct C, as follows:

Cope F1

(3.97) J l

Cx/y — Mx/y — hO/hl (.F.)

So why is this called obstruction theory? As usual, consider a lifting problem. Take a
square zero extension 7' T'. Le. an ideal sheaf 7 = Zp /5 such that Z? = 0. Then consider
the diagram

T 1y X
-

3.98 L a7
(3.98) | |7

T—25y
Functoriality of LS Iy gives
(3.99) Lh* LYy = Lyp = m>-1L3 1| = Obj (h) € Ext! (Lh'L;(/Y,I)

0]

FacT 2. Obj(h) =0 iff g exists. And then the collection of lifts g modulo isomorphism
is a torsor under Ext® Lh*LB(/YI .
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Proposition 3.9 ([3]). ¢*: F* — L%y is a perfect obstruction iff the analogue of the first
condition holds for

* : 1 * @
(3.100) " Obj (h) € Ext <ch;1>

and the analogue of the second condition holds for Ext® (h*F,T). This is also equivalent to
(3.101) Mxy = [Fu/Fo] = he/ht (F*)
being an embedding.

THEOREM 3.10. My is a universal (minimal) “obstruction theory”, but not a vector
bundle stack unless X/Y lci. F* — Lg(/y provides an embedding into the vector bundle

stack [Fi/Fo).
The virtual fundamental class is

(3.102) [X] =5 [Cpe] € Ay (X)

virt,p®

for sg : X — JF7 the zero section.

4.4. Obstruction theory for GW-theory.
WARNING 3.1. X is now the target, i.e. not the X from the previous subsection.

Write M = M, 1, (X, 8) (and similarly m = my ;) for the moduli space of stable maps
to X of genus g with k& marked points, 8 € Hy (X, Z).

Now we want to construct ¢® : F* — L® for GW theory. We want to work relative to
the Artin stack M /m.

We have a universal diagram

(3.103) cl

M—m

where the square is cartesian. We have a complex in degree —1 and 0:

(3104) Wy = [WC/M — O] .
‘We have
(3.105) f*Qx =Lf*L% — Lg *)LE/C*:W*L;\A/m

since C/m is flat. Then taking R, (- ® w,) we get
(3.106)  ¢*: R, (f*Qx ® wy) — R, (W*L;Wm ® wﬂ> = Lpt/m @ R (wr) 5 O

So we just need to show:

Lemma 3.11. Rr, (f*Qx ® wy) is quasi-isomorphic to a two term complex of locally frees
[F~1 — F°].
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PROOF.
(3.107) L= we m (2) @ f* (Ox (1)

is relatively ample for C/M. Write E = f*Qx ® w,. For N > 0 we have

o T, (E ® £®N) — E ® L®" is surjective.
o R'm. (E®L®N) =0.
e For all geometric points s — M H° (CS, £®*N) =0.

Define
(3.108) F=nmn(Ee L)oo N.

This is in fact a vector bundle. If we define H = ker (F — F), then we have an exact
sequence of vector bundles

(3.109) 0H—>F—>E—=0
is exact.
Note that
(3.110) H° (Cs, F) = H° (Cs, s (E® L))
(3.111) =H° (Cs, L;N)@m (E®LY) =0.
N——
=0

This implies 7, F = 0, which implies 7, H = 0. Therefore R'7,F and R~ '7,H are locally
free. By (3.109) we have

(3.112) Rr,E = [R'm,H — R'm, F| .

4.5. GW-invariants. Let X be smooth, dim X = n. Fix g, k, and 8. Then

(3.113) [Mg.x] € Ag My (X,8)) -

virt,p®
This is invariant udner deformations of X . Explicitly, the dimension is:

(3.114) d=3g—-3+k+c (X)B+n(1—g)
N———

dimmgyk

where the second term comes from Riemann-Roch for vector bundle of rank n, deg = ¢1 (X),
B =deg fiOx. Le.

(3.115) d=c; (X)B+(n—3)(1—g)+k

This is called the expected dimension, i.e. it is rank (F,,) —rank (Fo) +dimY for ¢* : F* —
LYy
For CY 3-folds, n =3 and £k =0, so d = 0. Lecture 16; October

22, 2019
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For other cases, we have two natural maps:

Mgp(X,f) —F—— X x...x X

(C7£: (xla"-axk)af) — (f(xl)aaf(xk))
(3.116)

Mg (X, B8) ———— My (Co2)

(C,z, f) + (X, z)"

where M, 1 is the DM-stack of stable curves.
Then we get the GW-invariants. For a1, ...,ar € H* (X), v € H* (M, )

(3.117) / ev' (g X ... X ap) — vy = <o¢1,...,ak;7>é’€\}ﬁ
Mo,k (XoB)]ine
4.6. Deformation invariance of GW. Consider a family
X
(3.118) la
S

of proper smooth varieties. We want to compare GW theory of fibers, and morally we want
to say they are the same.

B € Hy (X,) obtain a class in Hy (X ) for all ' (well-defined up to monodromy). Write
ts: Xy = X. Take M = My, (X, (is), 5). Then

(3.119) l
s, S
and we can pull back our class
(3.120) [Ms]yiee = Go M)y -
Proposition 3.12. If S is Ici, then for all s, s' we get an algebraic equivalence
(3.121) My ~ (Mo

in Ay (M). In particular, GW invariants of X5 and X agree.



CHAPTER 4

Toric geometry

We will work over a field*! k. The slogan is that toric geometry is
the study of equivariant compactifications of (G,,)".

Recall G,,, = Speck [z, z_l] is the algebraic geometer’s version of C*. The point will be that
(Gn)" C X is captured by combinatorial geometry (Z-cones). References are [7,10, 24].

1. Monoids and cones

Let M be a free abelian group of rank d (~ Z¢). Write N = Homg, (M, Z) for the dual.
Write

(4.1) Mg = M ®z Q = Homg (N, Q) Mrp=M®;R=Mg&gR .
Similarly
(4.2) N C Ng C Ng .

DEFINITION 4.1. Let V be a vector space over Q or R. C' C V is called a cone if 0 € C,
and for all A > 0 we have A\C C C. We say C'is convez if C+C C C.

REMARK 4.1. C'is convex iff C1(C) C Vg is a convex set.

Lemma 4.1. If C C Mg is a convex cone then (C'NM,+) is a saturated monoid. The
additive unit is the origin, and this is commutative.

Recall saturated tells us that for all m € M and for all A € N\ {0}, Am € C implies
m € C. So the group is trivial.

ExamMpLE 4.1. M =7, P=2N+3N. 1 € M,2 € P, but 1 ¢ P, so this is not saturated.
EXAMPLE 4.2. Consider C'= Rx( (0,1) + R>q (k + 1,—1) C R% Then

0 1
(4.3) CNM={(0,1),(1,0), (k+1,-1)) .%N3/< E+1],(0 >
0 1

Le. the only relation is u + v = (k + 1) w.
It is a general fact that M C Z% satisfies M ~ N? iff there exists m;,...,mg € M such
that det (mq,...,mgq) = £1. So the proof follows from

1 0\ k+1 1\
(4.4) det (0 1)—1 det(_1 O>_1'

4-10ne should think algebraically closed, characteristic 0, but toric geometry will work for many other
choices. Even Z.
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2. Monoid rings

DEFINITION 4.2. Let S be a monoid, then

(4.5) k[S] = ({Zamxm}
fin.

is the assoctated monoid ring.

Xm . Xm/ — Xm+m/>

The first question is when k [S] is finitely generated. It is sufficient for S to be a finitely
generated monoid.

EXAMPLE 4.3. Set C = 0U (R>¢ x Rsg). Then S = C' N M is not finitely generated
since (a, 1) are generators for all a € N.

3. Rational polyhedral cones and the Lemma of Gordan

DEFINITION 4.3. A cone C C Mg is a rational polyhedral if there are my,...,m, € Mg
with
(46) C= Rzoml +...+ R20m7- .

Note this implies C' C My is closed and convex.

Proposition 4.2 (Lemma of Gordon). If C C Mg is rational polyhedral, then C N M is
finitely generated.

Note this also implies k [C' N M] is a finitely generated k-algebra.
PrRoOOF. By the assumption that we have such m;, we get that

i=1

OStigl}CMR

is compact. This means K N M is finite.
CrAM 4.1. K N M generates C N M.

Consider u = Y r;m; for r; > 0. Then we can write r;, = s, + ¢; for s; € N, t; € [0,1].
This implies

(48) u = Z Sim; + Z t,im;
eKNM KNM
so we are finished. O

Lecture 17; October

24, 2019
4. Facts from convex geometry

Now we list some definitions/propositions. Let ¢ C Ng be a polyhedral cone.
(a) The dual cone is:
(4.9) o0 ={u€ Mg |V € o, (u,v) > 0}

FACT 3. e o polyhedral implies o
. o= (")

e (01Nay) =0y + 0y
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(b) 0+ (—0) = Ro C Ny is the linear subspace spanned by o. We define dimg o =

dimg R - 0.
(c) o is called sharp if o N (—0) = {0}.
Fact 4. TFAE:

(i) o is sharp
(i1) dimoV =d
(iii) Ju € 0V, o Nut = {0}

In Toric geometry, cones in Nr are always sharp and cones in My are always
d-dimensional.
(d) Reduction of non-sharp cones: for C = ¢¥, L = C N (~=C) = o+ = (Ro)*. This
is the largest linear subspace contained in C. Moreover, there exists a sharp cone
C' C Mg/L. Note this is the image ¢ (C) where ¢ : Mg — Mg/L, s0o C =q~*(C).
Now we split (non-canonically) Mg ~ L @& Mf and Mz — My /- In other words
C~CxL.
(e) A cone o C Ny is polyhedral iff ¢ is the intersection of finitely many half spaces.
SKETCH PROOF. oV = > Rsqu; is equivalent to o = (), H, for H; = (R>ou;)" .
O
(f) ut C Ng, u #0, is called a supporting hyperplane if o C (Rzou)v.
(g) A face 7 CoisutNo withu e gV,

FacTt 5. e Any face is a rational polyhedral cone.

The topological boundary 0o is the union of faces T C o in R-o C Ng.
Let 7,179 C 0 be faces. Then 71 N1o C o is a face.

For 7 C 15 faces and dim 7 = dim 1o we actually have 71 = T5.

min (dim 7) = dimg 0 N (—0) where min ranges over faces T.

(h) 7 Coisa facet if dim7 = dimo — 1.
FAcT 6. o Any face T C o is an intersection of facets.

o Any face w C o of codimension 2 (i.e. dimw = dimo — 2) is contained in
exactly 2 facets.

(i) A face of dim =1 is called an extremal ray If
(410) o= Rzonl +...+ Rzonr

then any extremal ray is of the form R>qn; for some 7. r is minimal iff each R>on;
is an extremal ray.

(j) The map taking faces 7 C o to faces C C ¢ taking 7+ 7+ No
reversing and dimension reversing bijection.

V' is an inclusion

5. Affine toric varieties
Fix a field k.

DEFINITION 4.4. A d-dimensional affine toric variety is a scheme of the form Spec k [0V N M]
for 0 € Ng a rational polyhedral cone.

Note that since k[o0¥ N M| C k[M] is a localization, we have that T = Speck [M] C
Speck [V N M] is an open embedding.

REMARK 4.2. The lemma of Gordan implies that these affine toric varieties are of finite
type over k.
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Proposition 4.3. If m1,...,ms, € M generated c¥ N M as a monoid, then
(4.11) I=%ker(q:klzy,...,x5] » k[0 N M]) =ker (zf' ... g0 syt taems)
is generated by

(4.12) G= {mlal...aj‘;s — b abe

> aimi =) bimgsai,bi > 0} :
PROOF. The map ¢ is homogeneous where
(4.13) degx; == m; degx™ =m .

This implies I is an M-homogeneous ideal, which implies I is generated by M-homogeneous
expressions.
For f = >  aaz® € I homogeneous,

(4.14) Zaimi =m q(f) = (Z aA) X"

so f € Iiff Y aa =0. Descending induction on the number of the nonzero a;s, replace =
byxA/ViaxA—xAlEGQI. O

A

REMARK 4.3. Ideals generated by elements of the form of the elements of G are called
toric.
6. k-rational points

Recall for a scheme X, and any field K, we can form the set of K-valued points (the
scheme theoretic points)

(4.15) X(K)={zeX|r(z)=0x4/m; ~ K} .
This is sometimes called the maximal spectrum m-Spec.

REMARK 4.4. For k algebraically closed, and X/k is of finite type, then X (k) is just
the closed points.

Proposition 4.4. If X = Speck[c¥ N M] then
(4.16) X (k) = Homppon (0¥ N M, (k,-)) .
Note this is the multiplicative monoid (k,-).

PRrROOF. We know

(4.17) X (k) = m-Spec (k [0¥ N M]) = Homya1g (k [0V N M], k)
where we regard k as a ring. Then we map ® — ¢ to get
(4.18) Hompnpon (0¥ N M, (k,-)) .

O

EXAMPLE 4.4. Let C' = Mg. Now we consider Hom (M, (k,-)). Everything in M is
invertible, so this is the same as Hompygon (M, k) = N ®z k> ~ (kx)d.

EXAMPLE 4.5. Let C' = R%,,
(4.19) klo¥ N M) =klz,y]
where = (19 and y = x(®1. Each ¢ takes  — A and y — . This gives us that
(4.20) Hom (¥ N M, (k,-)) = k* .
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Let X = SpecC [c¥ N M]. In fact, there exists a map
(4.21) X (C) = oV
which is a kind of “momentum map”. The fibers over points p € ¢V contained in the interior
of a k-dimensional face 7 C ¢ are isomorphic to (S 1)dimT.

EXAMPLE 4.6. Consider the map C? — RZZO. Map (A, 1) = (|A],|p])-

7. Toric open subschemes
Recall the following. For f € R, Dy = Spec Ry C Spec R is a fundamental open subset.

Proposition 4.5. Let 0 C Ny be a rational polyhedral cone and T C o a face. Then
oV — 1V defines a homomorphism

(4.22) klo¥NM] = k[r¥nM] .
The statement is that this is a localization at one element. In particular
(4.23) U, = Speck [tV N M] < Speck oY " M] = U, = X

is a fundamental open subscheme.

PROOF. Write 7 = 0 Nm=, for m € ¢V N M. This means m (o \ 7) C N\ {0}. Then
we claim:

(4.24) ™NM=0"NM+N-(—m)

The inclusion D is clear. So consider v € 7V N M. We know u + Am € ¢V for A > 0.
Write 0 = R>gni1 + ... + R>gn,s. So we need to show that for all i (u+ Am,n;) > 0 for
A > 0. Write (u+ Am,n;) = (u,n;) + A{m,n;). Then we have two cases. If n, € 7 we
have that these terms are individually zero, and the whole thing is > 0 for n; € o \ 7.

(u+ Am,n;) > 0. Therefore for all u € 7V N M we have u + Am € ¢¥ for A > 0. This
impliesk’[TvﬁM]:k[UvﬂM]XmCk[M}. O

DEFINITION 4.5. U, = Speck [rY N M] C X is a fundamental open set.

EXAMPLE 4.7. Let 0 = Rzzo C Nz = R2. Write 7, for the vertical face, 7 for the
horizontal face, and 0 for the origin as a face. Then 7, is the upper half plane, and 75 is
the right half plane. 0V is the whole plane. Then

(4.25) Uy, = Speck [z,y], = G, x Al
(4.26) U:, = Speck [z,y], = Al x G,,
(4.27) Uo = Speck [z,y], , = G2, .

8. Rational functions, dimension and normality

Proposition 4.6. Consider a rational polyhedral cone C C Mg. Write

(4.28) L=R-C=C+(-C) .
Then
(a)
(4.29) Quotk[CNM]=Quotk[LNM]=k(LNM)

(b) Any affine toric variety is normal.

Lecture 18; October
29, 2019
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(¢) dim (Speck [C N M]) = dimg L.
PROOF. (a) This is clear.

(b) For C =v) N...Nv) an intersection of half-spaces we have

(4.30) CNM=()(Mnwv)
i=1
which implies
(4.31) k[CnM]=(kIMnv/]Ck[M] .
The intersection of normal rings is normal, and
(4.32) kMO ~klxy,...,x41,2a],,

is the localization of a polynomial ring and hence normal so we are done.
(c) Speck [C N M] contains Spec k [L N M] ~ Gdm= L a5 an open dense subset.

9. Toric strata
These are the closures of G¢, orbits.

Lemma 4.7. Let 0 C Ngr be a rational, sharp polyhedral cone. Write dim Ngr = d. Take
T C o to be a face with L = Rt = 7 4 (—7) the linear span of 7. Then

(4.33) ™t neY =L noY
is the dual cone of o/L in Ngx/L. o has an image o/L in Ng/L which is again sharp.

So we have o — /L, and (0/L)" = 7+ N V. Therefore, dualizing yields a map

(4.34) jl(rtne"yNnM] = koY nM] .

This gives rise a dominant®? morphism

(4.35) Speck [0 N M] 5 Speck [(tFNno¥) N M] .
—X=U, Uor

This map is as follows. For L C Ng rational, we get Mz — Mg/L+ which gives rise to a
torus
(4.36) Ty = Speck [M/ (L* NM)] C T =G, .

This torus has an action on the fibers of this map. So it turns out, 7 is the categorical
quotient*? of X by T;.

Now we want to construct a section ¢ : Uy, — U,. We know tneVco
Then we define the ideal

(437) I—,— = (Xm)me(o'vﬂM)\Tl C k' [U\/ N M]

and the quotient by it defines the map ¢*. We want to see this pre-composes with 7 to get
an isomorphism on U, /1. Recall we have

V' is a face.

(4.38) E[(rne¥)nM] 55 k(0¥ N M] S koY 0 M] /I,

42l e. it has a dense image.
4-3The point is we take the closures of the orbits so we at least get a Hausdorff space.
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which induces an obvious bijection between the k-vector space basis elements given by
monomials (7+ N o") N M, which implies 7 o ¢ = id.

REMARK 4.5. Note that k [(t- NoV)NM] =k[s¥ N M]™ and for m € ¢¥ N M and
q: M — M/L degy, x™ = q(m).

DEFINITION 4.6. Closed subschemes of the form U,/ C U, are called toric strata (in
particular, toric varieties themselves for Ty = Speck [TJ‘ nM } ).

EXAMPLE 4.8. Take 7 = R0 x {0} C RZ, = 0. 71 is the horizontal half line sitting
inside of V. Writing the generators of ¢ as x and y we get

(4.39) E[(rtnoY)nM] =k[Y] = k[z,y]

which corresponds to the map A? — A! sending (z,y) +— . In this case Usyp = Z (x), ie.
the y-axis.

EXAMPLE 4.9. Take

(4.40) 0¥ =Rs0(1,0,0) + Rxg (1,1,0) + R>o (1,1,1) + R> (1,0,1) CR? .
Write the generators as z, z, y, and w respectively. Then

(4.41) kloV N M) =kl[z,y,2,w]/ (xy — 2w)
since zy and zw are both x>, We have

(4.42) oV N1t =Rs0(1,0,0) + R (1,1,0)
which corresponds to 7 C ¢ being an extremal ray. This means
(4.43) E[(eVNrh)NM] ~kz,z]

and I; = (w,y). So then explicitly

(4.44) 7 k(x, 2] =k, y, z,w] [ (xy — zw)
and

(4.45) Cokxyy, z,w] [/ (zy — z2w) [y, [x,2] .

10. Globalize: fans

DEFINITION 4.7. A fan (in Ng) is a non-empty collection ¥ of sharp rational polyhedral
cones 0 C Ng such that

(i) for all o € 3, and for all 7 C o a face, T € &

(ii) for all o,0’ € ¥ implies 0 No’ C o (or ¢’) is a face.
The support of ¥ is
(4.46) S=Jo.

oeX
We say ¥ is complex iff |X| = Ng.
We will see later that completeness is equivalent to properness of the corresponding

variety.

EXAMPLE 4.10 (P?). Consider the three cones in Fig. 1. Write o for the span of (1,0)
and (0,1), o7 for the span of (0,1) and (—1,—1) and o5 for the span of (1,0) and (-1, —1).
Write 7 for the span of (0,1), 72 for the span of (1,0), and 73 for the span of (—1,—1). In
this case a fan is given by the o;, the 7;, and the origin.
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T1

00

o1

T2

02

T3

FIGURE 1. The fan in A? which will eventually correspond to P2.

ExamMpPLE 4.11. Adopt the same notation as Example 4.10 Now imagine we have
the upper right quadrant RQEO, as well as the span of (—1,—1). Then as a fan this is
{0-077177-277-3’0}'

EXAMPLE 4.12. For d =1 ¥ is cither {o}, { ¢ — }, or
(4.47) [ —e— 1.

We now construct the associated scheme. Let ¥ = {0} be a fan. This will give rise to
{U; > GZ,} affine toric varieties. Then for all 5,0 € ¥ (WLOG maximal) we get 0N’ C o
and o N ¢’ C ¢’. This gives rise to open embeddings

Us
/‘
(4.48) U
\
Uy
Then
(4.49) X (%) = lim U, .
oEX

is a scheme. We will show this compatibility explicitly for P2.

11. Example: P?

Let ¥ be as in Example 4.10. Dualizing, we get the cones in Fig. 2.
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C Mg

FIGURE 2. The dual cones to the fan in Example 4.10.

These cones give us the opens
(4.50) Uy, = Speck | x(19 y©D
—— ——

uo Ul

(451) Zj'a1 = Speck X(_l’l)’ X(_l,o)
—— ——

Vo v1

(4.52) Uy, = Speck | x®™H &b
—— —

L Wo w1 .

Now we glue these charts together. oo N oy is just the positive y axis, oy N oy is the
upper half plane, which corresponds to

(4.53) k [uo,ul]uO = k[vo,v1],, -

But eh nUs,, 5, < Uy, corresponds to

(4.54) k[uo, u1] = k [uo, u1l,,

and similarly Us,.s, < Us,, corresponds to

(4.55) k [vo, v1] = K v, vily,

so these agree, and explicitly

(4.56) vo = up uy v = upy't
So we find that

(4.57) X (%) =~ P? = Projk [xo, x1, zo]
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where explicitly:

(458) Uy = T1.20 Uy = SCQ/%Q
(4.59) vo = ugy tuy = (w0/71) (22/20) = T2 /21 v) = uy "t = x0/T1
(4.60) wo = ul_l = x9/x2 wy = x1/T9 .

12. P¢ as a toric variety

Write
0
(4.61) Vi = €; = 1 S Rd
0
fori e {1,...,d} and
d -1
(4.62) vy = — Z e;=1...
i=1 -1
Then ¥ is the complete fan with rats (one-dimensional cones) R>qv;. Lecture 19; October

31, 2019

13. Toric strata

Let X be a fan, 7 € X. This gives a closed subset which is the fixed locus of the torus.
Explicitly we have T, = Speck [M,], N, =R -7 C N. So we take

(4.63) Spec (k‘ [0V N M]TT) = Spec (k[(rF NoY) N M]) C Spec (k¥ NM]) .

Now we globalize. Let ¥ be a fan in N, 7 € ¥. Then we get the quotiwt fan in N/Rt
given by

(4.64) Y, ={oc/RTr C N/Rr|lc€X,c 27} .

This gives rise to a closed embedding X (X,) C X (X). Note that if X (X) is dimension d,
then X (X;) is of dimension d — dim 7.

EXAMPLE 4.13. If we take the fan of P3, and let 7 be the ray given by the positive
z-axis. Then the quotient fan gives us P2.

There is a fundamental correspondence between rays and toric divisors, i.e. divisors
invariant under the torus action. The affine charts are given by o 2O 7 since this gives us

(4.65) kloV] -k |oV N1t
——
(o/RT)Y
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FIGURE 3. An infinite fan in Ng = R2.

14. Quasi-compactness
ExAMPLE 4.14. Consider the fan in Fig. 3. Note that
(4.66) %] =R x Rso U {(0,0)} C R?
is not closed. This gives rise to

(4.67) X (%) =[JA?

which is not quasi-compact.
As it turns out, we can blow up infinitely many times to get:
X (%)
(4.68) Bl
Al x G,,
Write 7 for the projection to A'. Then we have
(4.69) 771 (0) = Uso P!
and for a generic point n € A! we have
(4.70) 7 () =G/ k(1) .
Then we have the following:
Proposition 4.8. X (X) is quasi-compact iff ¥ is finite.

PROOF. («<=): This is clear.
(= ): We know

(4.71) U xe0
TEX a ray

can only have finitely many irreducible components. Therefore the number of 7 € ¥ such
that dim7 = 1 is finite, so X is finite. O
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15. Morphisms of fans

DEFINITION 4.8. Let ¥ and ¥’ be fans in N and N’ respectively. A morphism of fans
¢ : X — X' is a linear map ¢ : Ng — Ng with ¢ (V) € N’ and such that for all ¢ € ¥ there
exists ¢’ € ¥/ such that ¢ (o) C o’.

REMARK 4.6. ¢’ is not necessarily unique, but there exists a unique maximal one.
DEFINITION 4.9 (Construction of toris morphism). A morphism of fans ¢ : ¥ — ¥/

induces ® : X (¥) — X (¥') which is equivariant wrt the action of G,, (N) — G,, (N') as
follows. Locally, for o € X, 0’ C ¢ (o), define ® : U, — U, by

koY M) «——k (") N M|
(4.72) ,
R e 4
]
and we get

N — N/

(4.73) T T

O'LO’IL}RZQ

REMARK 4.7. This @ is really simple at the level of affine opens. We just write it down
in a basis.

REMARK 4.8. The map G,,, (N) = G, (N') mapse=Z (xm —1)—~e' =2 (Xm/ - 1)

mEM’.

16. Examples

EXAMPLE 4.15. Let Ng = R, Ni = R% Define the map by A — (p\,¢\). Then
©*M' =N? — M = N by sending (my, ms) — pmi + gmg € N. On coordinate rings this is

k[u] <= klz,y]

(4.74)

Now if ged (p,q) = 1, then ker (¢p*) = (29 — yP) Then the closure of the image of Ty in
Ty = G2, is Z (2P — y?) in A2

EXAMPLE 4.16. Take the cone generated by (1,0) and (1,1) in R

(4.75) Ng =R> 2% Np = N = R?
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except the cone ¢’ = RZ. The dual cone of ¢ is now the span of (1, 1) and (0,1) and of
course o’V is just RZ,. The map from o’V — ¢V is given by

uv +—— x = x(10
(4.76)

vV —— y = X(Ovl)
This is one of the affine charts of the blowup Bly A% — AZ:
(4.77) Bl(;) A% = Projk [z, y] [U,V]/ (zV —yU) .
N~ ——

deg=0 deg=1

Now we de-homogenize, i.e. we consider the charts U # 0 and V' # 0. To eliminate ym we
set U =1, V/U = v, and we map

klx,y] —— k[z,v]

(4.78)

Yy — U .
Similarly, for the V' # 0 chart we take V' =1, w = U/V. Then to eliminate  we map

k[l‘,y] — k [y’u]
(4.79) T — yu

yr——y

DEFINITION 4.10. A subdivision of fans is a morphism ¥ — ¥ where N N = N,
ie. forall 0/ € X/

aCp~1(a’)
The upshot is that a subdivision of fans corresponds to a modification, i.e. a birational,

proper morphism X (3) — X (3).

EXAMPLE 4.17. Consider the cone o spanned by (0,1) and (k,1) in Ng = R2. Then
the projection to the y-axis maps to N = R. This maps to ¢’ given by the span of 1.

The dual cone ¢V is given by the span of (—1,%) and (1,0). Then we get a map from
o’V (which is still the span of 1) by sending 1 ~ (0,1). This corresponds to the map

k[t] —— klz,y,1]/ (zy —t*)
(4.81)

tle%xy
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where z = y(19, y = y(=1F) and t = (O, This gives rise to what is called the Aj_,
surface singularity. This is a fibration of the Aj;_; surface singularity by a family {C;} of
curves with C; ~ G,, smooth for t # 0, Xq = A' UA! a nodal curve .

EXAMPLE 4.18 (Change of lattice). Consider a map Ng = R? — N}, = R? defined by a
matrix

(4.82) (g 2) .

This corresponds to a map of rings:

k[x7y] AE— k[xvy]

(4.83)

yr—y

This corresponds to a covering branched of order b on the z-axis and of order a on the
y-axis.

The upshot is that a change of lattice gives us a branched cover of X (¥') branched
along toric strata. We can read the branch index off from the cokernel of the map N — N’

EXAMPLE 4.19. Let 7 € 3. Take
(4.84) (1) ={(r,N, =R7)} .
Then we get a map

(455) X(r) — X

N, — N
This will give an affine toric subvariety. Explicitly,
(4.86) X (2(r)) =Speck [(r C N.)" N M. ] - X (%) .
EXAMPLE 4.20. As a subexample, take P? with 7 a ray. Then we have
(4.87) Ty, ={g€TTn|Vp € X (¥;)|g-p=p} =Fixxx,) CTn

and we ask for the closure of the distinguished point. This is affine, contains [1,0, 1], [1,1, 1],
but not [0, 1, 0].

In fact Ty, C X (3;) and
(4.88) XE)xTy Cc X(E,) .
So it is locally a product of a torus and this affine variety.

Lecture 20;
November 5, 2019
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17. Properties of toric morphisms

Adopt the notation X (X) =TV (X, N). For p: ¥ — X write @ : X (¥) @ X ().

Proposition 4.9. (a) @ is a closed embedding iff

(4.89) S={¢ ()] €'}
(which in particular implies Ng ® N}, is injective) and for all 1,09 € =1 (o) the
maps

(4.90) oy "M — o N M

are surjective.
(b) ® is dominant** iff N'/p (N) is a torsion group (equivalently [N', ¢ (N)] < o).
(c) ® is always separated.
(d) ® is proper iff p~1 (|X']) = |2|.
Note that removing maximal cones certainly will not yield a proper morphism. The
first two are quite easy, the last two follow from valuative criteria.

18. The category of toric varieties

At the moment our definition of a toric variety is a variety which comes from this fan
construction. Similarly, our definition for morphisms of the is a morphism induced by a
morphism of fans. This is a lazy man’s definition. We now offer a more intrinsic definition
of these.

DEFINITION 4.11. A toric variety (over a ground field k) is a separated scheme of
finite type over k which is connected and normal (in particular reduced and irreducible),
together with the action of an algebraic torus Ty = Speck [N*] and a T equivariant open
embedding Ty — X.

Let Ty © X and Ty C'Y be toric varieties. Morphisms of toric varieties will be given
by:

X — X
(4.91) C C
Ty —— T
Note the bottom morphism is equivalent to a morphism N — N’.

THEOREM 4.10. The category of toric varieties is equivalent to the category of fans.

19. Polytopes and polyhedra
DEFINITION 4.12. A (convex) polyhedron Z C V is a finite intersection of half-spaces.
DEFINITION 4.13. A polytope is the convex hull of finitely many points.

Note this implies that a polytope is bounded.

Let V. = Mg, M = Z™. A rational polytope (resp. integral) if it is the convex hull
of v; € Mg (resp. v; € M) A polyhedron is rational if all half-spaces are u > 0 for
ue M ®;,Q= N@.

THEOREM 4.11. A polytope is the same as a bounded polyhedron.

4-4Recall this means it has a dense image.
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(1,0)

FIGURE 4. = from Example 4.21.

Polyhedron and polytopes have faces as before. Codimension 1 faces are facets. They
also have vertices as before. Note that they may not exist for unbounded polyhedra.
Let = C Mg be a polyhedron. Then we can form the cone:

(4.92) C(2)=Cl({(m,h) € Mg x R|m € h-E}) .

Note that if we don’t take the closure, then the cone of an unbounded polyhedron would
not be closed.
The recession cone (or asymptotic cone) of E is the intersection C' (£)N Mg x {0} C M.

EXAMPLE 4.21. Take Mg = R2, and consider = as in Fig. 4. Now we can form the one
over this. The cone at height 0 is just a quadrant.

DEFINITION 4.14 (Dual polytopes/polyhedra). Let = C Mg, 0 € int (2) \ 0=. Define
the dual (polar) polyhedron

(4.93) = :={ve Ng|Vu€ZE(u,v) <1} .

REMARK 4.9. We will eventually construct Calabi-Yau varieties from these, and this
dualizing operation will be mirror symmetry.

REMARK 4.10. The idea is that we want C'(2)” = C (Z°).

REMARK 4.11. There is a choice of convention here where we might instead ask for
(u,v) > —1. Then this just gives negative of our dual polyhedron.

Note that proper faces 7 C C (E) (1 € Mg x {0}) are in one-to-one correspondence with
(proper) faces of =.

ExAMPLE 4.22. Consider the polytope in Fig. 5. This has dual polytope in Fig. 5.

ExXAMPLE 4.23. Consider the cube
(4.94) E=conv{(xl,£1,+1)} .
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(_1’2)

(1]

—_
—0 —

(07 _1)

FIGURE 5. Polyhedron in R? and its dual polyhedron.

The dual is
(4.95) E° = conv {£eq, *eq, tes}

and octahedron.

20. Toric varieties from polyhedra

Consider a convex, rational polyhedron = C Mg. For Z' C = a face, we get

(4.96) oz ={v € Ng|{u—u',v) >0,Vu € E,u'inZ'}
(4.97) = (Cl(R>o{u—u' € Mg |ueZ,u €=} .
Proposition 4.12. (a)

(4.98) Yz = {-0= | CE a face}

75
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—7y
|

FIGURE 6. Y= from Example 4.24.

is a fan in Ng = Mpg. We call this the normal fan of 2. Note Xz is complete iff
= s bounded.
(b) 0 € E implies

(4.99) Y= = {0} U{Cl1({(R>ow) | w C Z° a face})} .

ExXAMPLE 4.24. Consider the polytope

N

We have three corresponding cones 7; for each v;. These give us exactly the three cones in
Fig. 1. Then ¥z is as in Fig. 6.

V2
(4.100)

Vo

U1

REMARK 4.12. The normal fan is insensitive to rescaling of = and to (small) parallel
transport of faces.

DEFINITION 4.15. The toric variety associated to = is X (Xg).
EXAMPLE 4.25. P? = X (¥z) for
(4.101) E=conv{0,e1,...,eq} .

For d = 2 this was the example Example 4.24 up to scaling. I.e. we take the convex hull
of (0,1) and (1,0) and we get P? as in Example 4.10. For d = 3 this corresponds to the
polyhedron which is a tetrahedron.
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(715 2)

(_]-7 _1)

FI1GURE 7. A fan is formed by taking the cone over this picture. Note this
has 7 maximal cones.

EXAMPLE 4.26. Recall the Hirzebruch surfaces X = P (Op1 ® Op: (a)) for a > 0. This
is given by X (¥z) where E is

(4.102) \

(0,0) (a,1,0)

Proposition 4.13. Proj (C (E)N (M & Z)) = X (X=).

The proof of this is essentially that if you understand the construction of this Proj, this
is a tautology. I.e. we dehomogenize at x(*'}) to get an open set Spec k[ N M]. Then the
result follows.

REMARK 4.13. We have a canonical bijection
(4.103)

{£ c M|Z2Q — polyhedron} = {(27¢ L S] = R) ¥ fan in Ng }

@ strictly convex, piecewise linear

In particular the vertices v; on the LHS correspond to maximal o € ¥, and gp\g =v; : Ng —
R. The other direction sends functions ¢ to the Newton polyhedron of (¥, ), written
2 (X%, p). Note that = +— = + m corresponds to (3, ) — (X, ¢ + m).

REMARK 4.14. Note every fan arises in this way. In dimension 2 every fan does arise
in this way, but not in dimension 3 and higher.

COUNTEREXAMPLE 2. Take the cone over Fig. 7. This does not support a strongly
convex piecewise linear function. This is equivalent to the triangulation not being “regular”.

ExaMPLE 4.27. Recall Example 4.21. The cone is given by:
(4.104) C(2) = ((1,0,0),(0,1,0),(1,0,1),(0,1,1)) .

Lecture 21;
November 7, 2019
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Then we have

(4.105) E[CENMZ)] ~kx,y[UV]/(@V —yU)
and taking Proj we get the blowup

(4.106) Proj (k[C (E) N M & Z]) = Blp A .

From the point of view of fans, we take the upper right quadrant (which gives us A?) then we
subdivide this fan to get a cone spanned by (1,0) and (1, 1) and a cone spanned by (1,1) and
(0,1). The point is that chopping off edges of a polyhedron corresponds to (projective®-)
subdivision of the corresponding fan 3=.

21. Weil divisors on toric varieties

Let X be a d-dimensional toric variety with fan ¥ and rays R>qvi,...,R>v,, where
the v; are primitive vectors. Each v; gives a (d — 1)-dimensional toric stratum, which is the
WEeil divisor D;. These are called toric prime divisors. Write

(4.107) Div’' X c DivX

for the subgroup of T-invariant Weil divisors. Note that
(4.108) Divi X =Y Z-[Dj] .
The divisor class group is:

(4.109) CLX = A1 (X) = |X/ ~ratr -

Proposition 4.14. The sequence

0—— M —— Divl X X 0

(4.110)
m —— (X)

1$ exact, where
(4.111) X" =Y ordp, X"D; .
i=1

PROOF. k[M] is factorial (UFD) which means
(4.112) 0= ClSpeck [M] = CIT = C1.X \ D

which implies A4_; (D) = Div? (X) — C1X.
Let >"n;D; € ker ¢. Then there exists some f € k (X)™ such that (f) = Y. n;D;. This

implies
(4.113) flx\p € KIM]" =k* x M

ie. f=Ax"for A € kX and m € M. WLOG )\ =1. |

45 . supporting a strictly convex PL function.
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Note that ordp: x™ = (v;, m). To see this, first adapt to a basis for N given by e; = vy,
and the other e; arbitrary. Write e} for the dual basis. Then

(4.114) Tp, = Speck [Xﬂ:e;’ e ,Xies] .
This sits inside the open set
(4.115) X D U; = Speck [Xef,xie;,...,xiez} .
Then x™ = x™! ... x™? where m = > m;e;. Then
(4.116) my = ZordDi xX™ = (m, ;) .

22. C1(P")

Corollary 4.15. CL(P") A,_1(P") = Z - H for H a hyperplane. The degree map
CL(P™) — Z is given by intersection with a line.

PrROOF. We have a SES

(4.117) 0 — "2 dedmaey g
and then the rays are
(4.118) S = {Roger, ... . Rsgen, Rog (=1, ..., —€n)}

23. Cartier divisors on toric varieties
Recall the Cartier divisors are
(4.119) CaDivX =T (X,K*/0%)

for IC the sheaf of total quotient rings. For X integral, C is is a locally constant sheaf with
stalks I (X). Then we have

(4.120) {(Ui, i)
and CaDiv X — Div X.

fi € K(X)" Vi jfif f; € 0% (U;n Uy}

Lemma 4.16. Let X be an affine toric variety given by X = Speck[ocY N M]. Then
D € DT (X) is Cartier iff there exists m € M such that D = (x™).

Proposition 4.17. Let ¥ be a fan in Ng with toric variety Xs,. Then
(4.121) CaDiv (Xy) = PL(X) = {¢ : |X]| = R| ¢ piecewise linear wrt ¥} .

The map sends Y ¢ (v; - D; <= @) where the v; are the primitive vectors of o, in particular
the rays of ¥ are given by R>qv;.

24. Pic(Xy)

Proposition 4.18. The Picard group Pic (Xy) = PL () /M = CaCl X = CaDiv (X) / ~yet
where CaCl X is the Cartier divisor class group.

Corollary 4.19. Pic(Xx) is discrete and always torsion free, i.e. for ¢ € PL(X), ¢ € Mg
iff o€ M.

Lecture 22;
November 12, 2019



25. AMPLE TORIC DIVISORS 80

25. Ample toric divisors

Proposition 4.20. Let ¢ € PL (X) with |X| convex and D =" ¢ (v;) D; the corresponding
Cartier divisor. Then Ox (D) is ample iff  is strictly convez.

PROOF. («<=): Let = denote the Newton polytope. Then
(4.122) X = X (S2) = Proj (k[C' (2) N (M & Z)])

and Ox (D) = Ox (1), which implies very ample.
(= ): Let p € £l41 be a codimension 1 cone such that p Z 3|%|. The “kink of ¢
along p” is IC, () € Z. Write p = o1 N oy for o; maximal. Then

(4.123) ¢l,, =m1eM ¢l,, =ma € M .
Write dg € M for the unique primitive generator of p- ~ Z with Jp‘g2 > 0. Then mgo—mq =
Ko (p)-d, € p*.

FACT 7. @ is strictly convex iff for all p, IC, (¢) > 0.

FacT 8. K, () = deg Ox (D)|x(s,)cx-

For D ample, this degree is positive. O



CHAPTER 5

Toric degenerations and mirror symmetry

1. The Batyrev mirror construction

1.1. Reflexive polytopes.

DEFINITION 5.1. Let 0 € = C Mg be a lattice polytope. This is called reflexive iff
(i) int ()N M = {0}
(ii) each facet of = has Z-affine distance 1 from the origin
or equivalently
(i) int ()N M = {0}
(ii) int (E°) N M = {0}

o

or equivalently = and =Z° are lattice polytopes.

]

Note that = is reflexive iff =° is reflexive.

EXAMPLE 5.1. Let

(_132)
(5.1) E= ‘ \
(=1,-1) —— (2,-1)
Then the dual is
(1,1)
(5.2) z° = (-1,0) / .

(07 _]-)
Note these both have a unique interior integral point.

EXAMPLE 5.2. A square of width 2 centered around the origin has dual with given by
rotating 45°.

There are only 16 reflexive polytopes in 2-dimensions as in Fig. 1. There are 4,319 in
3-dimensions, and in dimension 4 we have 473,800, 776. This is where the statement that
there are many different string theories comes from.

COUNTEREXAMPLE 3. If we take the convex hull of (—1,-1),(—1,0),(1,0),(0,2) this
is not reflexive.
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o O BV
DAVARN I

7B
ERrRraT

FIGURE 1. The 16 reflexive polytopes in 2-dimensions. Figure from [1].

1.2. Fano toric varieties.

DEFINITION 5.2. A variety X is called Fano iff X has Gorenstein singularities (this is
equivalent to Kx being Cartier, or equivalently that X has a dualizing line bundle (note
this means X is projective)) and Kx is ample.

Proposition 5.1. A complete toric variety X is Fano iff X ~ X (Xg) with E reflexive.

PRrROOF. Let ¥ C Ng. Then U = Speck [¢¥ N M] has canonical divisor Ky = — Y D;
for S; C U toric prime divisors. Note the holomorphic volume form 21_1 dzy AN... A\ zd_l dzq
has simple poles along any toric divisor.

Now we see that K is Cartier iff there exists there exists m, € M such that for all ¢ we
have (m,,V;) = 1. Now we translate this condition to the world of polytopes. In particular,
= is the convex hull of the m,s, and then this condition above is exactly saying that the
integral distance is 1. ]

1.3. CY hypersurfaces in the smooth case. Let X be a smooth Fano variety woth
I'(X,—K,;) # 0. Then by Bertini, we have that Z (s) C X is smooth. The adjunction
formula tells us that

(5.3) Kz = (wKx + Kx)lz =0
The problem is that only very few are smooth toric Fano varieties.
1.4. (Partial) Desingularization. Write 3z for the fan over the faces of =°.

DEFINITION 5.3. A mazimal, projective, crepant, partial (MPCP) subdivision ¥ of Yz
is
e Y is a subdivision of %
e Y is simplicial and projective.
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e The set ¥ (1) of primitive generators of rays of ¥
(5.4) (1) =2°n(N\{0})=0=NnN .
I.e. we need to triangulate each face of =° regularly.
REMARK 5.1. For d > 3 ¥ may not be unique since there are all sorts of subdivisions.

Proposition 5.2. For ¥ MPCP then

(i) Xs is a Gorenstein orbifold!
(i) Z is the polytope associated to —Kx
(iii) f: Kx, — Kx(g) is crepant. This means that the pullback of the canonical bundle
is a canonical bundle, i.e. Kx, = f*Kx ().
(iv) —Kx,. is semi-ample, i.e. it is generated by global sections a big>-?
1.5. Batyrev hypersurface mirrors. Let =, Z° be a reflexive pair. Let X and 3 be

MPCP subdivisions of ¥z and ¥z.. Then we get mirror dual families. For a general section
s el (Xg,—Kx,) we can form

(5.5) Z(s) C Xx

and similarly § € T’ (Xi, fKXE) we get

(5.6) Z(3) C Xy, .

These are the mirror pairs. Note that I' (X, —Kx) = Map (E° N M, k). Lecture 23;

. November 19, 2019
1.6. Mirror theorems.

THEOREM 5.3. hl! (X) = hn~ 11 (X)
PROOF. See [6] Theorem 4.15, or [2]. O

THEOREM 5.4 (Batyrev). There exist “stringy” refinements of h?? for orbifold singu-
larities, and

(5.7) RGT(X) = RGP (X))

This has something to do with motivic integration. Then we have that Gromov-Witten
theory is the same as variations of Hodge structures.

THEOREM 5.5. GWy—o (X) = VHS (X).
PROOF. See [5,12,22]. O

Then there are some generalizations to toric complete intersections by Batyrev-Borisov.
The goal is then to make a more intrinsic construction which applies to a more general
situation as in the ongoing project [15,17].

ExampPLE 5.3. Consider the polytope in Fig. 2. Now label the vertices as on the right
of Fig. 2. This gives us a degeneration in P? x A} given by
(5.8) ryz +* (Py+2y® + Pz +y + 22+ 22) + 2 (2P + P+ %) = 0.
For t # 0 this is a CY hypersurface (i.e. an elliptic curve) and for ¢ = 0 zyz = 0 is the union
of three hyperplanes P'.

5-18mooth in codimension 3, but not in general.
5-2This means 7K§(E > 0.
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3 23
2 2 T2 2,
2 2 T2z } 22

FIGURE 2. A polytope with its unique MPCP subdivision. A PL function
is given by the labeled values.

Ep N (NR X {O}) C Ng

F1GURE 3. Construction of the family X starting from €.

Consider X — S where (in deformation theory) S is Spec of some DVR. But really we
could take it to be a local ring, or a complete local ring. Then we want the fiber over 0,
Xy, to be a union of toric varieties, i.e. a coproduct of toric varieties over a codimension 1
strata.

2. Mumford type toric degenerations

2.1. Construction. Let Q C Ny be convex and closed. Let P = {o} be rational such
that

(5.9) 0=|Jo

locally finite. This gives us a fan

(5.10) YSp={C(oc) CNg ®R} .

The idea is to put this at height one, and form a cone as in Fig. 3.

Proposition 5.6. (a) 7= (A?\ {0}) = (A?\{0}) x X (3p N (Ng x {0})) which is
of dimension d + 1.

(b)
(5.11) )= |J X .
vEP vertex D,
(c)
(5.12) multp, (77" (0)) =min{d € N\ {0} |d-v e N} .
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PROOF. (a) w1 (A'\ 0) corresponds to the fan {C (¢) N (Ng x {0})} in N & Z.
(b) 7= (0) is the union of toric prime divisors D,, with w € ¥, dimw = 1, and
w — AL

(¢) We know v is of the form 1/d (n,d) for n € N and d minimal. Locally complete
implies that

(5.13) ordp, 7" (t) =d .

w

In the example in Fig. 3, t # 0 gives us 7! (t) = P2, and t = 0 gives us

(2,1)
(5.14) 71 (0) = UX (-1,0) — - /
3 \
(17 _1)
Note that
]PJ2
(5.15) (2/3)

77 1(0) ~P(1,1,3)

2.2. Polytope picture. For mirror symmetry we need a polarized version. For = C
Mg a Q-polyhedron write P for a Q-polyhedron decomposition of Z. For a regular subdi-
vision there exists an integral piecewise affine function ¢ : = — R which is strictly convex.
This gives a graph I'; C Mg x R. The upper convex hull is

(5.16) By =T34+ (08 R>0) ={(m,h) €eEXR|h>¢@(m)} .
This gives us the polarized Mumford degeneration

(5.17) (X (Z5,))

where

(5.18) X (Sp,) = Projk[C (B,) N (M S Z& L)) .

2.3. Mirror symmetry for Mumford degenerations. The idea is that we have a
1-to-1 correspondence:

(B=I|P[,P,¢) +——— (B=|P|,P,)
(5.19) PA-function ——— & Newton polyhedron of ‘p|20 ,o0€P
(Z'Pa 7/)) (E'a J))

where 9 is a PL function.

EXAMPLE 5.4. A toric degeneration of P? given by P from Fig. 4 P is also shown in
Fig. 4.

Lecture 24;
November 21, 2019
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(7152)

(-1,-1) (2,1)

FIGURE 4. An example of P and P.

2.4. Toric degenerations. So we have

X - (X, L)

(5.20) l lﬂ

0 € S;=Spec(aDVR)

where we want Ay to be a union of projective toric varieties and Llp,) = Op(s) (1). So the
data is (B =Uo,P = {c},¢) where B is a manifold with boundary, dimg B = dim X = d,
and ¢ is a polarizing function. So this is the fan picture. ¢ corresponds to toric models of
7 in codimension 1.

Then there is an equivalent polyhedron construction. The discrete Legendre transform
is mirror duality for (B, P,¢) which yields (B,P,¢).

3. Towards GS-type toric degenerations

3.1. The Dwork pencil and A;-singularities. Consider

3 3
(5.21) X—(t-szJeri)CngAl
=0 =0

which projects m : S — A!. This is a 3-dimensional analogue of the quintic we saw at the

beginning of the course. This is a degeneration of K3. Then we get Xy = 7! (0) which

is a union of 4 P%s given by P (o) for ¢ maximal. The total space of X has 6 -4 = 24

three-dimensional A; singularities on the singular locus of X, which is 6 copies of P*.
Let’s consider the local equation by dehomogenizing at zy, z; # 0. This gives us

1+2f+25+ 25

(5.22) Z122 =
z1
So up to an analytic change of coordinates, this is isomorphic to uv = wt, which is an A;
singularity.
Modulo t**1 we get:
(5.23) ymod tFt! = U;LOX;Z

where X) = P(0p). This is essentially the kth order neighborhood of X, C X. The
observation is that these individual terms do not depend on X ifl are completely determined
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by (B,P.¢). Only the identification in higher codimension is nontoric (the gluing is not
toric).

3.2. Key example: one A; singularity. Consider two cells 1, oo which are both
half planes intersecting in a real line p. Write w for the coordinate on the intersection, u

for o1 and v for o5. Then we want an A; singularity at a point w = —1 in the intersection.
Then
(5.24) uv = (1+w) tmod t*+1 .

——

:fp

Now the rings to glue are
5.25 R, = [u,v,w,t]/ (uv — t, tFL kL
( 1 k) ) 7 ) )
(5.26) Ry, = [u,v,w, 1] / (uwv — ¢, ¢FT1 uFH)

SO XL“ = Spec R, »,. Now we get a diagram:

ch — Rp,al = (ch/ (uk+1)) u v f;l Cu fpv
(5.27) I l I I
R,, — R, ., = (Rc,g/ (vk“)) fo-u fp’lv U v

so we can form the fiber product to get

Roy XRpp,,. Boy = Clu,v,w,t]/ (uwv — (1 +w) ¢, tk+1)

(5.28) (v Jou) !
(fp7v) iU
(w,w) W

So we learned, that outside codimension 2, we have two toric models, given by (B, P, ¢).
Namely, if o is maximal we get

(5.29) RE = A [A,]
where A, = C[t] / (t*T) and A, = Z%, i.e. M, where o lives. We should think of this has
an integral tangent vector on o. Then for a codimension 1 thing p € P41 we get
(5.30) R = AN (24,22) )/ (242 = fpt70)
where k, (¢) € N\ {0} is the kink of ¢ along p, and f, € Ag[A,]. So this is the sense in
which it is living on a wall.

4. Reconstruction

This is the question of how to go from (B, P, ) to (X — s). The point is that we will
build X by gluing (fibered coproduct) of Spec R’pC and Spec R’; . Explicitly our starting data
is

(5.31) (B = J o0 fr € A [A,,]) .

ocEP
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4.1. Explanation without scattering. A fan structure at v; is given by

Vo = (07 1)

(5.32) / \

(-1,0) vy (1,0)

A fan structure at vy is given by

UQ,W —Y

(5.33) / | / .

X

These will have different affine structures. We can fix this by removing one point on the
internal edge. Here we have

(5.34) for =+ w

for « € C* and w =W/Z.
For R* ~we get

p,v1
(5.35) Zy=y=Y/Z
(5.36) Z_=x=X/Z
with the equation

(5.37) ZyZ_=(a+w)-t.
Then homogenizing we get

(5.38) g% =(a+W/z)t.

This is (non-toric) a generation family of conics. If we did a Mumford type degeneration
this az + w would be a w.
Similarly, for RF = we get

P,V
(5.39) Z+:y:£ Z,:xz_lzgg:%
SO
(5.40) ZiZ_ = (za+ 1)t
and after homogenizing we get
s VX (Zan)
SO
(5.42) XY =Za+W)Z-t.
The upshot is that we obtain consistent models
(5.43) Foun = 27072 fon,
for mf, ,, € A,. In the example mf ,, = (0,1). So add this to our data:

(544) (857)7(/77{fl),v}) .
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4.1.1. Propagation. Consider four copies of the quadrant glued together:

w

(5.45) Y I 2,
z
The toric model at v is
(546) Ak [$7y72,w]/(9€y—t72W—t> .

Now take f,, =1+ y. The local model for R is zw = (1+y)t. But then for  # 0 we
have y = £~ !¢, which implies we need a local model

(5.47) aw= (1+z7't)t.
This forces us to set
(5.48) foo=(1+27't) .

We can visualize this by saying that each wall carries the data of a monomial.
4.1.2. Walls leaving the codimension 1 locus.

(5.49) V.

The toric model is xyz =t and
(5.50) foo=ldaz=1+yz)""t.

To make this consist, take two copies of RX and glue by a (non-toric) “wall-crossing” auto-
morphism ®. In particular it maps

y 2 (1+ytztt)t

(5.51) )

2 (T+y '27't) '

(R —
=lmodt

Lecture 25;

November 26, 2019
5. Wall structures

5.1. Walls. Fix A = C[t]/ (t**1) for fixed k. Eventually k — co. As usual we have
the starting data

(5.52) (B = U o,P={c}, <p>

ocP
with an Z-affine structure. The singular locus A C B has Codimg A = 2.

DEFINITION 5.4. A wall p on B is
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e a rational polyhedral subset p C ¢ (for dimo = d) such that dimp = d — 1 and
int (pNA)=0,
e a function f, =Y ¢,,2™ where m € A, C A, ~ Z%, ¢, € A.

In codimension 0, p Nint (o) # 0 implies f, = 1 + ¢, 2™ for ¢, = Omod¢. The m
is telling us the propagation direction. We call these proper walls. In codimension 1, i.e.
p C p (with dimp = d — 1) we have f, = Jp for some p C p. We call these slabs. Then a
wall structure . is a finite collection of walls (for finite k).

5.2. Wall crossing. Let (p, f,) denote a codimension 0 wall where p C 0. Write
(5.53) Ry = AN~ Al 251 .
Then the wall gives an automorphism
(5.54) Oy : Ry =+ Ry
which sends
(5.55) P L
where n, € A and nf; = A,. This is an automorphism since 6, = id mod¢.

ExAMPLE 5.5. Consider the wall:

(5.56) /

p

X

Now we will cross from z towards z. First we have f, = 1 + t?27'271. Then the map 0,
maps

(5.57) z (L4+ 2272 2o (1+ t2x’1z*1)_1 -

EXAMPLE 5.6. Propagating walls intersect along codimension 2 polyhedral subsets
called joins. Take the following notation:

(o) z g1

1421

14z~
(5.58) y 14y .

14w

g3 w g4
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Then by crossing the walls we get:

X (1+w)z

(1+(1+y)_1w)x

(5.59) 1

— (1+(1+(1+w)y)*1w)(1+w)* x

— (14 0+ 0+ 0+ w)y) ™ (+yw) 1+ +yw) e

g

Now this look terrible but really

(5.60) 9= (1 + (L +y) + A+ wy) ™ (1+y) w) 1+0+yw) e
(5.61) = (1+(1+wy)_1w) (1+w+wy) "

(5.62) =(1+wy) " A+wy+w)(1+w+wy) "=

(5.63) =(1+wy) "z

This tells us that to make this consistent, we need to insert a wall in the upper right
diagonal direction with the function

(5.64) (1+wy) .

Then the theory is so beautiful, that this works no matter which monomial we start with.
The observation (due to Kontsevich-Soibelman) is as follows. Assuming all walls carry

function congruent to 1 mod ¢ and

(5.65) 0= 0, ...0,, =id modt"

—_———

counterclockwise

then there is a unique way to insert walls with functions 1 + ct**t12™ to achieve
(5.66) [16» =id mod#*+* .

5.3. Construction of X° = X\ Codim 2. Recall the goal is to go from (B, P, ) and
Jp to

X = Xo = | toric varieties
(5.67) 4
Sk = SpecC[t] / (t5T1)

Assume we have consistency of . in codimension 0 and codimension 1. Then define
(5.68) X° = h_n)l{Spec R.,Spec R, }

via wall crossings and canonical localizations R, — R, for ¢ C u. Then B\ Up cs P gives rise
to closures of connected components (WLOG we can assume convex) u C o, and Ry, := R,.
Then we have

(5'69) R, = A [Ac} [Z-i-v Z—] / (Z+Z_ - fe : tmﬁ) .



5. WALL STRUCTURES 92

5.4. Consistency in all codimensions/broken lines. Now we have broken lines £.
Inductively we define

(5.70) Op, (bj—12™71) =Y a;z™
where b;z™ € {a;z"}.

DEFINITION 5.5. . = {p} is consistent if locally sums over broken lines give well-defined
functions.

EXAMPLE 5.7. Let mg = (—1,0) and 2™° = z. Then the broken walls look like:

142y

(5.71) 1+

: ]

1+y

5.5. Canonical functions - generalized theta functions. Assume . is consistent
(in codimension < 2), m asymptotic integral vector field. By the same construction, we get

(5.72) 9 e O X

defined by sums over broken lines. On R, = A[A,], for u C o, define

(5.73) Oy = > bz

B with asymptotic 2™
endpt p

This is independent of p.

5.6. Construction of X — Spec A.
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THEOREM 5.7. For sS a consistent wall structure on (B,P,p) there exists a partial
completion X D X° with

(5.74) Xo=|JP(o) .

oeP
PROOF. In the affine case (i.e. P without bounded cells, i.e. each cell is a cone) then
(5.75) X = Spec Dpepz)A - UIm -

In the general case, apply the affine case to Tot (Oxo (—1)). So we use the fact that for
a projective variety

(5.76) DT (X,0x ()T (L,Ox)
d>0
where L | X is the total space of Ox (—1).
On the level of B, we take the truncated cone over B. O

5.7. Construction of consistent wall structures. A first approach is done in [16].
B has affine charts near vertices (A N ’P[O]‘ = (Z)). X is mirror to y/S with ), the union of
toric varieties. This is an inductive construction via scattering. This needs “local rigidity”
in codimension 2 of initial data f, , = f,.

The second approach in [14] uses the approach that this scattering corresponds to
relative Gromov-Witten theory on toric surfaces. Then X is mirror to (Y, D) a log CY
surface on Y/ S where dim )y = 2. This let to the results of [13]. So this is some kind of
hybrid approach.

Then in an upcoming work, by log GW-theory on (Y, D) (or (¥,)s)) where Y is the
union of tropicalizations of holomorphic curves.

6. Intrinsic mirror map

Insert here Professor Siebert’s talk from the geometry seminar a few weeks ago. The
point here is to construct (homogeneous) coordinate ring (mirror to (Y, D) (or ))) via
punctured Gromov-Witten theory. So this is log GW invariants with contact orders which
can be negative. This comes without an explicit use of wall structures. The point is that we
get complete control of the mirror construction: (X, D)~ Y = S5 (or X - S~ )Y — 5)
via log GW theory on X or X (really this is clsoed string theory g = 0).

In the affine case we start with a pair (Y, D) where D = UD; C Y is a normal crossings
divisor. Then we require that we have a numerical equivalence

(5.77) Ky +D~) aD;
for a; > 0. This is all we will require of a log CY.>3

EXAMPLE 5.8. Consider P2, Recall B(Z) is the union of three copies of N*. Then
for some (a,b) for a,b > 0 this gives us u — (u®,u’). The generators of the ring are in
one-to-one correspondence with contact orders. The multiplication rule is given by:

(5.78) Uiy - Oy Z Nonymap¥p

P
where Ny, m,p is the number of genus 0 curves with contacts my, mg, —p with D. The
hard part is showing associativity.

5-3This is a rather liberal notion of a log CY.
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For proper CY we have

Y > W

(5.79) 1l 1
S D {0}

and then

(5.80) X = Proj (@ A- ﬂm) .

The challenges are as follows: Lecture 26;
e extract variations of Hodge structures and closed Gromov-Witten invariants (genus December 3, 2019
0)

e Homological Mirror Symmetry (HMS)

e other mirror phenomenon (wide open)
— ¢ > 0 (non-commutative, phantom integrability)
— hyper-Kéahler (AAB branes, geometric Langlands)
— Donaldson-Thomas theory



CHAPTER 6

A peek into Homological Mirror Symmetry

This is a bit more subtle than just saying the derived category is the Fukaya category.
Throughout, (X,w) will be a compact CY.

1. Overview

So far we have looked at closed strings in these pictures as in Fig. 1.
Then we have an A-model (GW) and a B-model (VHS), given by topological twists.
HMS is the open string version of this pictorially shown in Fig. 2.

FIGURE 1. A closed string propagating through time and splitting into two strings.

S

Ly

Lo

FIGURE 2. An open string propagating through time with boundary con-
ditions Loy and Lq.
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<X

FIGURE 3. A map u : A — X from the open disk to our manifold which
sends the boundary to Lagrangians L;. This should be thought of as an
open string being born and dying.

Ly

Ly

Lo

FIGURE 4. A map v : A — X where we have three marked points and
send the portions of the boundary to three different Lagrangians. We will
eventually count things like this to put an algebraic structure on the sets
of intersection points between Lagrangians.

So we have some open strings propagating through space with some boundary conditions
Ly and Lo. Then we twist this to get the A-model, given by the Fukaya category F (X) in
genus 0.%! The B-model is given by the derived category D’ (Ox).

1.1. A and B-models. Pictorially, we have strings being born and dying as in Fig. 3.
So this is some kind of quantum correction between these intersection points. Then in
general we have polygons as in Fig. 4.

The boundary conditions are given by the set of “objects” Obj(.A) and the intersections
of boundary conditions given by the set of “morphisms” Hom (A). Propagation of strings
is then given by composition of morphisms my. Pictures as in Figs. 3 and 4 give algebraic
structure for the my,.

Let (X,w) be a symplectic manifold with dim¢ X = d. When A = F (X), the objects
are Lagrangian submanifolds, i.e. submanifolds L C X such that dimL = d and w|,_,.
Then propagating strings correspond to maps u : A — X where A = {|z| <1} C C is the
closed unit disk. For L th I’ Lagrangians intersecting transversely, we have

(6.1) hom (L, L) = CL"Y

6-1No one has dared define this in the higher genus case.
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L,

F1GURE 5. The type of disk we count when defining my,.

Really we want to equip these Lagrangians with U (1)-bundles and then instead of C we
want sections. Then the

(6.2) my, : Hom (Lg, Ly—1) ® ... Hom (L1, Ly) — Hom (Lo, L)

have to do with counting maps u : A — X (such that « (0D) C LoU...U Ly) as in Fig. 5.
In the B-model we have the category D® (Ox). The objects are complexes

(6.3) }":(..._>‘7:—7“_>]:—?“—1_>...)
with bounded®? cohomology

(6.4) R (F®) =0

if |i| > 0.

Why does this matter? The closed story is really enumerative, which not so many people
care about. But this open story brings in new objects that many people care about. La-
grangians are the holy grail of symplectic geometry; derived categories matter for geometric
representation theory, algebraic geometry, etc.

1.2. Algebraic structure. The moduli space of domains (stable disks) has a recursive
structure.

ExaMPLE 6.1. Consider a disk with 4 marked points on the boundary. Maps defined
on this are what we count for ms. This can degenerate in many ways, two of which are
shown in Fig. 6. We want to view 0 as the outgoing point, and the others as incoming. We
can encode these degenerations as rooted (metric) ribbon®? trees. The associated trees are
shown in Fig. 6.

The result is that for Ly, ..., L; mutually transverse, we can define
(6.5) my, : Hom (Lg, Li,—1) ® ... @ Hom (L1, Lo) — Hom (Lg, Lj) [2 — k]
by (virtually) counting J-holomorphic maps from disks to X. The virtual dimension of this

moduli space is
k

(6.6) (k=2)+do— Y d; .

=1

6-2This is what the b is good for.
6-3A ribbon graph is a graph where at each vertex the edges are cyclically ordered. The idea is that
ribbon graphs can always be embedded in the plane.
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1 2 1 2
0 0 3
FIGURE 6. Two of the ways this disk can degenerate and the associated
rooted ribbon trees.

The intersection points have (in good situations) a Z-grading, so this is what this [2 — k]
means. Then the algebraic relations between the mj come from studying boundaries of
high-dimensional moduli spaces.

EXAMPLE 6.2. (a) The first relation says that m? = 0, i.e. my is a differential.
We get this as follows. Take two Lagrangians Ly and L;. We want the difference
of the degrees of the intersection points to be 2 so we get strip-breaking. So m; is
a differential on

(6.7) & Hom (L, L) .
L.L'.d
(b) We have the relation
(68) mimso = My (m1 X id -+ id ®m1)

which means m; satisfies the Leibniz rule with respect to mo.
(¢) Unfortunately ms is not really associative, but ms is some kind of associator. In
particular, we get the relation:

(6.9) ma (id®@mg — mo ®id) = mims + m3 (M1 ® idRid+id @m; ® id +id ® id ®my)

Notice that the first term is a coboundary, and the second vanishes on cocycles
with respect to m;.
(d) Generally we have the formula
(6.10)

Z (—1)|a1|+”‘+‘a"|_q Mpg—pt1 Ak, - -5 Qptgt1, Mp (Aptgy - -, Qgt1) ,Cgy---,01) =0 .

P,q
p>1,420

p+q<k

These are called the A, relations.
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1.3. The Fukaya category. We can define the products my for mutually transverse
Lagrangians Lo, ..., Ly, assuming ¢; (X) = 0, X is compact, and all L; are oriented, spin,
graded, and unobstructed.®* There is a natural ground field called the Novikov field

(6.11) Aoy = Z aiin Ai € RN, —00,a; €E7Z
i>0

We could also take the a; € Q,C. The point is that the a; are the number of holomorphic
disks, and the \; are the symplectic area of our disks:

(6.12) /A utw

A priori this is only an A, pre-category since Hom (L, L) doesn’t make sense. But we
can use Hamiltonian perturbations to fix this. Given L, L’ choose H; : X — R, ¢t € [0,1]
giving a Hamiltonian flow ¢! such that ! (L') M L. One shows that the resulting A,
category F (X) is well-defined up to canonical A., quasi-isomorphism. Now we finally
actually define the following.

DEFINITION 6.1. A (non-unital) A -algebra is a Z-graded K vector space

(6.13) A=Pa4,

pEL
and graded (degree 0) k-linear morphisms
(6.14) my : A®% — A[2 — K]
for any k > 1 satisfying the A, relations.

DEFINITION 6.2. A (non-unital) A -category A consists of some objects Obj (A) and
for all Xg, X; € Obj(A) a Z-graded K-vector space

(6.15) Hom (Xo, X71)

and for all £k > 1

(6.16) my, : Hom (Xp, X—1) ® ... ® Hom (X1, Xo) — Hom (Xo, X%) [2 — k]
fulfilling the A, relations.

Note that we get an honest category from an A..-category by taking the associated
homological category H (F (X)) with my = 0. This has the same objects, but when we take
Hom we pass to cohomology.

FACT 9. H (F (X)) is unital, i.e. for all L there exists some e, € Hom" (L, L) such
that my (er,) = 0, it behaves as a unit wrt ma, and annihilates all my, for k > 2.

One calls such a category cohomologically unital (or c-unital). This is a bit annoying,
but there is a trick where our c-unital F (X) can be shown to be A, quasi-equivalent to a
unital A, category.

6-4This means there are no holomorphic disks with boundary on the L;.
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1.4. The “derived” Fukaya category. We might be confused now, because we
are supposed to match this A., category to this derived category which is triangulated.
Kontsevich offers a solution by making A = F(X) into a “triangulated A..-category”
by adding artificial complexes to get Tw . F (X). In particular, for Lq,...,L; we have
A = (6;;) € Hom' (L;, L;) such that

o (strictly lower triangular) d;; = 0 for all j > i,
e (Maurer-Cartan)

(617) ka (A,,A) = Z my (6ik;ik—17""6i2;i1) .

k>1 11 <..nyip;k>1

1.5. Homological mirror symmetry. Now we offer a precise statement of HMS.
Recall the Fukaya category had coefficients in this Novikov field A,,. Take complex coef-
ficients K = Aoy ® C. For (X,w) compact CY, we get a mirror (maximal) degeneration
Y/S. In particular we will work over S = Spec K. Then HMS asserts that:

CONJECTURE 1. There exists a canonical equivalence of A categories over K:
(6.18) ¢ :D'F(X)=H (Tw"' F (X)) - D" (V) .

This Tw'l F (X) is called the split closure. Said differently, this is the completion of the
twisted Fukaya category by idempotents.

2. Dsg (X) and the HPL

2.1. Cech model of D’ (X). A dg category is an A, category where m) = 0 for
k > 2. We want to describe the A, structure on DY (X). The point is that when we
start with something which is A, and complete, and pass to cohomology, we get something
which is A. The homological perturbation lemma (HPL) tells us that when we start with
something which is only dg, we still get something which is only A.

Assume X is smooth and projective. This means that for any coherent O x-module has
a finite locally free resolution. This also means that

(6.19) Db(X) = D’ (CohX) = D° (PerfX) .

In general, the perfect complexes are the compact objects. But if we are projective from
the beginning, the objects are compact anyway.

Then the dg enhancement is as follows. The objects of D} g (X) are bounded complexes
of locally free sheaves as before. The morphisms are the interesting part. Write

(6.20) U= {Uz}

for an affine cover of X. Then

(6.21) Hom (£°, F*) = P Hom, (x) (£°, F*)

where

(6.22) Hom%(big (&, F°) = @ leld (U, Homo, (€%, F°*[q])) -
ptg=n

We write

(6.23) Homo, (€%, F* [q]) = Hom{, (E°,F*)

Lecture 27;
December 5, 2019
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and C? denotes the the Cech p-cochains:
(6.24) &P rw,n...nu,,) .

i0<...<lp

This forms a dg-category with differential m, given by the Cech differential. For

6.25) £ = (Fuisee) € C7 (8 Hom (£2, 7))

(6.26) f= <fn“1p> ecr (il, Hom? (5',]'"')) :
composition is

(6.27) ma (g, f) = (=) g o f

where

(6.28) gof= ((—1)q"’gn+q,io ..... iy © fripg .., +) Ui )

2.2. The HPL.

THEOREM 6.1. For any A category A there exists an Ao category structure on H (A)
with my = 0 (this is what is called a minimal A, category) and an A quasi-equivalence

H(A) — A

PROOF. The construction depends on a choice, for any x,y € Obj (A) of a projector II
and a homotopy H:

(6.29) I :Hom (X,Y) — Hom (X,Y)
(6.30) H :Hom (X,Y) — Hom (X,Y) [-1]
(where II is of degree 0 and I1? = II) such that

(6.31) IM—id=mioH+Hom; .

This will give . Here we want ¢ to be a quasi-equivalence. Choose II as a projection to
representations of cohomology classes.
Then we get a new A, category ILA. The objects are the same, and the morphisms

are:

(6.32) Homp4 (X,Y) =11 (Hom4 (X,Y)) C Homy4 (X,Y)
which implies H (IILA) = H (A) as a category. Now define the m; as follows:
(6.33) mil = my

(6.34) my =TI o my

(6.35) my = Z M, T

T rooted
ribbon tree
leaves

We should think of these as Feynman rules. In particular, my r is defined as my, at each
interior vertex of valency k + 1, an Ho at an interior edge, and a Ilo at a root vertex.

EXAMPLE 6.3. Let £ = 6. Then one of the rooted ribbon trees being summer over is
pictured in Fig. 7. In particular this contributes:

(636) mk’T (al,...7a6) = Hom3 (al,Homz (Hom3 ((12,(137(14) ,a5) ,a6) .
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a1 az as Gy as aeg
ms
H
ma
H
ms3
1I

FIGURE 7. A rooted ribbon tree contributing to the definition of m{.

Lemma 6.2. The m}! fulfill the A, relations.
REMARK 6.1. There exists an A,.-functor
(6.37) (i) :IIA — A
with H (mj}}) the A structure on H (A). This is defined by a similar construction:

(6.38) k= Y ikr

T rooted
ribbon tree
leaves

where the i; r are defined as the my r were, but with the IIs at the root vertices replaced
by Hs.

Lemma 6.3. (i) is an A functor.

O
SKETCH PROOF OF LEMMA 6.2. Consider
(6.39) Be= > ke
T ribbon tree
e edge

where the pi (70 are defined as my r but with H at the edge e replaced by II = id =
mq o H— H om; and my at each external edge.
Then either

(i) using II —id, order by edges e:

I id
(6.40) pe = gt Ay —
~— —_———
e external e internal
or

(ii) using my o H + H omy, order by internal vertices adjacent to e.
Now apply A for m; to obtain a new sum over trees with each summand appearing in /Bkd.
The signs work out, so we get u = —uid. Then (6.40) implies
(6.41) Pt g =0

Then these turn out to be the A, relations for ml,;l. O
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3. Polishchuk’s rigidiy theorem

3.1. Reducing to the algebra Ay. Let L € D’ (X) be an ample line bundle on a
projective variety X. Then we get a full subcategory (L) of Dgg (X) with objects L™ for

n € Z. Then my on D (X) = H (Dgg (X)) given by the cup product on

(6.42) AL = @ HY (X,L9) .
P,q€L
Then we observe that A; contains the homogeneous coordinate ring;:
(6.43) AL DR, =P Ho(X,L") ,
n>0
is a minimal®® A, algebra, and that (L) split-generates D® (X). Therefore D’ (X) as an
A.-category is characterized by Ay, as an A, algebra.

3.2. A, structures on A;. Then we have the following question:
QUESTION 1. How much information does the Ay, structure on Ay, (beyond ms) hold?
REMARK 6.2. For X CY and dim X = d we have

(6.44) A= P HY(X,L%) =P H (X, L) o P H! (X,L%7) .

>0,q€Z > 0
p20,9€ 920 q< ~HO(X,L®—4)*

REMARK 6.3. This has an internal grading given by powers of L.
THEOREM 6.4 (Polishchuk). Let X be a projective variety, dim X = d, and L very
ample. Let HY (X, L®P) =0 for all p and all ¢ # 0. Then:

(i) Up to strict Aso-isomorphisms ((fn), f1 =id) and scaling, there exists a unique
non-trivial (myg # 0 for some k > 2) A structure on Ay preserving the internal
grading.

(i) The strict A isomorphism is unique up to homotopy.

REMARK 6.4. This says that we can somehow localize the content of HMS. The point
of this rigidity is that to prove HMS, we just need to equate the rings and show this little
extra information is the same.

3.3. A-structures and Hochschild cocycles. Let A = @ Ay be a graded algebra
keZ
and (my), (m}) be two A refinements (where m; = m{ = 0 and ma = m), are the given

multiplication). Then we can observe that if m; = m! for all i < n then
(i) ¢ = m, —m], is a Hochschild n-cocycle with co-differential

(6.45) 6, (a1, ... ant1) = (—1)" ¥ a1c(ag, ..., ans1)
+ Z (—1)j clar,...,a;a541,...,0n41)

+ (_1)TL+1 c (a17 ey an) Ap41

This is true because somehow this is the only thing left in the A, relations.
(ii) Changing m,, by a strict A isomorphism, this leads to a change of ¢ only by
Hochschild coboundaries.

6-5This means m1 = 0.

Lecture 28;
December 10, 2019
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3.4. Our situation. We have A = R ® M where

(6.46) R=H"(X,L) deg =0
q=20

(6.47) M= H"(X,L% deg = d ,
q<0

and

(6.48) my=A®...0 A A[2] .

Let’s look at the degrees. We have a; € M for k indices, so we get degree kd for 0 < k < n.
Then this goes to something of degree kd + 2 — n.
Since A has only degree 0 and d, we have either kd +2 —n =0, or d. Le.

(6.49) kd+2—-n=0 or (k—=1)d+2-n=0.

So write | = k or k—1 € {0,...,d}. In any case, we obtain ¢ = m,, —m/, a Hochschild
cocycle of degree 2 — n and internal degree 0, which we write as:

(6.50) Chnez = Cor

i.e. in the subscript we write the internal degree followed by the cohomological degree.

3.5. The standard (co-)bar resolution and HH*. Let A be an associative k-algebra
(where k is a commutative unital ring) with augmentation map (surjective) e : A — k =
AJA,.

Now we can consider the complex

(6.51) o AL RALRA S AL A AS RE—=0.
The differential is given by

n—1 )
(6.52) dlag®...Qa,) = Z(—1)1a0®...®aiai+1®...®an .

i=1
Fact 10. This is a complez (d*> =0).

When A is unital, this complex is exact. This is called the bar construction.®°

For M an A-bimodule, then

(6.53) C™ (A, M) == Homy, (A", M)

with dc is a complex, called the cobar complexr. This has cohomology:
(6.54) HH" (A, M) = H" (C* (A, M),?)

(6.55) HH" (A) :=HH" (A, A) .

called the Hochschild cohomology.
The internal degree and cohomological degree give us a bigrading on HH, written

(6.56) HHE 5 (A) .

REMARK 6.5. There are also Hochschild (co-)homology of general A, algebras, but we
won’t need this.

6-6When this was first written down by Eilenberg and Mac Lane they used a vertical bar | as shorthand
for the tensor product. This is where the name comes from.



3. POLISHCHUK'’S RIGIDIY THEOREM 105

3.6. Proof of the rigidity theorem.
Proposition 6.5. For A= R® M as above, the following hold:
(i) for alli <1(d+2)
(6.57) HHY{, 14 (A) =0 .
(ii) dim HH{H' (A) < 1.

/!

Corollary 6.6. Any two Ay, refinements (my,), (ml,) are (strict As) isomorphic iff
(6.58) [maya —mj, o] =0€ HHGH (A) .

PROOF. [m!, —m,] € HHY,? for 0 < I < n. Proposition 6.5 implies this is 0 if
ld+2 <1 (d+2). This is true automatically if I > 1. So we just have to consider [ = 1. In
this case we are looking at m:i” — Mg+2. O

PROOF OF THEOREM 6.4. By (i) from Proposition 6.5, either m,, = 0 for all n > 2 or
unique up to scale. O

REMARK 6.6. For X smooth, we have mgio # 0. This leaves us with the second
possibility. This is based on looking at the ideal sheaf of a point, taking the Koszul resolution,
then mg # 0.

PROOF OF PROPOSITION 6.5. We have A = R @& M. Then we want to write this as
k® Ry & M. Then for fixed | we have
(6.59) C'=Clg=C"(0)®C"(d) .
—— ——
deg=0 deg=d

These are contained in:

(6.60) C' (0) C Hom (AY", R)

(6.61) C'(d) C Hom (AY", M) .

These cochains look as follows. For ¢ € C% (0)

(6.62) c:[T(RY)OMIT(Ry)®..0 MT (Ry)], = R.

T (R4 ) is the tensor algebra over k and i is the number of factors in H* (L*). The analogous
statement holds for the cochains in C* (d).
This implies we have an exact sequence

(6.63) 0—-C*d)—=C*—=C*(0)=0.
So this reduces the proposition to showing that

(i) H (C*(0)) = H'(C*(d)) =0 for i <1 (d+ 2) and

(ii) { =1 implies H¥*2 (C*® (d)) = 0, and dim H4*2 (C* (0)) < 1.
Consider the filtration from
(6.64) c*(0)=Epce0);

j=0

Then § decomposes as

(6.65) ()50 = | D+ Gigr s

o
J<j j'>0
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The factors of M may decrease, never increase.
Now we work inductively by

(6.66) 0— gr; C*(0) —
This means we need to show (i) and (ii) for H* (C" (0); ,(5jj). We can write this as

(6.67) (€ );,05;) = Hom (K7, Rj) [-m]

with K, the jth internal degree graded piece of

(6.68) K =B*(k,M,...,M,k)

some kind of generalized bar complex:

(6.69) B*(Mq,....M,) =M1 ®@T(R4)®...T (Ry) ®@ M, .

106

We prove this by induction on n. This is Proposition 3.7 in Polishchuk. Write B® (M, ...

for the total complex for bicomplex with
(6.70) dego/ (11 @1 @ ... Qty—1 @ay) = Z deg (t;) -
i=0/1 (mod 2)
Then the spectral sequence E; terms are
(6.71) H (Mi@T(R)M)RT(Ry)@H* My T (Ry) @ M3) T (Ry)... .
Then we have a lemma

Lemma 6.7.
M i=-d-1

(6.72) H® (B* (M, My)) = {o o/

this implies £y = B®* (M{,..., M/

n

) up to shift n’ < n.
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